A valve manifold having a manifold body with a first face, an opposed, substantially planar second face, and a peripheral wall, a first inlet, a second inlet, a first drain port, and a second drain port being formed in the first face, a first outlet and a second outlet being formed in the second face, there being a first, fluid communication pathway/valve for controlling fluid flow between the first outlet and the second outlet, a second, fluid communication pathway/valve for controlling fluid flow between the first inlet and the first outlet, a third, fluid communication pathway/valve for controlling fluid flow between said first drain port and said first outlet, a fourth, fluid communication pathway/valve for controlling fluid flow between the second inlet and the second outlet, a fifth, fluid communication pathway/valve for controlling fluid flow between the second drain port and the second outlet, flow paths opening into the outlets sloping away from said second face.
|
0. 21. A method of manufacturing a valved manifold for use with a pressure sensing apparatus, said manifold comprising in combination:
(a) an integral body having a first face section, a second face section, generally parallel with the first face section; and a peripheral wall section, the distance between the first and second face sections being smaller than at least one of the width and the length of the second face section; (b) a passage system disposed within said body and including a plurality of mutually intercommunicating passages; (c) said passage system including: (i) a high pressure inlet; (ii) a high pressure outlet; (iii) a high pressure inlet; (iv) a low pressure outlet; (v) a vent outlet; (vi) an equalizer valve cavity, said equalizer valve cavity being connected via a first passageway to said low pressure outlet and by a second passageway to said high pressure outlet; (d) said high and low pressure outlets being disposed in said first face section, said high and low pressure inlets being disposed in at least one of said second face section or in said peripheral wall section; (e) said first face section being sealingly compatible with respect to an inlet portion of a housing of a respective pressure sensing apparatus to provide a hermetical sealing engagement therewith, while communicating said high and low pressure outlets with respective inlet portions of the pressure sensing apparatus; (f) the spacing between the high and low pressure inlets being different from that of the spacing between the high and low pressure outlets; said method comprising machining each of said intercommunicating passages without forming construction holes in said integral body thereby eliminating potential leak points.
0. 10. A method of manufacturing a valve manifold adapted to be positioned between a main flow line and a pressure sensor to control fluid flow from said main flow line to said pressure sensor without the presence of construction holes which are a potential source of leakage of fluids from said manifold, said method comprising:
providing a manifold body having a first face, an opposed substantially planar second face and a peripheral wall, machining high pressure and low pressure cylindric cavities and high and low pressure cylindric drain ports in said first face; machining a high pressure cylindric cavity and a low pressure cylindric cavity in said second face, the axes of at least one of ( machining a cylindric high pressure block valve cavity in said peripheral wall and forming substantially straight passageways connecting said cylindric high pressure block valve cavity to each of said high pressure cylindric cavities, machining a cylindric low pressure block valve cavity in said peripheral wall and forming substantially straight passageways connecting said cylindric low pressure block valve cavity to each of said low pressure cylindric cavities; machining a cylindric high pressure vent valve cavity in said peripheral wall, said cylindric high pressure vent valve cavity in fluid communication with said high pressure cylindric drain port; machining a cylindric low pressure vent valve cavity in said peripheral wall, said cylindric low pressure vent valve cavity in fluid communication with said low pressure cylindric drain ports; machining a passageway between said high pressure cylindric cavity in said second face and said cylindric high pressure vent valve cavity in said peripheral wall; and machining a passageway between said low pressure cylindric cavity in said second face and said cylindric low pressure vent cavity in said peripheral wall.
1. A valve manifold adapted to be positioned between a main flow line and a pressure sensor to control fluid flow from said main flow line to said pressure sensor, comprising:
a manifold body having a first face, an opposed, substantially planar second face, and a peripheral wall, a high pressure inlet, a low pressure inlet, a high pressure drain port, and a low pressure drain port being formed in said first face, a high pressure outlet and a low pressure outlet being formed in said second face; an equalizer valve cavity formed in said peripheral wall, said equalizer valve cavity being in open flow communication with said high pressure outlet and said low pressure outlet; an equalizer valve disposed in said equalizer valve cavity for controlling fluid communication between said high pressure outlet and said low pressure outlet; a high pressure block valve cavity formed in said peripheral wall said high pressure block valve cavity, said high pressure inlet, and said high pressure owlet being interconnected, said high pressure block valve cavity and said high pressure outlet being connected by a first, straight passageway; high pressure block valve cavity disposed in said high pressure valve cavity for controlling fluid communication between said high pressure inlet and said high pressure outlet; a high pressure vent valve cavity formed in a first, substantially planar side surface of said peripheral wall, said first side surface being coincident with an imaginary plane forming an acute angle with said second face; a straight, high pressure vent passageway connecting said high pressure vent valve cavity and said high pressure outlet, said high pressure vent passageway sloping in a direction away from said second face and being normal to said first side surface, said high pressure vent valve cavity and said high pressure drain port being connected; a high pressure vent valve disposed in said high pressure vent valve cavity for controlling fluid communication between said high pressure outlet and said high pressure drain port; a low pressure block valve cavity formed in said peripheral wall, said low pressure block valve cavity, said low pressure inlet, and said low pressure outlet being interconnected, said low pressure block valve cavity and said low pressure outlet being connected by a second straight passageway; a low pressure block valve disposed in low pressure block valve cavity for controlling fluid communication between said low pressure inlet and said low pressure outlet; a low pressure vent valve cavity formed in a second, substantially planar side surface of said peripheral wall, said second side surface being coincident with an imaginary plane forming an acute angle with said second face and being opposed to said first side surface; a straight, two pressure vent passageway connecting said low pressure vent valve cavity and said low pressure outlet, said low pressure vent passageway sloping in a direction away from said second face and being normal to said second side surface, said low pressure vent valve cavity and said low pressure drain port being connected, and a low pressure vent valve disposed in said low pressure vent valve cavity for controlling fluid communication between said low pressure outlet and said low pressure drain port said peripheral wall including a third side surface a fourth side surface, and a fifth side surface said fourth side surface being disposed between said first side surface and said first third side surface, said fifth side surface being disposed between said second side surface and said third side surface, said fourth side surface and said fifth side surface forming obtuse angles with said third side surface, said equalizer valve cavity being disposed in said third side surface, said high pressure block valve cavity being disposed in said fourth side surface and said low pressure block valve cavity being disposed in said fifth side surface.
2. The valve manifold of
3. The valve manifold of
4. The valve manifold of
5. The valve manifold of
6. The valve manifold of
7. The valve manifold of
8. The valve manifold of
9. The valve manifold of
0. 11. The method of
0. 12. The method of
0. 13. The method of
0. 14. The method of
0. 15. The method of
0. 16. The method of
0. 17. The method of
0. 18. The process of
0. 19. The process of
0. 20. The method of
0. 22. The method of
0. 23. The method of
0. 24. The method of
0. 25. The method of
|
1. Field of the Invention
The present invention relates to a valve manifold for controlling flow between a main flow line and a pressure sensor and, more specifically, to such a valve manifold that is self-draining.
2. Description of the Prior Art
It is often desirable to determine the flow or pressure of a fluid, e.g., a gas, through a main flow line, e.g., a pipeline. Typically, this can be accomplished by a flow restriction disposed in the main flow line, there being pressure taps on each side of the restriction for obtaining high and low fluid pressures. Such a flow restriction may comprise an orifice plate, a flow nozzle, a venturi tube, etc. The high and low pressures taken from opposed sides of the flow restriction in the main flow line are detected by a pressure sensor/transmitter assembly that measures and transmits the measured pressures or pressure differential by a suitable mechanical or electronic signal or the like to a remote location, e.g., a control room, where the pressure or pressure differential may be monitored and/or recorded by an operator.
A valve manifold is normally mounted between the main flow line and the pressure sensor. The manifold is used to control flow to the pressure sensor while permitting blocking, venting, zero checks, and calibration. The manifold typically includes a plurality of valves, each movable between open and closed positions relative to a flow pathway in the manifold so as to control the flow of fluid through the pathway.
Fluid pressure sensor/transmitters, particularly such sensor/transmitters of the differential pressure type typically employ diaphragms in both the low and high pressure inlets to the pressure sensor to detect the high and low pressures to which they are exposed. As disclosed in U.S. Pat. No. 5,277,224, it is desirable, in order to minimize leak paths, to minimize the interface connections between the pressure sensor and the main flow line. As also taught in U.S. Pat. No. 5,277,224, this can be accomplished, in part, by directly coupling the valve manifold to the pressure sensor. While this reduces leak paths and the space required for the manifold/pressure sensor system, it can pose significant problems.
Pressure sensors of the type under consideration typically employ diaphragms. These diaphragms are extremely fragile, expensive, and difficult to install in the pressure sensor. Further, in cases where the valve manifold and pressure sensor are directly coupled to one another, the diaphragms are closely positioned to the face of the manifold to which the pressure sensor is attached. In these direct coupled manifold/pressure sensor assemblies, one face of the manifold, referred to as the instrument face, sealingly abuts a face of the pressure sensor. The instrument face of the manifold is provided with a low pressure outlet and a high pressure outlet, both of which are relatively shallow, cylindric cavities. The cylindric cavities are in register with low pressure and high pressure inlets, respectively, in the face of the pressure sensor sealingly abutted by the instrument face of the manifold. The diaphragms are positioned in the low pressure and high pressure inlets of the pressure sensor close to the mouths thereof. Accordingly, when the manifold and pressure sensor are mated, the cylindric cavities cooperate with the diaphragms to form generally cylindric chambers of a small cylindrical height relative to the cylindrical diameter.
Although manifold/pressure sensor assemblies of the type under consideration can be mounted in a variety of ways, it is common, when the fluid pressure being measured is a gas, to mount the manifold such that the instrument face is generally horizontal and facing up, the pressure sensor accordingly being mounted above the manifold. It is not uncommon when measuring gas pressures for there to be condensation of liquids in the manifold, which occurs either during or after pressure measurements. Any liquid remaining in the relatively shallow cylindric chambers described above, if not removed, may interfere with subsequent pressure measurements, can cause corrosion of the metal diaphragms, or in certain, adverse climatic conditions, freeze and rupture the diaphragms. Accordingly, it becomes expedient, to the extent possible, that any liquid that collects in the manifold, by whatever mechanism, be removed. In particular, any liquid remaining in the cylindric chambers must be removed to avoid the problems discussed above.
In cases where the manifold is utilized in pressure measurements on a liquid source, the instrument face of the manifold is generally likewise disposed in a horizontal plane but is facing downward rather than upward as in the case with gas measurements, the pressure sensor/transmitter being mounted below the manifold. In measuring liquid pressures, it is important, for accuracy of measurement, that the liquid in the cylindric chambers be free of gas bubbles, which could collect on the diaphragm surface, giving a false reading. Accordingly, it is clearly desirable for the manifold to be designed such that any gas bubbles in the cylindric chambers be provided with escape pathways that slope upward from the instrument face of the manifold so that any gas bubbles in the liquid can rise out of the cylindric chambers, away from the diaphragm faces.
It is common in prior art manifold design, in order to form the relatively complex passageway system, to utilize "construction holes," which are simply bores in the manifold body that allow passageways to be drilled and interconnected with other passageways. These construction holes, even though they are plugged, are a potential source of leakage. Alternately, they frequently provide dead spaces within the manifold body where liquid and gas bubbles can collect. Thus, elimination of the construction holes eliminates one possible source of leakage and liquid collection or pooling in the manifold body.
It is therefore an object of the present invention to provide an improved valve manifold.
Another object of the present invention is to provide a valve manifold for use with pressure sensors of the differential pressure type.
Still a further object of the present invention is to provide a self-draining valve manifold.
Another object of the present invention is to provide a wafer-type valve manifold that eliminates the need for construction holes or other such bores to accommodate drilling of and interconnection of internal passageways.
The above and other objects of the present invention will be apparent from the drawings, the description, and the appended claims.
The valve manifold of the present invention is adapted to be positioned between a main flow line and a pressure sensor to control fluid flow from the main flow line to the pressure sensor. The manifold has a body with a first face, an opposed, substantially planar second face, and a peripheral wall. A high pressure inlet, a low pressure inlet, a high pressure drain port, and a low pressure drain port are formed in the first face, while a high pressure outlet and a low pressure outlet are formed in the second face. An equalizer valve cavity is formed in the peripheral wall and is provided with an equalizer valve that controls fluid communication between the high pressure outlet and the low pressure outlet. A high pressure block valve cavity is also formed in the peripheral wall, the high pressure block valve cavity, the high pressure inlet, and the high pressure valve being interconnected, a high pressure block valve being disposed in the high pressure block valve cavity to control fluid communication between the high pressure inlet and the high pressure outlet. A high pressure vent valve cavity is formed in a first, substantially planar, side surface of the peripheral wall, the first, side surface being at an acute angle relative to the second face of the manifold body. A straight, high pressure vent passageway connects the high pressure vent valve cavity and the high pressure outlet, the high pressure vent passageway sloping in a direction away from the second face and being substantially normal to the first side surface. The high pressure vent valve cavity and the high pressure drain port are connected, flow therebetween being controlled by a high pressure vent valve disposed in the high pressure vent valve cavity. In like manner to the high pressure arrangement discussed above, the manifold further includes a low pressure block valve cavity formed in the peripheral wall, the low pressure block valve cavity, the low pressure inlet, and the low pressure outlet being interconnected, a low pressure block valve being disposed in the low pressure block valve cavity to control fluid communication between the two pressure inlet and the low pressure outlet. Likewise, a low pressure vent valve cavity is formed in a second, substantially planar side surface of the peripheral wall, the second side surface also being at an acute angle relative to the second face of the manifold body. A straight, low pressure vent passageway connects the low pressure vent valve cavity and the low pressure outlet, the low pressure vent passageway sloping in a direction away from the second face and being substantially normal to the second side surface. The low pressure vent valve cavity and the low pressure drain port are connected, flow therebetween being controlled by a low pressure vent valve disposed in the low pressure vent valve cavity.
The invention can best be understood with reference to the drawings in which:
The valve manifold of the present invention will be described, in part, with reference to a high pressure flow pathway system and a low pressure flow pathway system, it being understood that such nomenclature is purely for reference purposes only. Accordingly, valves, passageways, or the like described as being "high pressure" could be "low pressure" and vice versa.
With reference first to
As is conventional in valve manifold of the type under consideration, manifold 10 includes a fluid communication passageway leading from a high pressure fluid inlet to a high pressure fluid outlet, a fluid communication passageway leading from a low pressure fluid inlet to a low pressure fluid outlet and a fluid communication passageway interconnecting the high and low pressure fluid outlets such that either the low or high pressure fluid can be directed to both of the high and low pressure fluid outlets. Additionally, a typical manifold of the type under consideration permits venting of either the high or low pressure passageways while the other of the high or low pressure passageways remains under pressure or, alternately, venting of both of the high and low pressure passageways so that there is zero pressure at the pressure sensor. Controlling flow through the various passageways to accomplish the above operations is accomplished by manipulation of the valves 20-28.
With reference now to
A high pressure cylindric cavity 48 and low pressure cylindric cavity 50 are formed in instrument face 36 of manifold body 10a, cylindric cavities 48 and 50, as shown, being relatively shallow, having short cylindrical heights relative to their cylindrical diameter. High pressure cylindric cavity 48 has a substantially planar bottom 48a while low pressure cylindric cavity 50 has a substantially planar bottom 50a. High pressure cylindric cavity 48 and low pressure cylindric cavity 50 provide high and low pressure fluid outlets, respectively, from manifold body 10a such that when manifold 10 is mated to a pressure sensor such as pressure transmitter 12, cylindric cavities 48 and 50 are in register with respective high and low pressure inlets in the pressure transducer housing 16 of the differential pressure transmitter 12.
First face 34, which can be referred to as the process face of manifold 10, is provided with a high pressure inlet 48b, inlet 48b being generally cylindrical in nature and can be threaded in the well-known manner to receive a threaded conduit, e.g., a pipe such as NPT pipe 30. Low pressure inlet 50b, also formed in first face 34, is generally cylindrical in nature, and, as inlet 48b, can be threaded to receive a suitable pipe connection, e.g., NPT pipe 32. Also formed in the face 34 of manifold body 10a is a high pressure drain port 48h and a low pressure drain port 50h, both of such ports 48h and 50h being generally cylindrical in nature and being threaded if desired.
As is conventional in manifolds of the type under consideration, a fluid communication pathway connects high pressure inlet 48b with high pressure outlet 48 and, likewise, a fluid communication pathway connects low pressure inlet 50b with low pressure outlet 50.
With reference first to the high pressure pathway, a cylindric, block valve cavity 48c is formed in substantially planar, side surface 44, valve cavity 48c being threaded in the well-known manner for receipt of a valve such as valve 26 shown in FIG. 1. High pressure block valve cavity 48c is connected to high pressure outlet 48 via passageway 48d, passageway 48d, as shown, being substantially straight, sloping in a direction away from face 36, and opening into cylindric cavity or high pressure outlet 48 at the juncture of the bottom wall 48a and the side wall thereof. High pressure block valve cavity 48c is also connected to high pressure inlet 48b via a straight passageway 48e. It will be appreciated that when a valve such as block valve 26 shown in FIG. 1 is threadedly received in valve cavity 48c, flow between inlet 48b and outlet 48 can be controlled by opening and closing valve 26, valve 27 operating, in the well-known manner, to open or close flow through valve cavity 48c between passages 48d and 48e.
A cylindric, high pressure vent valve cavity 48f is formed in first, substantially planar side surface 38 and is in open communication with high pressure outlet 48 via passageway 48g, passageway 48g opening into outlet 48 at the intersection of the bottom wall 48a and the side wall thereof, valve cavity 48f being threaded in the well-known manner for receipt of a suitable valve. As best seen with reference to
With reference now to low pressure flow pathway, a low pressure cylindric, block valve cavity 50c is formed in second, substantially planar side surface 46 and is connected to low pressure outlet 50 via a straight passageway 50d, passageway 50d opening into cylindric cavity 50 through the juncture of bottom wall 50a and the side wall thereof and sloping in a direction away from face 36. Low pressure block valve cavity 50c is also connected to two pressure inlet 50b via a straight passageway 50e. With low pressure block valve 22 (see
A cylindric equalizer valve cavity 52 is formed in third, substantially planar side surface 42 of manifold body 10a. Equalizer valve cavity 52, threaded in the conventional manner, is connected by a straight passageway 52a to low pressure outlet 50 and to high pressure outlet 48 via intersecting passageways 52b and 52c, passageways 52a and 52c opening into outlets 50 and 48, respectively, at the intersections of the bottom surfaces 50a and 48a, respectively, and the side walls, respectively, of cavities 50 and 48. With equalizer valve 20 disposed in equalizer valve cavity 52 as shown in
Thus, as described above and as used herein, "wafer-style" refers to a manifold body that is monolithic, i.e., formed from a single block of material, has opposed, spaced faces, e.g., instrument face 36 and process face 34, that are substantially planar and parallel to each other, has a thickness between such opposed faces that is less than either the width or length of the faces, and wherein all valves are disposed in a peripheral wall that interconnects the opposed faces--i.e., no valves are disposed in either of the two opposed faces.
The self-draining feature of the manifold of the present invention is best seen with reference to
With reference to
A desirable feature of the manifold of the present invention is that there are no construction holes or bores that are used solely for the purpose of drilling any of the passageways connecting the various inlets, outlets, valve cavities, and drain ports. This is a significant advantage for several reasons. For one, when construction holes are employed, it is necessary that they be plugged to avoid lead paths out of the manifold. Additionally, such construction holes almost invariably provide dead spots where liquid or gas bubbles can be trapped. Furthermore, such construction holes may unnecessarily affect the structural integrity of the manifold body, which can result in serious consequences, depending upon the pressures being handled by the manifold.
As can be best seen with reference to
The manifold of the present invention solves the problem addressed in U.S. Pat. No. 5,277,224 with respect to so-called "smart" pressure transmitters, i.e., transmitters capable of transmitting both relative and absolute pressure values. The introduction of the smart transmitters, exemplified by the 3051C Differential Pressure Transmitter marketed by Rosemount, Inc., Eden Prairie, Minn., resulted in a reduction of the distance between the centers of the inlets to the transmitter from the previous industry standard of 2-⅛" to 1-¼". However, while the distance between the centers of the inlets of the differential pressure transmitters was reduced, the process fluid inlets from the main flow line remained on 2-⅛" centers. As taught in U.S. Pat. No. 5,277,224, one solution to this problem was to provide what is referred to a co-planar flange interfaced between the manifold and the transmitter, the co-planar flange, essentially a flow diverter, serving the purpose of providing the needed 1-¼" outlets that would be in register with the transmitter inlets while maintaining the 2-⅛" spacing at the outlets of the existing manifolds. The manifold of the present invention requires not such co-planar flange or diverter as it is able to connect, on the process side, with the existing process fluid taps located on 2-⅛" centers and directly couple to the smart transmitter 12 having inlets on 1-¼" centers; i.e., outlets 48 and 50 are in register with the inlets to the pressure transmitter 12.
The unique construction of the manifold body of the present invention minimizes manufacturing costs by minimizing cross-drilling to connect the various passageways and by utilizing valve cavities and other operational ports to form the various passageways necessary to provide the desired fluid communication pathways through the manifold body.
The foregoing description and examples illustrate selected embodiments of the present invention. In light thereof, variations and modifications will be suggested to one skilled in the art, all of which are in the spirit and purview of this invention.
Patent | Priority | Assignee | Title |
7225832, | Sep 01 2004 | Parker Hannifin Canada | Five valve manifold with angle bonnet details |
D601586, | Sep 01 2004 | Parker Hannifin Canada | Five valve manifold with angle bonnet |
Patent | Priority | Assignee | Title |
4466290, | Nov 27 1981 | Rosemount Inc. | Apparatus for conveying fluid pressures to a differential pressure transducer |
4602657, | Feb 11 1985 | Anderson-Greenwood & Co. | Valve manifold for a differential pressure transmitter |
4672728, | Oct 31 1984 | PGI INTERNATIONAL LTD | Pressure signal instrumentation having removable flanges and mounting method therefor |
5117867, | Jun 06 1986 | Manifold for a differential pressure transmitter | |
5277224, | Mar 02 1993 | Rosemount Inc | Five valve manifold for use with a pressure sensing apparatus |
5720317, | Sep 12 1995 | PGI International, Ltd. | Low profile flanged manifold valve |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 23 1998 | KEYSTONE INTERNATIONAL, INC | TYCO FLOW CONTROL, INC | MERGER SEE DOCUMENT FOR DETAILS | 015756 | /0873 | |
Jan 23 1998 | KEYSTONE INTERNATIONAL HOLDINGS CORP | TYCO FLOW CONTROL, INC | MERGER SEE DOCUMENT FOR DETAILS | 015756 | /0873 | |
Oct 20 2000 | Keystone International Holding Corp. Tyco Flow Control, Inc. Successor in Interest | (assignment on the face of the patent) | / | |||
Dec 04 2006 | TYCO FLOW CONTROL, INC | TYCO VALVES & CONTROLS INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018584 | /0542 | |
Jan 02 2013 | TYCO VALVES & CONTROLS INC | PENTAIR VALVES & CONTROLS, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 041979 | /0863 | |
Dec 30 2014 | PENTAIR VALVES & CONTROLS, INC | PENTAIR VALVES & CONTROLS, LLC | CONVERSION | 041979 | /0136 | |
Mar 29 2015 | PENTAIR VALVES & CONTROLS, LLC | Pentair Flow Control AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 041979 | /0001 |
Date | Maintenance Fee Events |
Apr 20 2006 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Apr 20 2010 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 18 2006 | 4 years fee payment window open |
Sep 18 2006 | 6 months grace period start (w surcharge) |
Mar 18 2007 | patent expiry (for year 4) |
Mar 18 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 18 2010 | 8 years fee payment window open |
Sep 18 2010 | 6 months grace period start (w surcharge) |
Mar 18 2011 | patent expiry (for year 8) |
Mar 18 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 18 2014 | 12 years fee payment window open |
Sep 18 2014 | 6 months grace period start (w surcharge) |
Mar 18 2015 | patent expiry (for year 12) |
Mar 18 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |