A device controller synchronizes a counter to the detection of sunrise or sunset by photoelectrically sensing daylight, thereby establishing an approximate time reference for scheduling the timing of device activations to occur at any time of day or night. An uncalibrated method of measuring sunlight yields more reliable scheduling, relative to sunrise and sunset events. The integral approximate time reference is kept synchronized, even if occasional faults in detection of sunrise or sunset occur. The rules employed to establish and maintain synchronization, and the dynamically variable rules of evaluating changes in light intensity, contribute to the reliable performance of the controller apparatus. Inherently self-adapting and automatic, a potentiometer for setting a time parameter input and a push-button for setting a time parameter input are combined in the apparatus in such a way to yield further utility without complicating the programmability. Additionally, for animal feeder applications, a test mode utilizes a modulates activation of the feed motor to produce audible warning of imminent motor activation.
|
1. An apparatus for controlling the activation of a device, comprising:
means for sensing light and producing an output thereof; means for converting and processing the output of the means for sensing light to produce a signal nominally coincident with the event of sunrise or sunset; an accumulation means including: an accumulation value contained therein, means for affecting the accumulation value at a fixed rate, a maximum accumulation value representative of span of time at least as great as the nominal span of time between sunrise and sunset, an associated value representative of the accumulation value at time of sunrise, and an associated value representative of the accumulation value at time of sunset; means for affecting the accumulation means in response to the signal nominally coincident with the event of sunrise or sunset; and means for activating a device wherein the means for activating includes means for comparing the accumulation value to another value or a plurality of values representing a desired time of activation.
0. 19. An apparatus for controlling the activation of a device, said apparatus comprising:
a sensor, said sensor being adapted to measure sunlight and produce an output indicative of the intensity thereof; a processor for processing said output indicative of the intensity of the measured sunlight, said processor being adapted to produce a signal nominally coincident with a daily event selected from the group consisting of sunrise and sunset; an accumulator for measuring passage of time relative to said daily event, said accumulator comprising an accumulation value substantially indicative of the number of a fixed time period having passed since said daily event, said accumulator being thereby adapted to measure a time period at least as great as the nominal span of time between sunrise and sunset; a switch for activating the device, said switch being adapted to be triggered by realization in said accumulator of a selectable accumulation value; and wherein said accumulator is adapted for adjustment of said accumulation value according to said signal nominally coincident with said daily event.
2. The apparatus according to
3. The apparatus according to
4. The apparatus according to
5. The apparatus according to
6. The apparatus of
7. The apparatus of
8. The apparatus according to
9. The apparatus according to
10. The apparatus according to
11. The method and apparatus of
12. The apparatus according to
13. The method and apparatus of
14. The apparatus according to
15. The apparatus according to
16. The apparatus according to
17. The apparatus according to
a means of receiving a signal from a momentary switch, and a means of substantially measuring time-duration of momentary switch activation, and a means of comparing said time duration with period of time nominally less than one second, wherein, if said comparison results in determination of short duration, immediate device activation is forced, and if said comparison results in determination of longer duration, said measured time duration of momentary switch activation is saved as a timing parameter substantially equal to time duration of momentary switch activation.
18. The apparatus according to
0. 20. The apparatus as recited in
0. 21. The apparatus as recited in
0. 22. The apparatus as recited in
0. 23. The apparatus as recited in
said accumulator comprises a digital counter; and said accumulation value comprises the count of said digital counter.
0. 24. The apparatus as recited in
0. 25. The apparatus as recited in
0. 26. The apparatus as recited in
0. 27. The apparatus as recited in
0. 28. The apparatus as recited in
0. 29. The apparatus as recited in
0. 30. The apparatus as recited in
0. 31. The apparatus as recited in
|
1. Field of Invention
This invention relates to electronic timers and photoelectric controllers used to control electric lighting, activate animal feeders, control irrigation, or other timed control activation apparatus, where daylight sensing is used as a timing cue.
2. Discussion of Prior Art
Electric or electronic timer apparatus often used for controlling devices need to be set with the proper time, both initially and upon replacing a battery or after the time wanders for some reason. In some applications, having to set the time could require that personnel reach inaccessible places.
Another class of device controllers operates on sensing daylight. Where timing is based relative to the amount of ambient daylight, these prior art device controllers do not employ an internal time clock. They rely upon the natural cycle of the day and night. The driving function of these controllers, after all, is the amount of light, not the absolute time.
Photoelectric controls have long been used to sense daylight and activate a switch based upon the amount of light intensity measured by the photoelectric `eye`. Streetlights and other outdoor lighting have been controlled by employing low-cost circuits. The photoelectric light controls save energy by only activating the lamps when it is dark. Furthermore, it occurs automatically and does not require human intervention.
In the application of prior art utilized for outdoor lighting, there are some disadvantages to the way these controls function. The controls in such lighting employ a delay function so that the lamp is less likely to be falsely started. This works sufficiently well, much of the time. It still occurs that a lamp will be activated when a stormy cloudcover forms temporarily. This occasional occurrence with old methods has an associated cost, and this is a disadvantage of the prior art.
Because of the cost of energy and cost of wear-and-tear on the lamp every time a lamp is started unnecessarily, the cost can be significant over time. For yard lighting, the photoelectric controls are often used with one controller on each lamp in the yard. Since changing the lightbulb may require the utilization of a ladder, the homeowner would appreciate the advantage of increasing the life of the bulb.
Photoelectric controls have also long been used in animal feeder devices. A simple circuit detects light intensity and triggers a motor to run when the light intensity increases over a given threshold, at sunrise. The motor causes feed to be distributed on the ground for game to eat. Similarly at sunset, detection of the decrease in light intensity below a threshold triggers a feeding by activating the feed motor. The prior art typically uses, at most, only three functions:
a. measurement of ambient light intensity;
b. measurement of the rate of change of ambient light intensity;
c. time delay (on the order of time less than one hour).
One disadvantage of this method is that occasionally the feeder will be triggered in response to light intensity changes due to clouds rolling by. This disrupts the feeding pattern, wastes food, and lessens battery life. Another disadvantage is that it is desirable to feed the game before the sun goes down, while there is still ample hunting light. To trigger the feeder based on light intensity alone or change in light intensity, it is impossible to get the circuit to consistently feed a fixed time before the sun goes down. By introducing time delay in the circuit to attempt to reduce the occurrence of false triggers, this results in the sundown feeding occurring after dark. To the hunter, this is a disadvantage.
Sometimes another time delay function is added. There have been some attempts in prior art to cause an animal feeder device to feed before sundown. The intention is to encourage a foraging pattern among the game animals such that they are out during times of ample hunting daylight. While it is desirable to feed game about an hour before sundown, the prior art could not effectively accomplish this. The simplistic method employed in the prior art was to start an electronic timer upon sunrise, which caused a feeding to occur a given fixed amount of hours after sunrise when the timer timed-out. The inferior performance of this prior method is exemplified here. Assume employment of a fixed time delay of 9 hours after sunrise. At some latitude, this may cause the afternoon feeding to occur about an hour before sundown in December, but the feeding would occur six hours before sundown in June.
A similar additional time delay has sometimes been added to photoelectric lighting controls. The added function of keeping lights on for a set period of time, after sunset, has been employed. Adding a fixed time delay function is not
The benefit of activation of devices, in relationship to the amount of ambient light, is well known in common applications. is are given. Though other methods of known art can be used, the methods shown here allow for using approximate measurements that are non-linear and uncalibrated. The methods taught here for accruing more data over a few day's times, allows days time allow for confident detection of sunrise and sunset with the simple low-cost light detection method, described here.
Refer to FIG. 1a and the flowchart in FIG. 1b. The capacitor 14 is initialized with a condition of zero voltage by discharge through the resistor 13 through operation of the output port C of the microcontroller circuit. Starting from the initial condition of a discharged capacitor, the mode of the port C is changed so that it can be used as an input port. The electrical resistance of light sensing element 12 changes relative to incident light. Microcontroller 10 applies a voltage to the light sensing element through output port A. A current flows through the light sensor in proportion to the resistance of 12, which charges capacitor 14 until the voltage exceeds the threshold on the digital input port C.
In
The detection of light can be accomplished with more than one type of sensor. It is common in photoelectric controls to use Cadmium-Sulfide (CdS) sensors. The CdS sensor varies in resistance in inverse proportion to incident light. The spectral characteristic of CdS sensors is broadband. Another sensor technology is the solid state photodiode or phototransitor. The lower cost variety of photodiodes and phototransistors are sensitive to invisible infra-red light. Sunlight produces a very large component of Infra-Red (IR) light and so it is of no disadvantage to use an IR sensor instead of a visible light sensor. It is preferred here to utilize an IR phototransistor, because it is very sensitive and not prone to be affected by artificial light, in addition to having a lower cost. A CdS sensor is sensitive to visible light and somewhat to invisible light.
Whether a CdS sensor, photodiode, or phototransistor is used, the common concept is that the resistance through the device varies inversely with exposure to light. With the methods to determine the events of sunrise or sunset taught here, accurate measurement of light intensity is not important. Relative measurement that produces a nonlinear but monotonic translation from light intensity to measured value is generally sufficient for the purposes of this invention. The only absolute requirement is that the minimum level of light that produces a zero value measurement is bounded by some range that can be determined. The determination of this `dark threshold` depends on the packaging and orientation of the apparatus. Nearby obstructions to sky light, such as buildings and trees, the orientation of the sensor and attenuation due to the package aperture, add up to worst case conditions. Additionally, the minimum amount of light in the spectrum of interest that will be sensed by the sensor with these conditions on the most overcast daylight conditions must be taken into account.
Prior art, not utilizing a digital computational method is at a distinct disadvantage since it would become economically unfavorable to adapt these methods to discrete analog or discrete digital methods. The methods taught here could be utilized in circuits mostly constructed from analog components or a combination of analog and digital components. The methods here could be reduced to art that does not employ a microcontroller circuit. The utilization of techniques that reduce these methods to art, represented by custom integrated circuits, is viable and could be done in such a way as to offer comparable cost advantages. The preferred basis for the apparatus described here utilizes a microcontroller circuit but is not restricted to that construction.
Another method of this invention is in the detection of the event of sunrise and sunset. The method is to continuously acquire samples of light intensity measurement and then to save some of the older samples to compare with more recent samples. From a set of samples collected over a period of several minutes, a trend of change in light intensity can be determined. It can be ascertained whether the light intensity is generally increasing or decreasing and the rate of change can also be ascertained. What is added at this point is what more significantly differs from prior art. At the point where a rapid change of light is measured, this method teaches further determinations to discriminate between what would be sunrise/sunset or what would be a sudden formation or movement of clouds, or a flash from lightning or artificial light.
An additional method is to add the criteria of sustained light intensity before or after the event of rapid change. The method is to devise the circuit or program to evaluate long term tends of light intensity. If a sudden increase in light marks a sunrise, a sunrise will always be preceded by a long period of zero/near-zero light intensity. A sudden increase in light that is not preceded by several hours of zero/near-zero light intensity would be due to change in cloud cover. This additional criterion then produces the advantage of eliminating the false detection of sunrise due to cloud cover changes.
An addition to this method is to require that a rapid increase in light intensity be followed by a given amount of sustained non-zero light intensity. Care must be exercised if the light measurement method is not well calibrated. In the manufacture of competitively priced appliances, it is advantageous to use light detector components that are of the lowest cost and require little or no calibration or evaluation during the production process, as in the example of FIG. 1a. For this reason, some manufactured units will have a much different `dark threshold` level than others. It is better to avoid criteria based on sustained non-zero light intensity. Sustained zero light intensity is a better criterion since nighttime will always result in measurement of zero light, no matter the `dark threshold`.
Refer to
It is not suggested here that the data every day would be as poor as that represented in the graph of
To utilize the criterion of requiring a valid sunrise to be followed by a long trend of non-zero light assumes that the light sensor will not sense very dark daytime periods, due to cloud cover, to appear as long periods of darkness.
The same criteria can be applied in reverse for sunset. Sunset is a rapid decrease in light preceded by an extended period of non-zero light intensity and followed by an extended period of zero/near-zero light intensity. The same warning applies regarding the mistaken measurement of long periods of darkness during daylight. An insufficiently sensitive light sensor in the presence of extended cloud cover can indicate a long period of darkness during daylight.
It is preferred to utilize the criterion of sunrise being preceded by a long period of darkness and sunset being followed by a long period of darkness, than to implement instead, or in addition, criteria based on long periods of daylight. The variance in sensitivity of light sensors, in the manufacturing process, is of less concern if only it must be determined that the sensor has sufficient sensitivity to get a reading of light intensity under what is pre-determined to be the darkest daylight conditions.
The graph,
The fact that `X` hours of continuous darkness is satisfied, as shown in
The rate-of-change function, well known to those skilled in the art, is also known as the first derivative with respect to time. The derivative of the graph of
Similar observations are made in view of
A set of evaluations is listed here:
1. CR>Threshold 2. It is sufficiently dark to be night.
2. CR<Threshold 1. It is sufficiently light to be daylight.
3. Rate-of-change is negative and of sufficient amplitude to be sunrise.
4. Rate-of-change is negative and of sufficient duration to be sunrise.
5. Rate-of-change is positive and of sufficient amplitude to be sunset.
6. Rate-of-change is positive and of sufficient duration to be sunset.
7. Continuous light duration is>X hours.
8. Continuous dark duration is>X hours.
Evaluation of #1 will sometimes give false indications of night during day but will never give false indications of day during night. Evaluation of #2 will not give a false indication of day during night but may give a false indication of night during day. The first evaluation of #3 and #4 in a group, is the closest representation of sunrise. The last evaluation of #5 and #6 is the closest representation of sunset. Evaluation of #7 is undependable because daylight can be interrupted with the effect of storm clouds. Evaluation #8 is reliable because nighttime cannot be interrupted by light that cannot be filtered out by averaging.
A set of rules to employ are exemplified by:
Set 1: Sunset=evaluation #1 preceded by evaluation #6.
Sunrise=evaluation #2 preceded by evaluation #4.
Set 2: Sunset=evaluation #1 preceded by evaluation #5 and #6.
Sunrise=evaluation #2 preceded by evaluation #3 and #4.
Set 3: Sunset=last evaluation #1 preceded by evaluation #5 and #6. followed by evaluation #8.
Sunrise=first evaluation #2 preceded by evaluation #3 and #4, preceded by evaluation #8.
Adaptation rules for advancing to the next set of rules or for returning to a previous set of rules can be developed by one skilled in the art. There are many ways which will work. The questions to answer when devising the rules is in regard to how the apparatus is desired to behave when first initialized. It may be important to see device activations scheduled relative to what the apparatus can best determine to be sunrise or sunset, while it has not yet established a full 24 hour period of experience. Generally, using a simple set of rules initially will produce results no worse than the results of the prior art. Subsequently, performance will immediately thereafter become more reliable and repeatable.
The degree of restrictions placed on determination of sunrise or sunset can be varied to the degree desired by the skilled designer. The objective of this invention is to provide reliable and repeatable control of a device with minimum likelihood of false activations or missing activations. The understanding of how this should function as it applies to the rest of the system is now important to consider. When the apparatus is first put in service at the field site where it will function, it does not yet have the information of what time it is. It also does not yet have information of when sunset last happened or when it will happen, nor with sunrise. The preferred method is that the apparatus begins initially with simple rules of evaluation of the light input and progresses to more stringent rules of evaluation. While in the initial state, the restrictions on rules for detecting sunrise and sunset should be low. The minimum criteria for determining the first event of sunrise or sunset should be utilized. As time progresses, and repeatable information is received by the apparatus, the sunset and sunrise times are reinforced. When the state of the apparatus has reached the adapted state of having reliable indications to predict the next event, the restrictions can be made to have the most severe criteria. It is not disadvantageous at this adapted state of the apparatus to not detect a sunrise/sunset event. The apparatus may coast through that point in time and activate on the assumption that the event happened, even though it did not detect the event.
The method of keeping time in the apparatus can be such that it stays relative to sunrise or sunset or a more complicated method can be used which compensates for seasonal changes so that the time-keeping is approximately synchronous with real time.
An accumulation means for representing time is required which has a range of time representation at least to cover the time between sunrise and sunset. The accumulation means can be implemented by analog methods, where the voltage on a capacitor, for instance, could be representation of time. It is possible to derive the advantage of activation of a device based on time before sunset of a fixed time before sunrise without having the accumulation means have a span of 24 hours or more. An accumulator started at every sunrise detected and stopped at every sunset detected, could result in derivation of an accumulated value that represents some fixed time before sunset. So it is shown that it is not necessary that the accumulation means have a range of a whole day, only the full span of time of daylight or of nighttime. Without the span of a whole day, however, the advantage is lost regarding the allowing for missing or false detections of a sunrise or sunset event.
The preferred method is to represent time accumulation for a span of one day. This is shown with a digital counter of arbitrary modulus, which is likened to a `clock`, and which `rolls over` once a day.
One construction of a digital counter means for a `clock` is described here. A microcontroller has a time base from which a counter can be made to count up for each passing of a given interval of time. For example, if an eight bit word is used to represent time, it can represent integer values 0, 1, 2, 3, . . . 254, 255. Adding one to the counter value when it is equal to 255 will cause the counter to go to zero and start over. The nomenclature for this type of counter is a modulo-256 counter or mod256 counter. Desiring the mod256 counter to start over once a day requires that it be incremented by one on a fixed rate given by a period of 5.625 minutes. This period is derived from the calculation: 5.625 minutes times 256=1440 minutes (there are 1440 minutes in a 24 hour period).
It is not important that the time-base of the microprocessor be very accurate since this `clock` has an opportunity to recalibrate two times a day, with each event of sunrise or sunset. Also, such a `clock`, as described here, is based relative to sunrise. Sunrise changes every day and thus the `clock` is not useful to indicate accurate time but is useful in providing approximate time relative to sunrise.
To explain further the objective of the mod256 counter example, the methods explained for determination of sunrise are used to determine if a rapid light increase truly is an actual sunrise event. When this occurs the first time, the mod256 counter is reset to zero. If nothing further is done, the next morning, very close in time to the event of sunrise, the mod256 counter will roll-over from 255 to 0. Due to the fact that the sunrise will occur at a different time the next day and due to the fact that the time base for the mod256 counter may have significant inaccuracy, it may be desirable to affect the mod256 counter to adjust it to the latest detection of sunrise by zeroing it again. A more subtle way of keeping the mod256 counter synchronized to sunrise is to increase its count or decrease its count by one count to drive it toward the direction of better synchronization.
Generally, since the granularity of the mod256 counter is about 6 minutes, and since sunrise never changes by more than a few minutes from day to day, at most latitudes, the necessity to correct the mod256 counter by more than one count in one day would indicate a fault or discrepancy. The significance of the discrepancy would be:
1. that the latest detection of sunrise was incorrect;
2. that the previous detection(s) of sunrise were incorrect;
3. that the mod256 counter is running too fast or too slow because of error in the time-base;
4. some other discrepancy due to moving the apparatus location, firmware program bug, or other exception to the norm.
In any of these cases, the best thing to do is reinitialize the evaluation criteria. The evaluation must be substantially started over since there is a conflict in the results of the evaluation.
The mod256 counter could alternatively be zeroed upon sunset, instead of sunrise. It is clear to one skilled in the art to determine how to apply the methods described for synchronizing the mod256 counter to sunset instead of to sunrise.
So far, it has been explained by example how a counter could be made to contain the value zero just at the point after rapid light intensity increase, at sunrise, count up to 255, at 5.625 minutes per count, until it rolls over from 255 to 0. At the point of rollover, it should be very close to one day later, relative to yesterday's sunrise. If sunrise occurred at 6:00AM, and if sunset occurred at 7:00PM, the mod256 counter should have contained a value of 000 at 6AM and a value of about 139 when the sun sets. This is determined from the difference between 7PM and 6AM converted to the number of 5.625 minute intervals:
138.66 counts=(13 hours * 60 minutes/hour)/5.625 minutes/count
If the method of detection of the sunset event described in this invention is utilized, at the point in time where rapid decrease in light intensity is sensed, the mod256 counter value is saved. In the example of a 6AM sunrise and 7PM sunset, the mod256 counter value should be 139. The object of how this saved value of 139 is used to advantage is to allow activation of a device at some time relative to sunset, in this example: one hour before sunset.
The value 139 can be saved as a tentative time of sunset, but not counted as being verified unless the event is followed by a sufficiently long period of darkness. The criterion for this could be that the light level measured after the rapid decrease in light density, is zero continuously for six hours. After six hours, the value 139 is saved as the best estimate of the time of sunset using the mod256 counter representation of time.
Particularly, in prior art, a game feeder that was to activate one hour before sunset, was not achieved. The reason was that the prior methods did not employ an internal time representation that spanned anything but a short period of time. An important means taught in this invention is the employment of long term hysteresis, spanning on the order of one day or more. The advantage can be clearly seen in the example given where sunset is anticipated, with confidence, to next occur at time `139` in the mod256 counter. We can activate a device approximately one hour before sunset by triggering activation when the mod256 counter equals the number 139 minus one hour. One hour on the mod256 counter resolves to a count of 60/5.625=10.6. Rounding 10.6 to 11, the firmware program in the microcontroller would subtract 11 from the sunset time of 139, to yield a count of 128. To activate the device when the mod256 counter equals 128 will result in activation very close to one hour before sunset, or 6PM in this example.
This example given is most appropriate for an application of feeding wildlife with a game feeder, and the advantage gained allowing feeding one hour before sunset. A modification of this example in order to show how application could be made to outside lighting is given next.
Supposing it is desirable to turn on parking lot lighting at sunset and to leave them on until five hours after sunset, a similar method could be used of storing a calculated count and activate upon equality with the mod256 counter. Then the lights could be turned on again two hours before sunrise by calculating the count to be compared with the mod256 counter. The sustain time on the lights and the time before sunrise could be fixed in the program or the times could be reprogrammed by various methods easily added by one skilled in the art.
An example of how a potentiometer is `read` by the microcontroller has been described here, utilizing
The activation of a device could be to turn it on or to turn it off or to turn it on for a given period of time and turn it off off. In the latter case, the activation time would be determined as previously discussed. The time duration setting could be on the order of a few seconds and may be something that is fixed in the program. Alternatively, the activation duration could be preprogrammed using one of the methods described for activation time. Another method could utilize a momentary push-button switch. To set the run time of a game feeder motor, the duration of time that the operator pushes and maintains the switch in a closed position could signal the microcontroller to measure the time duration and save it as the run time for the feed motor.
Another method of keeping a representation of real time in the apparatus of this invention, is a method that keeps the time relative to real time rather than relative to sunrise or sunset. The fact that the earth's axis is tilted makes it so that it is not simple to derive real time from sunrise and sunset times. It would be advantageous if noon were always halfway between sunrise and sunset, but due to the axis tilt, this is not the case. It can be inferred from sunrise and sunset times, where a reference point is, such as noon. Then an approximation of a real time clock can be synthesized from the information. One way to do this would be to utilize the mod256 counter for a clock, as described in the methods already described. Scheduling of the activation of devices is made with reference to the mod256 counter plus an offset. The offset is derived using a method explained next.
The method for deriving an offset that represents the relationship of real-time-of-day to the mod256, is to derive it from the length of daylight measurement. This can be calculated in the microcontroller of the apparatus of this invention, or it can be derived externally and stored in a table in the microcontroller. The sunrise time for a given length of daylight, is latitude dependent. Near the Arctic circle, there are some days when the sun never sets. At the equator, the longest daylight period is much shorter than the longest daylight period at, for instance, a latitude of 30 degrees.
There are two ways to handle this. One is to configure the apparatus for the latitude it is to operate. The other way is for the apparatus to determine what latitude at which it is on by `watching` sunrise and sunset over a long period of time. If the apparatus can learn over a long enough period of time, it can determine its latitude, and the day of the year, approximately. It would serve as an approximate clock that never has to be set. Such an apparatus is limited in that it would take a number of days for it to begin to have enough information to approximate its latitude and therefore the application would have to have tolerance for the long adaptation period. To eliminate the adaptation period, the latitude information could be set via switches or could be communicated to the apparatus
To determine the calculations for sunrise and sunset times, one skilled in the art of programming microcontrollers can consult astronomical formula text where example programs are given for determining sun rise and sun set times. The calculations can be adapted to run in the apparatus or the sunrise and sunset times can be calculated or obtained from government services. Programs that calculate sunrise and sunset times for given locations are available off the Internet.
For a given latitude, a table of times can be generated that relate sunrise to midnight. The usefulness of this facet of this invention is restricted to cases where approximate time of day is sufficient, not where accurate time is needed.
Refer to
Described here is how implement this method:
Definitions:
TSR: Mod256 counter value at sunrise (0 in this example).
TSS: Mod256 counter value at sunset.
DL: Measured amount of daylight for the current day, in mod256 units.
MINDL: Minimum amount of daylight for a year, stored in mod256 units. Stored constant.
I: Index into the look-up table.
TABLE(60): table offsets, given in mod256 units from midnight to sunrise. Stored constants.
MID256: The contents of the MOD256 counter.
TIME: A mod256 representation of approximate real-time-of-day.
Procedure:
1. Measure the amount of daylight in a day: DL=TSS-TSR. Specifically, DL=TSS since TSR=0 by definition of given examples.
2. Subtract the minimum amount of daylight, for the year to produce an index: I=DL-MINDL
3. Fetch the table value stored at the index to use as an offset: OFFSET=TABLE(I)
5. Add offset to mod256 counter to produce real time mod256: TIME=MOD256+OFFSET.
The result is that TIME is approximately equal to real-time-of-day, where:
`TIME` | Approximate Real-Time-of-Day | |
0 | 12:00 AM | |
64 | 6:00 AM | |
128 | 12:00 PM | |
192 | 6:00 PM | |
255 | 11:54 PM | |
In this example, the table represents half a year. The assumption is that the accuracy is sufficient to represent the offsets for one-half of earth's orbit the same as for the other half. Since the mod256 counter has about 6 minute resolution, and since the amount of daylight changes by about 2 minutes per day at my location, the table can be adequately represented with an entry for about every 3 days. The table and minimum daylight time are stored in the microcontroller program memory, in the preferred embodiment. Multiple tables stored for different latitudes permits the apparatus to perform more optimally over a wider geographical range.
Another relevant point is that the approximate real-time-of-day, discussed so far, does not consider the effects of daylight-saving's-time daylight saving time. For daylight saving's saving time, there is a rule for when the clocks are turned forward one hour and when the clocks are turned back one hour. The best that this can be handled here, while keeping methods practical and simple, is to adjust forward one hour at the Spring equinox, and adjust backward one hour at the Autumn equinox. To determine whether it is Spring or Fall, the trend over several days is measured to determine if days are becoming longer, for Spring, or shorter, for Autumn.
1. "Astronomy with your Personal Computer", Peter Duffet-Smith, 1985, Cambridge University Press. ISBN 0 521 31976 5 paperback, ISBN 0 521 26620 3 hard covers.
2. "Astronomical Formulae for Calculator", Jean Meeus, 1985, Willmann-Bell, Inc. ISBN 0 943396 09 3.
Patent | Priority | Assignee | Title |
10856521, | Jun 04 2019 | TEXAND CORPORATION, INC. | Solar timer circuit |
7417378, | Nov 06 2002 | Apparatus for controlling lighting lamp with security function and lighting control method using the same | |
7809963, | Feb 12 2007 | User space power controller | |
8073553, | Feb 06 2006 | SOMFY ACTIVITES SA | Method for configuring a roller shutter automatic control device and roller shutter automatic control device |
8354793, | Jun 18 2010 | SOL INC | Modulated light detection system |
8810191, | May 08 2007 | Solar sign illumination system | |
9655208, | Mar 01 2016 | Automated Logic Corporation; Carrier Corporation | Method and system for optimizing operations of exterior lights |
Patent | Priority | Assignee | Title |
3660692, | |||
3668690, | |||
3993569, | Sep 23 1971 | Lois M., Zinsmeyer | Photoelectrically triggered timing circuit for controlling electrically responsive load apparatus in response to alternate light changes |
4099232, | Sep 14 1976 | MOS Technology, Inc. | Interval timer arrangement in a microprocessor system |
4144447, | Apr 12 1977 | International Business Machines Corporation | Interval timer |
4348743, | Sep 27 1976 | SGS-Thomson Microelectronics, Inc | Single chip MOS/LSI microcomputer with binary timer |
4362970, | Sep 08 1980 | Energy conserving electrical power control circuit | |
4587417, | Jun 10 1982 | East Tennessee State University Research Foundation | Field-adjustable power control arrangement and methods of controlling power and of adjusting the timing thereof |
5143289, | Mar 26 1991 | GRESHAM, LOWELL W | Apparatus and method for automatically dispersing aggregate material |
5483648, | Aug 30 1993 | Siemens Aktiengesellschaft | Circuit for determining the arrival times of control signals supplied to microprocessors |
5789868, | Aug 13 1996 | Thomas & Betts International LLC | Timed photocell switch circuit |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 15 2000 | Outland Sports, Inc. | (assignment on the face of the patent) | / | |||
Aug 22 2003 | OUTLAND SPORTS, INC | KOLPIN OUTDOORS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013922 | /0301 | |
Jul 14 2006 | KOLPIN OUTDOORS, INC | FLAMBEAU, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018207 | /0088 |
Date | Maintenance Fee Events |
Jan 16 2006 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Jan 23 2006 | LTOS: Pat Holder Claims Small Entity Status. |
Apr 19 2010 | REM: Maintenance Fee Reminder Mailed. |
Sep 10 2010 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 18 2006 | 4 years fee payment window open |
Sep 18 2006 | 6 months grace period start (w surcharge) |
Mar 18 2007 | patent expiry (for year 4) |
Mar 18 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 18 2010 | 8 years fee payment window open |
Sep 18 2010 | 6 months grace period start (w surcharge) |
Mar 18 2011 | patent expiry (for year 8) |
Mar 18 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 18 2014 | 12 years fee payment window open |
Sep 18 2014 | 6 months grace period start (w surcharge) |
Mar 18 2015 | patent expiry (for year 12) |
Mar 18 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |