A vehicle washer nozzle liquid spray system having a source of washer liquid under pressure, a fluidic oscillator comprising a housing and a fluidic insert having a power nozzle, an oscillation chamber having an upstream end coupled to the power nozzle for issuing a jet of washer liquid into the oscillation chamber and a downstream end having an outlet aperture for issuing a jet of wash liquid to ambient, and side and top and bottom walls, an oscillation inducing silhouette in the oscillation chamber for causing said jet of wash liquid to rhythmically sweep back and forth between the sidewalls in the oscillation chamber. Top and bottom walls of the oscillation chamber first diverge for a predetermined distance in a downstream direction and then converge towards each other through said outlet aperture. This enables the deflection angle to be adjusted for different vehicles uses and applications by changes to the fluidic insert without changes to the housing.
|
0. 3. In a washer nozzle system having a source of washer fluidic under pressure, a fluidic oscillator having a power nozzle, an oscillation chamber having an upstream end coupled to said power nozzle for issuing a jet of wash liquid into said oscillation chamber and a downstream end having an outlet aperture for issuing a jet of wash fluid to ambient, and side and top and bottom walls, an oscillation inducing means in said oscillation chamber for causing said jet of wash fluid to rhythmically sweep back and forth between said sidewalls and said oscillation chamber, the improvement wherein said top and bottom walls first gradually diverge for predetermined distance in a downstream direction and then gradually converge towards each other through said outlet aperture.
1. In a vehicle washer nozzle system having a source of washer fluid under pressure, a fluidic oscillator having a power nozzle, an oscillation chamber having an upstream end coupled to said power nozzle for issuing a jet of washer liquid into said oscillation chamber and a downstream end having an outlet aperture for issuing a jet of wash fluid to ambient, and side and top and bottom walls, an oscillation inducing means in said oscillation chamber for causing said jet of wash fluid to rhythmically sweep back and forth between said sidewalls and said oscillation chamber, the improvement wherein said top and bottom walls first gradually diverge for predetermined distance in a downstream direction and then gradually converge towards each other through said outlet aperture.
2. A vehicle windshield washer system defined in
0. 4. A washer nozzle system defined in
|
The present invention relates to fluidic oscillators for use in vehicle washer systems and more particularly to a fluidic oscillator for vehicle windshield washer systems in which a housing, which can be commonly used on different vehicles, incorporates a fluidic oscillator element, hereinafter termed a "fluidic insert", which carries a physical silhouette or pattern of a fluidic oscillator and is adapted to create different deflection angles. As used herein, the term "deflection angle" means the angle that the jet of wash liquid makes as it exits the outlet in a plane orthogonal to the plane of the silhouette, and the term "fan angle" is the angle made by the jet sweeping back and forth between the boundaries of the outlet in the plane of the silhouette.
Stouffer U.S. Pat. No. 4,508,267 entitled LIQUID OSCILLATOR DEVICE and Bray, Jr. U.S. Pat. No. 4,463,904 entitled COLD WEATHER FLUIDIC FAN SPRAY DEVICES AND METHOD disclose fluidic oscillators which have proved to be highly successful. They typically comprise a housing in which a fluidic insert element having a silhouette of a fluidic oscillator is inserted into the housing. The silhouette of the fluidic oscillator typically is of the type disclosed in
In the manufacture of windshield washer nozzles, it has been found desirable to provide one housing on different vehicles which thereby reduces the cost of housing design and the tools. However, this requires creating different deflection angles in the fluidic inserts which contains fluidic oscillating element per se.
It has been found desirable to provide variable deflection angles. In one approach disclosed in
1. Inconsistent and unreliable deflection angles due to the high sensitivity of the flow to the step height,
2. Reduced fan angles and flow rates because the step or bump could reduce the throat area,
3. Smaller than normal droplets caused by the fluid impact on the step or bump,
4. Messy spray caused by fluid impact on the step or bump,
5. Degraded waves as a direct result of the destruction of fluid functions made by the step.
Moreover, the deflection angles of the fluidic washer nozzles can be adjusted by using the taper at the floor of the fluidic insert as disclosed in the aforementioned Bray, Jr. U.S. Pat. No. 4,463,904. This eliminates the impact between the fluid and the step. Therefore, the spray is usually not as messy, and the wave is usually not degraded until the taper reaches about 10°C to 12°C when the flow begins to separate from the floor of the insert. The deflection angles are not as sensitive to the taper as it is to the step. However, with the use of a large taper, the spray becomes much thicker, and it makes the reading of the deflection angle very difficult and inconsistent because it is hard to find the center of a thick spray.
According to the present invention, the problem discussed above is solved by the use of a reverse taper at the outlet of the fluidic insert to adjust the deflection angles of the fluidic wash nozzle. This reverse type allows one housing to be used for several different types of vehicles which have different requirements for deflection angles. It allows the creating of different deflection angles in the fluidic insert per se rather than designing a housing and tools for the different deflection angles desired. Thus, according to the present invention, the windshield washer element has a housing with a rectangular chamber having formed therein a silhouette or physical pattern of a fluidic oscillator which may be of the type disclosed in the above-referenced patents. The fluidic oscillator silhouette has an oscillation chamber having an upstream end coupled to the power nozzle for issuing a jet of wash liquid into the oscillation chamber and a downstream end having an outlet aperture perforation for issuing wash liquid to ambient. The oscillation chamber includes means for causing the jet of wash fluid to rhythmically sweep back and forth between the side walls and the oscillation chamber and issue in a sweeping rhythmic fashion and through the outlet. According to the invention, the top and bottom walls of the oscillation chamber diverge for a predetermined distance in a downstream direction and then converge towards each other through the outlet aperture. For different housings, and different physical applications, the degree of the taper can be changed to accommodate the deflection angles required by different vehicles, to thereby reduce the cost of housing design and the tools.
The invention retains the droplet size without causing a detrimental increase in smaller droplets which are more adversely affected by wind and air flow effects over the vehicle. One of the basic objectives of the fluidic windshield washer nozzle is to have a fan spray which has a designed or predetermined droplet distribution through the fan and the present invention retains desired droplet distribution while providing the uniform droplet distribution of Stouffer U.S. Pat. No. 4,508,267.
The above and other objects, advantages and features of the invention become more apparent when considered with the following specification and accompanying drawings wherein:
In the embodiment shown in
As described in the above referenced Bray, Jr. U.S. Pat. Nos. 4,463,904 and 4,645,126 and Stouffer U.S. Pat. No. 4,508,267, a system of vortices is established in the oscillation chamber of the respective oscillators. Each of the oscillators causes a jet of wash fluid to be issued through the outlet to ambient, which jet is oscillated or swept back and forth in a fan angle β and which varies from about 30°C to about 160°C as set forth in Stouffer U.S. Pat. No. 4,508,267.
In the aforementioned Bray, Jr. patents and also in the Stouffer patent, the upper (roof) or lower walls or both of the fluidic oscillator have a taper incorporated therein so that the walls diverge from each other in the direction of the outlet OL so as to expand the power jet in cold weather, a typical taper or angle being about 5°C. In the aforementioned Bray, Jr. patents, the taper is within a range of 2°C and about 10°C with 5°C being found to be most acceptable since the taper angle is a function of the distance between a power nozzle and the fluid outlet.
In the nozzle construction shown in
1. Inconsistent and unreliable deflection angles due to the high sensitivity of the flow to the step height.
2. Reduced fan angles and slow rates because the step reduces the throat area.
3. Smaller than normal droplets caused by the fluid impact on the step.
4. Messier spray caused by the fluid impact on the step; and
5. Degraded waves as a direct result of the fluidic functions made by the step.
The deflection angles of the fluidic oscillator can be adjusted by using the taper as shown in the Bray, Jr. and Stouffer patents. This eliminates the impact between the fluid and the step, and therefore the spray is not as messy and the wave is usually not degraded until the taper reaches about 10°C14 12°C when the flow begins to separate from the floor of the insert. The deflection angle is not as sensitive to the taper as the step. However, with the use of a larger taper the spray comes much thicker making it difficult and inconsistent to find the center of a thick spray.
In order to create the required deflection angle without the above problems, the fluidic oscillator of the present invention solves this problem by use of a reverse taper at the outlet of the fluidic insert to adjust the deflection angles of the fluidic washer nozzles. These are shown in
The most critical parameter of the reverse taper insert is its deflection angle, although other performance factors (such as fan angle, flow rate, spray thickness, wave pattern, fluid droplet size and spray cleanliness) are important as well. By adding the reverse taper RT, at angle φ the thickness of the spray can be reduced which makes the deflection angles more consistent and reliable and as a result, of the thinner spray, fluid is more concentrated in the middle which aids in the dynamic performance of the fluidic windshield washer nozzle. Moreover, the reverse taper does not create as much destruction of the spray as the step at the outlet of the insert. This makes the spray cleaner and not as degraded as in the case of the step at the outlet (FIGS. 4A and 4B). In fact, the droplet sizes are also larger which is good for high speed testing since the high speed wind affects on small droplets is significant. In most cases, the throat depth and throat area are unchanged by adjusting the taper after the reverse taper is added to the insert. Therefore, the fan angle does not have to be reduced by the addition of reverse taper.
In a preferred embodiment, the diverging taper from the power nozzle PW to the point where the converging or reverse taper begin is about 5°C and the reverse taper angles φ is about 3°C. By making various combinations of changes in this angle in the fluidic insert, the deflection angle DA can be adjusted without making any changes in the housing. The length Lr of the reverse taper can also be adjusted.
While the invention has been described and illustrated with respect to specific embodiments, it will be clear that various modifications and adaptations and changes to the invention will be obvious to those skilled in the art without departing from the true spirit and scope of the invention as set forth in the appended claims.
Patent | Priority | Assignee | Title |
10328906, | Apr 11 2014 | DLHBOWLES, INC | Integrated automotive system, compact, low-profile nozzle assembly and compact fluidic circuit for cleaning a wide-angle image sensor's exterior surface |
10350647, | Mar 10 2011 | DLHBOWLES, INC | Integrated automotive system, nozzle assembly and remote control method for cleaning an image sensor's exterior or objective lens surface |
10399094, | Apr 29 2015 | DELTA FAUCET COMPANY | Showerhead with scanner nozzles |
10432827, | Mar 10 2011 | DLHBOWLES, INC | Integrated automotive system, nozzle assembly and remote control method for cleaning an image sensors exterior or objective lens surface |
10525937, | Apr 16 2014 | DLHBOWLES, INC | Integrated multi image sensor and lens washing nozzle assembly and method for simultaneously cleaning a plurality of image sensors |
10549290, | Sep 13 2016 | ASSA ABLOY AMERICAS RESIDENTIAL INC | Swirl pot shower head engine |
10618066, | May 13 2005 | DELTA FAUCET COMPANY | Power sprayer |
11241702, | Apr 29 2015 | DELTA FAUCET COMPANY | Showerhead with scanner nozzles |
11267003, | May 13 2005 | DELTA FAUCET COMPANY | Power sprayer |
11305297, | Jun 05 2017 | DLHBOWLES, INC | Compact low flow rate fluidic nozzle for spraying and cleaning applications having a reverse mushroom insert geometry |
11472375, | Apr 16 2014 | DLHBOWLES, INC. | Integrated multi image sensor and lens washing nozzle assembly and method for simultaneously cleaning a plurality of image sensors |
11504724, | Sep 13 2016 | ASSA ABLOY AMERICAS RESIDENTIAL INC | Swirl pot shower head engine |
11813623, | Sep 13 2016 | ASSA ABLOY AMERICAS RESIDENTIAL INC | Swirl pot shower head engine |
6976507, | Feb 08 2005 | Halliburton Energy Services, Inc. | Apparatus for creating pulsating fluid flow |
7404416, | Mar 25 2004 | Halliburton Energy Services, Inc | Apparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus |
7677480, | Sep 29 2003 | DLHBOWLES, INC | Enclosures for fluidic oscillators |
7850098, | May 13 2005 | DELTA FAUCET COMPANY | Power sprayer |
8172162, | Oct 06 2005 | DLHBOWLES, INC | High efficiency, multiple throat fluidic oscillator |
8205812, | Oct 06 2005 | DLHBOWLES, INC | Enclosures for multiple fluidic oscillators |
8424781, | Feb 06 2006 | DELTA FAUCET COMPANY | Power sprayer |
9943863, | Apr 29 2015 | DELTA FAUCET COMPANY | Showerhead with scanner nozzles |
9962718, | May 13 2005 | DELTA FAUCET COMPANY | Power sprayer |
9992388, | Mar 10 2011 | DLHBOWLES, INC | Integrated automotive system, pop up nozzle assembly and remote control method for cleaning a wide angle image sensors exterior surface |
Patent | Priority | Assignee | Title |
3507275, | |||
4000757, | Dec 04 1975 | The United States of America as represented by the Secretary of the Navy | High gain fluid amplifier |
4052002, | Sep 30 1974 | Bowles Fluidics Corporation | Controlled fluid dispersal techniques |
4157161, | Sep 30 1975 | FLUID EFFECTS CORPORATION | Windshield washer |
4463904, | Nov 08 1978 | FLUID EFFECTS CORPORATION | Cold weather fluidic fan spray devices and method |
4508267, | Jan 14 1980 | FLUID EFFECTS CORPORATION | Liquid oscillator device |
4645126, | Nov 08 1978 | FLUID EFFECTS CORPORATION | Cold weather fluidic windshield washer method |
WO8101966, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 04 2000 | Bowles Fluidics Corporation | (assignment on the face of the patent) | / | |||
Dec 19 2014 | Bowles Fluidics Corporation | MADISON CAPITAL FUNDING LLC, AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 034679 | /0163 | |
Jan 08 2016 | Bowles Fluidics Corporation | DLHBOWLES, INC | MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 037690 | /0026 | |
Jan 08 2016 | DLH INDUSTRIES, INC | DLHBOWLES, INC | MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 037690 | /0026 | |
Mar 01 2022 | MADISON CAPITAL FUNDING LLC | DLHBOWLES, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059697 | /0435 |
Date | Maintenance Fee Events |
Nov 10 2005 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Nov 21 2005 | LTOS: Pat Holder Claims Small Entity Status. |
May 01 2008 | ASPN: Payor Number Assigned. |
Dec 14 2009 | REM: Maintenance Fee Reminder Mailed. |
Mar 16 2010 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Mar 16 2010 | M2556: 11.5 yr surcharge- late pmt w/in 6 mo, Small Entity. |
Date | Maintenance Schedule |
Mar 04 2006 | 4 years fee payment window open |
Sep 04 2006 | 6 months grace period start (w surcharge) |
Mar 04 2007 | patent expiry (for year 4) |
Mar 04 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 04 2010 | 8 years fee payment window open |
Sep 04 2010 | 6 months grace period start (w surcharge) |
Mar 04 2011 | patent expiry (for year 8) |
Mar 04 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 04 2014 | 12 years fee payment window open |
Sep 04 2014 | 6 months grace period start (w surcharge) |
Mar 04 2015 | patent expiry (for year 12) |
Mar 04 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |