A method is disclosed for obtaining the density distributions of three-dimensional elements that compose objects or groups of objects, by examining the objects with beams of x-rays or gamma radiation that are transmitted through the object in a plurality of approximately parallel paths and measuring the intensity of the radiation, scattered approximately perpendicular to the parallel paths, in arrays of detectors around the object. The energy of the x-rays or gamma rays is such that dominant interaction in the object is Compton scattering. The density of each element is determined from the totality of measurements by standard mathematical tomographic or relaxation techniques of data manipulation.
|
0. 35. A method for generating sequential beams of penetrating electromagnetic radiation comprising:
a. providing a source for producing charged particles; b. directing the particles to a plurality of specified locations on a target having a surface to produce radiation; and c. collimating the radiation.
0. 18. A tomography system for analyzing a material concealed within an enveloping surface, the system comprising:
A. at least one source of penetrating radiation for emitting a beam along a beam axis having an orientation disposed with respect to the enveloping surface; B. a scanner for varying the orientation of the beam axis with respect to the material in incremental steps; and C. at least one array of segmented detectors disposed along a detector axis disposed substantially parallel to the beam axis for detecting scattered radiation of substantially all energies of scattered radiation and producing signals corresponding at least to the scattered radiation.
0. 24. A method for analyzing a material concealed within an enveloping surface, the method comprising:
A. producing a beam of energetic photons for penetrating the volume; B. scanning the beam across the material incrementally in a plurality of beam directions; C. detecting scattered photons of substantially all energies scattered by the material with a detector array having a spatial resolution in a direction substantially parallel to the beam directions; D. measuring the intensity of scattered photons scattered approximately perpendicular to each direction of the beam; and E. characterizing the material based on the intensity of scattered photons scattered approximately perpendicular to each incremental direction of the beam.
0. 29. An apparatus for generating sequential beams of penetrating electromagnetic radiation comprising:
a. a source for producing a beam of charged particles; b. a target having a surface which receives the beam of charged particles and emits electromagnetic waves in response thereto; c. a beam director that directs the beam of charged particles to the plurality of specified locations on the target; and d. a collimator, the collimator having an array of transmitting regions and being disposed proximal to the target such that electromagnetic waves emitted from the target pass through the collimator and emerge from the array of transmitting regions in a series of parallel beams as the beam of charged particles is directed at a plurality of specified locations on the target.
0. 23. A method for analyzing material concealed within an enveloping surface, the method comprising:
a. illuminating the enveloping surface with penetrating radiation propagating substantially along a beam axis, the penetrating radiation characterized by a first incident energy; b. measuring a profile of penetrating radiation characterized by a first incident energy that is scattered by the concealed material; c. illuminating the enveloping surface with penetrating radiation propagating substantially along the beam axis, the penetrating radiation characterized by a second incident energy; d. measuring a profile of penetrating radiation characterized by a first incident energy that is scattered by the concealed material; and e. determining at least one of the density and atomic number associated with each of a plurality of voxels based on the profiles of penetrating radiation characterized by the first and second incident energies and scattered by the concealed material.
11. A device for determining densities in volume elements in a material present in an assembly of objects, the device comprising:
a. a source for producing a beam of energetic photons having a direction for penetrating the material; b. an arrangement for scanning the beam of energetic photons in a sequence of sequential beams across the assembly in a manner such that successive directions of the sequential beams are substantially parallel to each other, the sequential beams passing through every volume of the assembly; c. a detector disposed substantially parallel to the direction of the beam of energetic photons for providing measurements of the intensity of scattered photons of substantially all energies scattered approximately perpendicular to the direction of the beam at each incremental position of the beam; and d. a computer for determining the densities in the volume elements of the material in the assembly from a totality of measurements of the intensity of scattered photons scattered approximately perpendicular to the direction of the beam at each incremental position of the beam by a mathematical reconstruction technique.
1. A method for determining a three-dimensional density, distribution among volume elements in a volume containing at least one material, the method comprising:
a. producing a beam of energetic photons for penetrating the volume; b. scanning the beam sequentially across incremental positions of the volume in a plurality, of paths having substantially parallel directions separated by incremental steps; c. detecting scattered photons of substantially all energies scattered by the material in said volume with a detector having a spatial resolution in a direction substantially parallel to the paths of the beam; d. measuring the intensity of scattered photons scattered approximately perpendicular to each substantially parallel direction of the beam at each incremental position of the beam to derive an independent measurement of intensity, of scattered photons scattered from the volume elements in the volume; e. identifying a volume element as the approximate origin of scattering along the path of the beam giving rise to the measurement of intensity of scattered photons; and f. calculating an independent density for each volume element of the material in the volume.
2. A method according to
3. A method according to
4. A method according to
5. A method according to
6. A method according to
7. A method according to
8. A method according to
9. A method according to
10. A method according to
12. A device according to
13. A device according to
14. A device according to
15. A device according to
16. A device according to
17. A device according to
0. 19. The tomography system in accordance with
0. 20. The tomography system in accordance with
0. 21. The tomography system in accordance with
0. 22. The tomography system in accordance with
0. 25. The method according to
0. 26. The method according to
0. 27. The method according to
0. 28. The method according to
0. 30. An apparatus according to
0. 31. An apparatus according to
0. 32. An apparatus according to
0. 33. An apparatus according to
0. 34. The apparatus according
0. 36. A method according to
|
1. Field of the Invention
This invention relates to the examination of a body by means of x-radiation or gamma radiation.
2. Description of the Prior Art
The creation of images of x-ray attention coefficients through objects began with the discovery of x-rays by Roentgen in 1895 and has developed continuously. A major advance was the invention in the early 1970's, by 43
The invention is first described using a monoenergic gamma ray source, in particular the 662 keV gamma ray from the decay of 137Cs. Other radioactive sources, such as the 356 keV gamma ray from the decay of 133Ba, or the 1117 keV and 1332 keV gamma rays from 60Co, or monochromatic x-ray sources might be appropriate for specific applications but 137Cs is an especially appropriate choice because of its long 30 year half-life, low cost, high specific activity and simplicity of its radiation spectrum.
The scattering of the 662 keV gamma ray through 90°C results in 288 keV radiation. The intensity of the 288 keV signal, I17, in detector 18 is given by:
where Io(662) is the intensity of the incident beam 11, the λ values in the first exponential are the total linear attenuation coefficients for 662 keV radiation, the λ, values in the second exponential term are the total linear attenuation coefficients for the scattered radiation of -288 keV, the t values are the linear dimensions of the pixels, and the square bracket term is the probability for Compton scattering in pixel 43. The linear attenuation coefficients are defined in terms of the cross section σ, the atomic weight A, Avogadro's number No, and the density ρ;
An analogous equation to 1 can be written for the intensity scattered into detector 20; only the last exponential term and the solid angle factor changes. There will be a total of 10 equations describing the scattering from material along row 4 into the segmented detectors in the top 13 and bottom 14 arrays. Each row that the 662 beam traverses will produce 10 more independent equations. A total of 50 equations will be generated in a full scan of the slice 8. An additional 5 equations will be generated by the intensities in the transmission detector 12 21; the equation for the ray 12-22 shown in
The transmission intensities exampled by Equations 3 are not necessary for solving Equations 1 for the densities in each of the volumes of the container 12, but they give important additional information that can speed up and make more secure the analytic procedures.
In the preferred embodiment using 137Cs, the interactions in the container are dominated by the Compton effect.
and the differential Compton attenuation
for 90°C scattering of 662 keV gamma rays is simply related to the total linear attenuation,
The consequence of these simplifications, all of which follow from the use of sufficiently high energy photons, is a set of 50 scattering equations and 5 transmission equations that contain just 25 unknowns, the 25 Compton linear attenuation coefficients. Equation 1, for example, becomes,
where all of the unknown quantities in the inspection of a container are total linear Compton attenuation coefficients which depend primarily on the densities in the voxels.
The 50 scattering equations in this example can be rapidly solved by relaxation techniques; it is not necessary to use matrix inversions or convert to frequency space. To emphasize the simplicity we note that the equations describing the interaction of the beam with the top row of voxels of
The linear Compton attenuation coefficients are directly proportional to the electron densities in the voxels; i.e., Equation 2 simplifies to Equation 8. 7,
where σe, the Compton scattering per electron, is a constant, and Z is the number of electrons per atom. The electron densities are, in turn, very closely related to the matter densities since, for most materials in luggage, Z/A≡0.5. (The avenge value of Z/A for plastics, explosives and other light materials is a few percent greater than 0.5; Z/A for heavier materials such as iron are a few percent less.)
It is anticipated that the invention will usually be implemented using a spectrum of x-rays generated by an electron beam, The source of the x-rays could be a conventional x-ray tube with a fixed electron beam striking a fixed or rotating anode. Our preferred embodiment uses a raster scanned electron beam shown schematically in FIG. 3. The x-rays are generated in a x-ray tube 31, which produces a raster-scanned beam of x-rays by scanning the electron beam 32 and placing an appropriate collimator 36 in front of the anode 33. The x-ray tube 31 is similar to a conventional cathode ray tube with an appropriate heavy element anode 33 replacing the traditional phosphor screen. As the electron beam sweeps across the anode 33, x-rays are generated that pass through successive parallel holes in the collimator 36. The result is a rastering of approximately parallel beams of x-rays through the container 41. The anode potential determines the maximum energy of the x-ray beams. An absorber 37 eliminates the softer components of the x-ray beam and determines the effective lower energy of the x-rays that interact in the container.
It should be emphasized that the choice of anode voltage and x-ray strength depends on the application. Large containers might warrant anode voltages as high as 2 MeV (pair production is still negligible at this energy) in order to produce sufficiently penetrating x-rays, while small containers with primarily low Z components might be studied effectively with x-ray energies below 150 keV.
A practical choice of parameters for scanning airport luggage would be an anode potential of 450 keV and an electron current of 4 milliamps. The length of the anode 33 might be 20", i.e., about the height of the anode of a 30" TV tube; a power density of 2 kilowatts is easily handled by modest cooling of the large-area. The collimator 36 might be a set of parallel holes in a 4" thick lead block (attenuation by the lead>1010). The holes should be appropriately designed to minimize internal scattering in the collimator. The absorber 37 might be 1 mm of tungsten that would reduce the 300 keV x-rays by a factor of ∼2 while killing 100 keV components by factors of 104.
Above and below the container are detectors or detector arrays 42 and 43, respectively that measures the scattered x-rays 46 as a function of position of scattering along the beam direction. To do this, we propose to use collimating slits 44 and 45 such as the Soller plates used extensively in x-ray diffraction. These slits restrict the direction of x-rays seen by the detector; their function is similar to the collimators used in Single Photon Emission Tomography (SPECT) in which the origins of the emission of gamma rays from radioactive sources is determined by the SPECT detector. Many options are available for the detectors including the hodoscopes of NaI(TI), BGO and CdZnTe now used for SPECT and Positron Emission Tomogaphy.
Equations 1 and 3 must now be written in terms of weighted integrals over the energy spectra. Exact expressions can be taken into account in the analysis, though we anticipate that in most practical cases it will be sufficient to use appropriate averages of the incident and scattered energies as well as the differential and integral linear attenuation coefficients in Equations 1 and 3, since the Compton cross sections vary slowly with energy, atomic number, and scattering angle around 90°C. Specifically, for elements from carbon to iron, the total Compton cross section varies by only 25% from 150 keV to 450 keV; for a given x-ray energy, it varies by only 10%. Moreover, the differential Compton cross section is almost independent of angle from 80°C to 110°C. It should also be noted that beam hardening--the changing energy spectrum in the container due to absorption--will not be significant when the invention is applied to airline baggage since the high energies of the incident beam are not much attenuated traversing an airline suitcase.
We have carded out computer simulation studies, assuming a rastered x-ray beam with dimensions 5 mm×5 mm generated by a 2 kilowatt, 450 keV electron beam. We estimate that efficient side scattered detectors can determine the origin of the scattered x-rays to within 2 cm along the beam path. (Note that SPECT hodoscopes of 150 keV radiation have spatial resolutions of approximately 0.5 cm.) Each voxel thus has a volume of 0.5 cc so that 100 grams of explosives would occupy about 300 voxels. The simulation studies show that the interrogation of a piece of luggage, 1 meter×60 cm×20 cm can be carried out in 6 seconds, resulting in the determination of the linear attention coefficients of each voxel in the luggage to an accuracy of 30%. The mean values of the densities of any contiguous 300 voxels (∼100 g of explosives) would then be known to an accuracy of 2%. The simulation studies show that CST should have a minimum detection limit below 100 g of explosives.
It should also be noted that the CST method of tomographic analysis is very effective for finding sheet bombs, one of the most difficult of the explosive configurations to investigate by x-ray means.
A logical extension of the invention is to make scattering measurements at two incident energies, one at the preferred high energy where the Compton effect is dominant and the other at a lower energy where the photo-electric effect makes a substantial contribution to the interactions of the x-rays in those voxels with high Z component. This so-called dual-energy method is well know for transmission tomography where it is used to determine the effective atomic number of the elements in the voxels and we anticipate that the dual energy method could have applications in which the measurement of the effective atomic number of the voxels as well as the density is important. Referring to
The invention stresses that the incident beams should be rastered across the container in approximately parallel paths and that the detected radiation should be limited to those x-rays that are scattered approximately perpendicular to the incident beam direction. The allowable deviations from these conditions depend on the applications. For all applications we expect that the deviations can be at least ±20°C, since the cos 20°C deviates by only 6% from unity. For some applications, especially those in which the high density regions make up a small portion of the container, the deviations from ideal could be considerably larger. Simulation studies indicate that the CST method is robust with respect to deviations from parallel beams and 90°C scattering but that the closer the rastered beams are to being parallel, and the closer the scatter angle of detected rays are to 90°C, the simpler and more accurate will be the analytic tomographic procedures for determining the densities.
Grodzins, Lee, Parsons, Charles G.
Patent | Priority | Assignee | Title |
10007019, | Jul 23 2002 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
10007021, | Feb 28 2008 | Rapiscan Systems, Inc. | Scanning systems |
10098214, | May 20 2008 | Rapiscan Systems, Inc. | Detector support structures for gantry scanner systems |
10175381, | Apr 25 2003 | Rapiscan Systems, Inc. | X-ray scanners having source points with less than a predefined variation in brightness |
10295483, | Dec 16 2005 | Rapiscan Systems, Inc | Data collection, processing and storage systems for X-ray tomographic images |
10317566, | Jan 31 2013 | Rapiscan Systems, Inc. | Portable security inspection system |
10345479, | Sep 16 2015 | Rapiscan Systems, Inc | Portable X-ray scanner |
10353109, | Jan 07 2013 | Rapiscan Systems, Inc. | X-ray scanner with partial energy discriminating detector array |
10408967, | Feb 08 2011 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
10591424, | Apr 25 2003 | Rapiscan Systems, Inc. | X-ray tomographic inspection systems for the identification of specific target items |
10670769, | Jul 23 2002 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
10746674, | Feb 03 2012 | Rapiscan Systems, Inc. | Combined scatter and transmission multi-view imaging system |
10754058, | Feb 28 2008 | Rapiscan Systems, Inc. | Drive-through scanning systems |
10782440, | Jan 07 2013 | Rapiscan Systems, Inc. | X-ray scanner with partial energy discriminating detector array |
10816691, | Feb 28 2008 | Rapiscan Systems, Inc. | Multi-element detector systems |
10901112, | Apr 25 2003 | Rapiscan Systems, Inc. | X-ray scanning system with stationary x-ray sources |
10942291, | Feb 08 2011 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
10976271, | Dec 16 2005 | Rapiscan Systems, Inc. | Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images |
10976465, | Jul 23 2002 | AMERICAN SCIENCE AND ENGINEERING, INC | Two-sided, multi-energy imaging system and method for the inspection of cargo |
11143783, | Jul 23 2002 | AMERICAN SCIENCE AND ENGINEERING, INC | Four-sided imaging system and method for detection of contraband |
11175245, | Jun 15 2020 | AMERICAN SCIENCE AND ENGINEERING, INC | Scatter X-ray imaging with adaptive scanning beam intensity |
11300703, | Mar 20 2015 | Rapiscan Systems, Inc. | Hand-held portable backscatter inspection system |
11307325, | Feb 08 2011 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
11340361, | Nov 23 2020 | AMERICAN SCIENCE AND ENGINEERING, INC | Wireless transmission detector panel for an X-ray scanner |
11371948, | Feb 03 2012 | Rapiscan Systems, Inc. | Multi-view imaging system |
11525930, | Jun 20 2018 | American Science and Engineering, Inc. | Wavelength-shifting sheet-coupled scintillation detectors |
11550077, | Jan 31 2013 | Rapiscan Systems, Inc. | Portable vehicle inspection portal with accompanying workstation |
11561320, | Mar 20 2015 | Rapiscan Systems, Inc. | Hand-held portable backscatter inspection system |
11579327, | Feb 14 2012 | American Science and Engineering, Inc. | Handheld backscatter imaging systems with primary and secondary detector arrays |
11579328, | Feb 28 2008 | Rapiscan Systems, Inc. | Drive-through scanning systems |
11726218, | Nov 23 2020 | American Science arid Engineering, Inc. | Methods and systems for synchronizing backscatter signals and wireless transmission signals in x-ray scanning |
11796489, | Feb 23 2021 | Rapiscan Systems, Inc | Systems and methods for eliminating cross-talk signals in one or more scanning systems having multiple X-ray sources |
11796711, | Feb 25 2009 | Rapiscan Systems, Inc. | Modular CT scanning system |
11822041, | Feb 08 2011 | Rapiscan Systems, Inc. | Systems and methods for improved atomic-number based material discrimination |
12061309, | Feb 28 2008 | Rapiscan Systems, Inc. | Drive-through scanning systems |
12181422, | Sep 16 2019 | RAPISCAN HOLDINGS, INC | Probabilistic image analysis |
6996265, | Nov 08 1999 | ThermoSpectra Corporation | Inspection method utilizing vertical slice imaging |
7023956, | Nov 11 2002 | Lockheed Martin Corporation | Detection methods and system using sequenced technologies |
7050533, | Oct 15 2003 | Siemens Healthcare GmbH | Method and device for determining the type of fluid in a fluid mass in an object |
7310407, | Sep 03 2004 | HIGHBROOK HOLDINGS, LLC | Nuclear medical imaging device |
7322745, | Jul 23 2002 | Rapiscan Systems, Inc | Single boom cargo scanning system |
7327870, | Nov 08 1999 | Teradyne, Inc | Method for inspecting a region of interest |
7369643, | Jul 23 2002 | Rapiscan Systems, Inc | Single boom cargo scanning system |
7461032, | Nov 11 2002 | Lockheed Martin Corporation | Detection methods and systems using sequenced technologies |
7486768, | Jul 23 2002 | Rapiscan Systems, Inc | Self-contained mobile inspection system and method |
7517149, | Jul 23 2002 | Rapiscan Systems, Inc | Cargo scanning system |
7519148, | Jul 23 2002 | Rapiscan Systems, Inc | Single boom cargo scanning system |
7526064, | May 05 2006 | Rapiscan Systems, Inc | Multiple pass cargo inspection system |
7551718, | Aug 23 2006 | AMERICAN SCIENCE AND ENGINEERING, INC | Scatter attenuation tomography |
7702069, | Feb 25 2005 | RAPISCAN SYSTEMS LIMITED | X-ray security inspection machine |
7711089, | Apr 11 2007 | ENTERPRISE SCIENCE FUND, LLC | Scintillator aspects of compton scattered X-ray visualization, imaging, or information providing |
7720195, | Jul 23 2002 | Rapiscan Systems, Inc | Self-contained mobile inspection system and method |
7724871, | Apr 11 2007 | ENTERPRISE SCIENCE FUND, LLC | Compton scattered X-ray visualization, imaging, or information provider in soft matter such as tissue, organs, or blood, and/or in hard matter such as bones or teeth |
7734012, | Apr 11 2007 | ENTERPRISE SCIENCE FUND, LLC | Volumetric type compton scattered X-ray visualization, imaging, or information provider |
7742567, | Apr 11 2007 | ENTERPRISE SCIENCE FUND, LLC | Compton scattered X-ray visualization, imaging, or information provider with time of flight computation |
7769133, | Jun 20 2003 | Rapiscan Systems, Inc | Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers |
7783004, | Jul 23 2002 | Rapiscan Systems, Inc | Cargo scanning system |
7817776, | Jul 23 2002 | Rapiscan Systems, Inc. | Cargo scanning system |
7856081, | Sep 15 2003 | Rapiscan Systems, Inc | Methods and systems for rapid detection of concealed objects using fluorescence |
7860213, | May 05 2006 | Rapiscan Systems, Inc. | Multiple pass cargo inspection system |
7876880, | Jul 23 2002 | Rapiscan Systems, Inc. | Single boom cargo scanning system |
7924979, | Aug 23 2006 | AMERICAN SCIENCE AND ENGINEERING, INC | Scatter attenuation tomography |
7963695, | Jul 23 2002 | Rapiscan Systems, Inc | Rotatable boom cargo scanning system |
7991113, | Jun 20 2003 | Rapiscan Security Products, Inc. | Relocatable x-ray imaging system and method for inspecting commercial vehicles and cargo containers |
7995705, | Jul 23 2002 | Rapiscan Security Products, Inc. | Self-contained mobile inspection system and method |
8041006, | Apr 11 2007 | ENTERPRISE SCIENCE FUND, LLC | Aspects of compton scattered X-ray visualization, imaging, or information providing |
8059781, | Jul 23 2002 | Rapiscan Systems, Inc. | Cargo scanning system |
8090150, | Oct 10 2008 | MORPHO DETECTION, LLC | Method and system for identifying a containment vessel |
8138770, | Sep 15 2003 | Rapiscan Systems, Inc. | Methods and systems for the rapid detection of concealed objects |
8170177, | May 05 2006 | Rapiscan Systems, Inc. | Multiple pass cargo inspection system |
8213570, | Feb 27 2006 | Rapiscan Systems, Inc. | X-ray security inspection machine |
8275091, | Jul 23 2002 | Rapiscan Systems, Inc | Compact mobile cargo scanning system |
8356937, | Jul 23 2002 | Rapiscan Systems, Inc. | Rotatable boom cargo scanning system |
8385501, | Jul 23 2002 | Rapiscan Systems, Inc. | Self contained mobile inspection system and method |
8389941, | Jun 11 2008 | Rapiscan Systems, Inc | Composite gamma-neutron detection system |
8389942, | Jun 11 2008 | Rapiscan Systems, Inc | Photomultiplier and detection systems |
8428217, | Sep 15 2003 | Rapiscan Systems, Inc. | Methods and systems for rapid detection of concealed objects |
8433036, | Feb 28 2008 | Rapiscan Systems, Inc | Scanning systems |
8457275, | May 05 2006 | Rapiscan Systems, Inc. | Multiple pass cargo inspection system |
8491189, | Jul 23 2002 | Rapiscan Systems, Inc. | Radiation source apparatus |
8503605, | Jul 23 2002 | AMERICAN SCIENCE AND ENGINEERING, INC | Four sided imaging system and method for detection of contraband |
8579506, | May 20 2008 | Rapiscan Systems, Inc | Gantry scanner systems |
8644453, | Feb 28 2008 | Rapiscan Systems, Inc | Scanning systems |
8668386, | Jul 23 2002 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
8674706, | Sep 15 2003 | Rapiscan Systems, Inc. | Methods and systems for the rapid detection of concealed objects |
8687765, | Jul 23 2002 | Rapiscan Systems, Inc. | Cargo scanning system with boom structure |
8712138, | Oct 13 2009 | Koninklijke Philips Electronics N V | Device and method for generating soft tissue contrast images |
8735833, | Jun 11 2008 | Rapiscan Systems, Inc | Photomultiplier and detection systems |
8774357, | Feb 28 2008 | Rapiscan Systems, Inc. | Scanning systems |
8831176, | May 20 2008 | Rapiscan Systems, Inc | High energy X-ray inspection system using a fan-shaped beam and collimated backscatter detectors |
8837669, | Apr 25 2003 | Rapiscan Systems, Inc. | X-ray scanning system |
8837670, | May 05 2006 | Rapiscan Systems, Inc. | Cargo inspection system |
8837677, | Apr 11 2007 | ENTERPRISE SCIENCE FUND, LLC | Method and system for compton scattered X-ray depth visualization, imaging, or information provider |
8840303, | May 20 2008 | Rapiscan Systems, Inc | Scanner systems |
8842808, | Aug 11 2006 | American Science and Engineering, Inc. | Scatter attenuation tomography using a monochromatic radiation source |
8885794, | Apr 25 2003 | Rapiscan Systems, Inc. | X-ray tomographic inspection system for the identification of specific target items |
8929509, | Jul 23 2002 | AMERICAN SCIENCE AND ENGINEERING, INC | Four-sided imaging system and method for detection of contraband |
8963094, | Jun 11 2008 | Rapiscan Systems, Inc | Composite gamma-neutron detection system |
8971485, | Feb 26 2009 | Rapiscan Systems, Inc | Drive-through scanning systems |
8993970, | Jun 11 2008 | Rapiscan Systems, Inc. | Photomultiplier and detection systems |
8995609, | Aug 02 2011 | Georgia Tech Research Corporation | X-ray compton scatter imaging on volumetric CT systems |
9020095, | Apr 25 2003 | Rapiscan Systems, Inc | X-ray scanners |
9020096, | Jul 23 2002 | Rapiscan Systems, Inc. | Self contained mobile inspection system and method |
9025731, | Jul 23 2002 | Rapiscan Systems, Inc. | Cargo scanning system |
9036779, | Feb 28 2008 | Rapiscan Systems, Inc | Dual mode X-ray vehicle scanning system |
9042511, | Aug 08 2003 | Rapiscan Systems, Inc. | Methods and systems for the rapid detection of concealed objects |
9048061, | Dec 16 2005 | Rapiscan Systems, Inc | X-ray scanners and X-ray sources therefor |
9052403, | Jul 23 2002 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
9057679, | Feb 03 2012 | Rapiscan Systems, Inc | Combined scatter and transmission multi-view imaging system |
9091628, | Dec 21 2012 | L-3 COMMUNICATIONS SECURITY AND DETECTION SYSTEMS, INC | 3D mapping with two orthogonal imaging views |
9113839, | Apr 23 2004 | Rapiscan Systems, Inc | X-ray inspection system and method |
9121958, | Feb 28 2008 | Rapiscan Systems, Inc. | Scanning systems |
9158027, | Feb 28 2008 | Rapiscan Systems, Inc | Mobile scanning systems |
9218933, | Jun 09 2011 | Rapiscan Systems, Inc | Low-dose radiographic imaging system |
9223049, | Jul 23 2002 | Rapiscan Systems, Inc. | Cargo scanning system with boom structure |
9223050, | Apr 15 2005 | Rapiscan Systems, Inc. | X-ray imaging system having improved mobility |
9268058, | Sep 15 2003 | Rapiscan Systems, Inc. | Methods and systems for the rapid detection of concealed objects |
9279901, | May 05 2006 | Rapiscan Systems, Inc. | Cargo inspection system |
9285498, | Jun 20 2003 | Rapiscan Systems, Inc. | Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers |
9310322, | Feb 27 2006 | Rapiscan Systems, Inc. | X-ray security inspection machine |
9310323, | Oct 16 2013 | Rapiscan Systems, Inc | Systems and methods for high-Z threat alarm resolution |
9329285, | Jun 11 2008 | Rapiscan Systems, Inc | Composite gamma-neutron detection system |
9332624, | May 20 2008 | Rapiscan Systems, Inc. | Gantry scanner systems |
9429530, | Feb 28 2008 | Rapiscan Systems, Inc. | Scanning systems |
9442082, | Apr 25 2003 | Rapiscan Systems, Inc. | X-ray inspection system and method |
9557427, | Jan 08 2014 | Rapiscan Systems, Inc | Thin gap chamber neutron detectors |
9618648, | Apr 25 2003 | Rapiscan Systems, Inc. | X-ray scanners |
9625606, | Oct 16 2013 | Rapiscan Systems, Inc. | Systems and methods for high-Z threat alarm resolution |
9632205, | Feb 08 2011 | Rapiscan Systems, Inc | Covert surveillance using multi-modality sensing |
9638646, | Dec 16 2005 | Rapiscan Systems, Inc. | X-ray scanners and X-ray sources therefor |
9675306, | Apr 25 2003 | Rapiscan Systems, Inc. | X-ray scanning system |
9688517, | May 20 2008 | Rapiscan Systems, Inc. | Scanner systems |
9791590, | Jan 31 2013 | Rapiscan Systems, Inc.; Rapiscan Systems, Inc | Portable security inspection system |
9817151, | Feb 28 2008 | Rapiscan Systems, Inc. | Drive-through scanning systems |
9823201, | Feb 03 2012 | Rapiscan Systems, Inc. | Combined scatter and transmission multi-view imaging system |
9823383, | Jan 07 2013 | Rapiscan Systems, Inc | X-ray scanner with partial energy discriminating detector array |
9835756, | Feb 28 2008 | Rapiscan Systems, Inc. | Dual mode X-ray vehicle scanning system |
9915752, | Aug 08 2003 | Rapiscan Systems, Inc. | Inspection systems with two X-ray scanners in a first stage inspection system |
9958569, | Jul 23 2002 | AMERICAN SCIENCE AND ENGINEERING, INC | Mobile imaging system and method for detection of contraband |
ER9501, |
Patent | Priority | Assignee | Title |
3955089, | Oct 21 1974 | Varian Associates | Automatic steering of a high velocity beam of charged particles |
4002917, | Aug 28 1974 | Thorn EMI Patents Limited | Sources of X-radiation |
4144457, | Apr 05 1976 | Tomographic X-ray scanning system | |
4149076, | Jun 24 1974 | Method and apparatus producing plural images of different contrast range by X-ray scanning | |
4194123, | May 12 1978 | Rockwell International Corporation | Lithographic apparatus |
4196351, | Jun 03 1977 | Scanning radiographic apparatus | |
4535243, | Mar 17 1983 | GE Medical Systems Global Technology Company, LLC | X-ray detector for high speed X-ray scanning system |
4598415, | Sep 07 1982 | Imaging Sciences Associates Limited Partnership | Method and apparatus for producing X-rays |
4672615, | Jul 20 1982 | Unisearch Limited | Ion and electron beam steering and focussing system |
4694457, | Jul 20 1982 | Unisearch Limited | Methods of steering and focusing ion and electron beams |
4730350, | Apr 21 1986 | Method and apparatus for scanning X-ray tomography | |
4864142, | Jan 11 1988 | Penetron, Inc. | Method and apparatus for the noninvasive interrogation of objects |
5022062, | Sep 13 1989 | AMERICAN SCIENCE AND ENGINEERING, INC | Automatic threat detection based on illumination by penetrating radiant energy using histogram processing |
5097492, | Oct 30 1987 | Agilent Technologies, Inc | Automated laminography system for inspection of electronics |
5153900, | Sep 05 1990 | Carl Zeiss Surgical GmbH | Miniaturized low power x-ray source |
5179581, | Sep 13 1989 | AMERICAN SCIENCE AND ENGINEERING, INC A CORP OF MASSACHUSETTS | Automatic threat detection based on illumination by penetrating radiant energy |
5247561, | Jan 02 1991 | Luggage inspection device | |
5420905, | Aug 15 1990 | Massachusetts Institute of Technology | Detection of explosives and other materials using resonance fluorescence, resonance absorption, and other electromagnetic processes with bremsstrahlung radiation |
5430787, | Dec 03 1992 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF COMMERCE | Compton scattering tomography |
5442678, | Sep 05 1990 | Carl Zeiss AG | X-ray source with improved beam steering |
5504796, | Nov 30 1994 | TEXAS A&M UNIVERSITY SYSTEM, THE | Method and apparatus for producing x-rays |
5548630, | Sep 16 1994 | Siemens Aktiengesellschaft | X-ray radiator having an electron source for sending a beam of electrons along an elongated anode |
5682412, | Apr 05 1993 | AIRDRIE PARTNERS I, LP | X-ray source |
5712889, | Aug 24 1994 | GE Medical Systems Global Technology Company, LLC | Scanned volume CT scanner |
5805662, | Dec 08 1994 | QUANTA VISION, INC | Using deflected penetrating radiation to image an object's internal structure |
5841831, | May 09 1996 | Siemens Aktiengesellschaft | X-ray computed tomography apparatus |
5930326, | Jul 17 1996 | AMERICAN SCIENCE AND ENGINEERING, INC | Side scatter tomography system |
6111974, | Feb 11 1998 | Analogic Corporation | Apparatus and method for detecting sheet objects in computed tomography data |
DE19710222, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 08 1999 | American Science and Engineering, Inc. | (assignment on the face of the patent) | / | |||
Aug 11 2003 | AMERICAN SCIENCE AND ENGINEERING, INC | SILICON VALLEY BANK DBA SILICON VALLEY EAST | SEURITY AGREEMENT | 014007 | /0604 | |
Nov 18 2009 | Silicon Valley Bank | AMERICAN SCIENCE AND ENGINEERING, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 023556 | /0062 | |
Oct 15 2010 | AMERICAN SCIENCE AND ENGINEERING, INC | WELLS FARGO BANK, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040305 | /0233 |
Date | Maintenance Fee Events |
Mar 11 2005 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
May 12 2009 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Nov 05 2005 | 4 years fee payment window open |
May 05 2006 | 6 months grace period start (w surcharge) |
Nov 05 2006 | patent expiry (for year 4) |
Nov 05 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 05 2009 | 8 years fee payment window open |
May 05 2010 | 6 months grace period start (w surcharge) |
Nov 05 2010 | patent expiry (for year 8) |
Nov 05 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 05 2013 | 12 years fee payment window open |
May 05 2014 | 6 months grace period start (w surcharge) |
Nov 05 2014 | patent expiry (for year 12) |
Nov 05 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |