A swept turbomachinery blade for use in a cascade of such blades is disclosed. The blade (12) has an airfoil (22) uniquely swept so that an endwall shock (64) of limited radial extent and a passage shock (66) are coincident and a working medium (48) flowing through interblade passages (50) is subjected to a single coincident shock rather than the individual shocks. In one embodiment of the invention the forwardmost extremity of the airfoil defines an inner transition point (40) located at an inner transition radius rt-inner. The sweep angle of the airfoil is nondecreasing with increasing radius from the inner transition radius to an outer transition radius rt-outer, radially inward of the airfoil tip (26), and is nonincreasing with increasing radius between the outer transition radius and the airfoil tip.

Patent
   RE38040
Priority
Nov 17 1995
Filed
Jun 30 1999
Issued
Mar 18 2003
Expiry
Nov 17 2015
Assg.orig
Entity
Large
19
32
all paid
0. 32. A blade for a gas turbine engine rotatable within a case at speeds providing supersonic flow over at least a portion of the blade, wherein the blade has a leading edge with a forward swept middle region having a sweep angle that does not decrease throughout the middle region and ending at a tip region that is translated rearward relative to a leading edge with the same sweep angle as the end of the middle region.
0. 26. A blade for a gas turbine engine rotatable within a case at speeds providing supersonic flow over at least a portion of the blade, wherein the blade has a leading edge with a forward swept inner region, the inner region ending at a rearward swept middle region having a sweep angle that does not decrease throughout the middle region, the middle region ending at a tip region that is translated forward relative to a leading edge with the same sweep angle as the end of the middle region.
0. 9. A blade for a gas turbine engine fan comprising a plurality of blades mounted for rotation within a case circumscribing the blades and forming an outer boundary for a working medium gas flowing through passages formed by neighboring blades, wherein:
the blade has a configuration enabling the fan to rotate at speeds providing supersonic flow velocities over the blade in at least a portion of each passage;
the blade has a leading edge with an inner region ending at an inward boundary of an intermediate region and a tip region beginning at an outward boundary of the intermediate region and extending to a tip end of the blade, the inner region being swept forward and the intermediate region being swept rearward at a sweep angle that does not decrease from the inward boundary of the intermediate region to the outward boundary of the intermediate region; and
throughout the tip region the sweep angle is less than the sweep angle at the outward boundary of the intermediate region.
0. 20. A gas turbine engine fan comprising a plurality of identical blades, each blade being mounted for rotation within a case circumscribing the blades and having an inner wall forming an outer boundary for a working medium gas flowing through passages formed by neighboring blades, wherein:
each blade has a configuration enabling the fan to rotate at speeds providing supersonic working medium gas velocities over the blade in the vicinity of the passages proximate to the case;
each blade has a leading edge with an inner region, an intermediate region and a tip region, the inner region extending to an inward boundary of the intermediate region, and the tip region extending from an outward boundary of the intermediate region to a tip end of the blade; and
the inner region is swept forward, the intermediate region is swept rearward at a sweep angle that does not decrease, and the tip region is translated forward relative to a leading edge with the same sweep angle as the outward boundary of the intermediate region.
0. 16. A gas turbine engine fan, comprising a plurality of blades mounted for rotation within a case circumscribing the blades and forming an outer boundary for a working medium gas flowing through passages formed by neighboring blades, wherein:
each blade has a configuration enabling the fan to rotate at speeds providing supersonic working medium gas velocities over the blade at least in the vicinity of the passage proximate to the case;
each blade has a leading edge with an inner region ending at an inward boundary of a swept intermediate region and a swept tip region beginning at an outward boundary of the intermediate region and extending to a tip end of the blade, the inner region of each blade being swept forward and the intermediate region of each blade being swept rearward at a sweep angle that does not decrease from the inward boundary of the intermediate region to the outward boundary of the intermediate region; and
throughout the tip region the sweep angle of each blade is less than the sweep angle at the outward boundary of the intermediate region.
1. A turbomachinery blade for a turbine engine having a cascade of blades rotatable about a rotational axis so that each blade in the cascade has a leading neighbor and a trailing neighbor, and each blade cooperates with its neighbors to define flow passages for a working medium gas, the blade cascade being circumscribed by a case and under some operational conditions an endwall shock extends a limited distance radially inward from the case and also extends axially and circumferentially across the flow passages, and a passage shock also extends across the flow passages, the turbomachinery blade including an airfoil having a leading edge, a trailing edge, a root, a tip and an inner transition point located at an inner transition radius radially inward of the tip, the blade characterized in that at least a portion of the leading edge radially outward of the inner transition point is swept and a section of the airfoil radially coextensive with the endwall shock extending from the leading neighbor intercepts the endwall shock so that the endwall shock and the passage shock are coincident.
0. 4. A turbomachinery blade for a gas turbine engine fan comprising a plurality of blades mounted for rotation about a fan axis with neighboring blades forming passages for a working medium gas, wherein:
the blade has a configuration enabling the fan to rotate at speeds providing supersonic flow velocities over the blade in at least a portion of each passage causing the formation of a shock in the gas adjacent an inner wall of a case forming an outer boundary for the working medium gas flowing through the passages;
the blade has a leading edge with an inner region ending at an inward boundary of an intermediate region and a tip region beginning at an outward boundary of the intermediate region and extending to a tip end of the blade, the inner region being swept forward and the intermediate region being swept rearward at a sweep angle that does not decrease; and
the tip region is translated forward relative to a leading edge with the same sweep angle as the outward boundary of the intermediate region, to provide a sweep angle that causes the blade to intercept the shock.
2. A turbomachinery blade for a turbine engine having a cascade of blades rotatable about a rotational axis so that each blade in the cascade has a leading neighbor and a trailing neighbor, and each blade cooperates with its neighbors to define flow passages for a working medium gas, the blade cascade being circumscribed by a case and under some operational conditions an endwall shock extends a limited distance radially inward from the case and also extends axially and circumferentially across the flow passages and a passage shock also extends across the flow passages, the turbomachinery blade including an airfoil having a leading edge, a trailing edge, a root, a tip located at a tip radius, an inner transition point located at an inner transition radius radially inward of the tip, and an outer transition point at an outer transition radius radially intermediate the inner transition radius and the tip radius, the blade having a tip region bounded by the outer transition radius and the tip radius, and an intermediate region bounded by the inner transition radius and the outer transition radius, the blade characterized in that the leading edge is swept in the intermediate region at a first sweep angle which is generally nondecreasing with increasing radius, and the leading edge is swept over at least a portion of the tip region at a second sweep angle which is generally nonincreasing with increasing radius so that the section of the airfoil radially coextensive with the endwall shock extending from the leading neighbor intercepts the endwall shock so that the endwall shock and the passage shock are coincident.
3. The turbomachinery blade of claim 1 or 2 characterized in that the inner transition radius is coincident with the root at the leading edge of the blade.
0. 5. The turbomachinery blade of claim 4, wherein throughout the tip region the sweep angle is less than the sweep angle at the outward boundary of the intermediate region.
0. 6. The turbomachinery blade of claim 5, wherein the sweep angle decreases throughout the tip region.
0. 7. The turbomachinery blade of claim 6, wherein the sweep angle increases throughout the intermediate region.
0. 8. The turbomachinery blade of any one of claims 4 to 7, wherein the inner region extends between a root end of the blade and the inward boundary of the intermediate region, and the entire inner region is swept forward.
0. 10. The blade of claim 9, wherein the tip region is translated forward relative to a leading edge with the same sweep angle as the outward boundary of the intermediate region.
0. 11. The blade of claim 10, wherein the inner region extends between a root end of the blade and the inward boundary of the intermediate region, and the entire inner region is swept forward.
0. 12. The blade of claim 11, wherein:
the intermediate region sweep angle increases throughout the intermediate region; and
the tip region sweep angle decreases throughout the tip region.
0. 13. The blade of claim 10, wherein the tip region sweep angle decreases throughout the tip region.
0. 14. The blade of claim 13, wherein the intermediate region sweep angle increases throughout the intermediate region.
0. 15. The blade of claim 9, wherein the tip region maintains a rearward sweep throughout the tip region.
0. 17. The gas turbine engine fan of claim 16, wherein the tip region is translated forward relative to a leading edge with the same sweep angle as the outward boundary of the intermediate region.
0. 18. The gas turbine engine fan of claim 17, wherein:
the intermediate region sweep angle of each blade increases throughout the intermediate region; and
the tip region sweep angle of each blade decreases throughout the tip region.
0. 19. The gas turbine engine fan of claim 18, wherein the inner region of the leading edge of each blade begins at a root end of the blade and extends to the inward boundary of the intermediate region, and the entire inner region of each blade is swept forward.
0. 21. The gas turbine engine fan of claim 20, wherein the tip region maintains a rearward sweep throughout the tip region.
0. 22. The gas turbine engine fan of claim 20, wherein:
the intermediate region sweep angle of each blade increases throughout the intermediate region; and
the tip region of each blade is swept at a sweep angle that decreases throughout the tip region.
0. 23. The gas turbine engine fan of claim 20, wherein the inner wall of the case is perpendicular to pressure waves that extend spanwise of the blades as they rotate, the waves being incident to the case wall in a region of the blades.
0. 24. The gas turbine engine fan of claim 20, wherein a projection of the tip end of each blade onto a radial plane is parallel to the inner wall of the casing in longitudinal cross-section.
0. 25. The gas turbine engine fan of claim 20, wherein the inner region of the leading edge of each blade begins at a root end of the blade, and the entire inner region of each blade is swept forward.
0. 27. The blade of claim 26, wherein the tip region maintains a rearward sweep throughout the tip region.
0. 28. The blade of claim 26, wherein the inner region extends from a blade root to the middle region and the leading edge is swept forward throughout the inner region.
0. 29. The blade of claim 28, wherein the sweep angle of the middle region increases throughout the middle region.
0. 30. The blade of claim 29, wherein throughout the tip region the sweep angle is less than the sweep angle at the end of the middle region.
0. 31. The blade of claim 30, wherein the sweep angle of the tip region decreases from the end of the middle region to a tip end of the blade.
0. 33. The blade of claim 32, wherein the tip region maintains a forward sweep throughout the tip region.
0. 34. The blade of claim 32, wherein the leading edge has a rear swept inner region.
0. 35. The blade of claim 34, wherein the sweep angle of the middle region increases throughout the middle region.
0. 36. The blade of claim 35, wherein throughout the tip region the sweep angle is less than the sweep angle at the end of the middle region.
0. 37. The blade of claim 36, wherein the sweep angle of the tip region decreases from the end of the middle region to a tip end of the blade.

Referring to FIGS. 1-3, the forward end of a gas turbine engine includes a fan section 10 having a cascade of fan blades 12. Each blade has an attachment 14 for attaching the blade to a disk or hub 16 which is rotatable about a longitudinally extending rotational axis 18. Each blade also has a circumferentially extending platform 20 radially outward of the attachment. When installed in an engine, the platforms of neighboring blades in the cascade abut each other to form the cascade's inner flowpath boundary. An airfoil 22 extending radially outward from each platform has a root 24, a tip 26, a leading edge 28, a trailing edge 30, a pressure surface 32 and a suction surface 34. The axially forwardmost extremity of the leading edge defines an inner transition point 40 at an inner transition radius rt-inner, radially inward of the tip. The blade cascade is circumscribed by a case 42 which forms the cascade's outer flowpath boundary. The case includes a rubstrip 46 which partially abrades away in the event that a rotating blade contacts the case during engine operation. A working medium fluid such as air 48 is pressurized as it flows axially through interblade passages 50 between neighboring airfoils.

The hub 16 is attached to a shaft 52. During engine operation, a turbine (not shown) rotates the shaft, and therefore the hub and the blades, about the axis 18 in direction R. Each blade, therefore, has a leading neighbor which precedes it and a trailing neighbor which follows it during rotation of the blades about the rotational axis.

The axial velocity Vx (FIG. 3) of the working medium is substantially constant across the radius of the flowpath. However the linear velocity U of a rotating airfoil increases with increasing radius. Accordingly, the relative velocity Vr of the working medium at the airfoil leading edge increases with increasing radius, and at high enough rotational speeds, the airfoil experiences supersonic working medium flow velocities in the vicinity of its tip. Supersonic flow over an airfoil, while beneficial for maximizing the pressurization of the working medium, has the undesirable effect of reducing fan efficiency by introducing losses in the working medium's velocity and total pressure. Therefore, it is typical to sweep the airfoil's leading edge over at least a portion of the blade span so that the working medium velocity component in the chordwise direction (perpendicular to the leading edge) is subsonic. Since the relative velocity Vr increases with increasing radius, the sweep angle typically increases with increasing radius as well. As shown in FIG. 4, the sweep angle σ at any arbitrary radius is the acute angle between a line 54 tangent to the leading edge 28 of the airfoil 22 and a plane 56 perpendicular to the relative velocity vector Vr. The sweep angle is measured in plane 58 which contains both the relative velocity vector and the tangent line and is perpendicular to plane 56. In conformance with this definition sweep angles σ1 and σ2, referred to hereinafter and illustrated in FIGS. 2, 3 and 6 are shown as projections of the actual sweep angle onto the plane of the illustrations.

Sweeping the blade leading edge, while useful for minimizing the adverse effects of supersonic working medium velocity, has the undesirable side effect of creating an endwall reflection shock. The flow of the working medium over the blade suction surface generates pressure waves 60 (shown only in FIG. 1) which extend along the span of the blade and reflect off the case. The reflected waves 62 and the incident waves 60 coalesce in the vicinity of the case to form an endwall shock 64 across each interblade passage. The endwall shock extends radially inward a limited distance, d, from the case. As best seen in the prior art (phantom) illustration of FIG. 3, each endwall shock is also oblique to a plane 67 perpendicular to the rotational axis so that the shock extends axially and circumferentially. In principle, an endwall shock can extend across multiple interblade passages and affect the working medium entering those passages. In practice, expansion waves (as illustrated by the representative waves 68) propagate axially forward from each airfoil and weaken the endwall shock from the airfoil's leading neighbor so that each endwall shock usually affects only the passage wherein the endwall shock originated. In addition, the supersonic character of the flow causes passage shocks 66 to extend across the passages. The passage shocks, which are unrelated to endwall reflections, extend from the leading edge of each blade to the suction surface of the blade's leading neighbor. Thus, the working medium is subjected to the aerodynamic losses of multiple shocks with a corresponding degradation of engine efficiency.

The endwall shock can be eliminated by making the case wall perpendicular to the incident expansion waves so that the incident waves coincide with their reflections. However other design considerations, such as constraints on the flowpath area and limitations on the case construction, may make this option unattractive or unavailable. In circumstances where the endwall shock cannot be eliminated, it is desirable for the endwall shock to coincide with the passage shock since the aerodynamic penalty of coincident shocks is less than that of multiple individual shocks.

According to the present invention, coincidence of the endwall shock and the passage shock is achieved by uniquely shaping the airfoil so that the airfoil intercepts the endwall shock extending from the airfoil's leading neighbor and results in coincidence between the endwall shock and the passage shock.

A swept back airfoil according to the present invention has a leading edge 28, a trailing edge 30, a root 24 and a tip 26 located at a tip radius rtip. An inner transition point 40 located at an inner transition radius rt-inner is the axially forwardmost point on the leading edge. The leading edge of the airfoil is swept back by a radially varying first sweep angle σ1 in an intermediate region 70 of the airfoil (in FIG. 2 plane 56 appears as the line defined by the plane's intersection with the plane of the illustration and in FIG. 3 the tangent line 54 appears as the point where the tangent line penetrates the plane of the Figure). The intermediate region 70 is the region radially bounded by the inner transition radius rt-inner and the outer transition radius rt-outer. The first sweep angle, as is customary in the art, is nondecreasing with increasing radius, i.e. the sweep angle increases, or at least does not decrease, with increasing radius.

The leading edge 28 of the airfoil is also swept back by a radially varying second sweep angle σ2 in a tip region 74 of the airfoil. The tip region is radially bounded by the outer transition radius rt-outer and a tip radius rtip. The second sweep angle is nonincreasing (decreases, or at least does not increase) with increasing radius. This is in sharp contrast to the prior art airfoil 22' whose sweep angle increases with increasing radius radially outward of the inner transition radius.

The beneficial effect of the invention is appreciated primarily by reference to FIG. 3 which compares the invention (and the associated endwall and passage shocks) to a prior art blade (and its associated shocks) shown in phantom. Referring first to the prior art illustration in phantom, the endwall shock 64 originates as a result of the pressure waves 60 (FIG. 1) extending along the suction surface of each blade. Each endwall shock is oblique to a plane 67 perpendicular to the rotational axis, and extends across the interblade passage of origin. The passage shock 66 also extends across the flow passage from the leading edge of a blade to the suction surface of the blade's leading neighbor. The working medium entering the passages is therefore adversely influenced by multiple shocks. By contrast, the nonincreasing character of the second sweep angle of a swept back airfoil 22 according to the invention causes a portion of the airfoil leading edge to be far enough forward (upstream) in the working medium flow that the section of the airfoil radially coextensive with the endwall shock extending from the airfoil's leading neighbor intercepts the endwall shock 64 (the unique sweep of the airfoil does not appreciably affect the location or orientation of the endwall shock; the phantom endwall shock associated with the prior art blade is illustrated slightly upstream of the endwall shock for the airfoil of the invention for illustrative clarity). In addition, the passage shock 66 (which remains attached to the airfoil leading edge and therefore is translated forward along with the leading edge) is brought into coincidence with the endwall shock so that the working medium does not encounter multiple shocks.

The embodiment of FIGS. 2 and 3 illustrates a blade whose leading edge, in comparison to the leading edge of a conventional blade, has been translated axially forward parallel to the rotational axis (the corresponding translation of the trailing edge is an illustrative convenience--the location of the trailing edge is not embraced by the invention). However the invention contemplates any blade whose airfoil intercepts the endwall shock to bring the passage shock into coincidence with the endwall shock. For example, FIG. 5 illustrates an embodiment where a section of the tip region is displaced circumferentially (relative to the prior art blade) so that the blade intercepts the endwall shock 64 and brings it into coincidence with the passage shock 66. As with the embodiment of FIG. 3, the displaced section extends radially inward far enough to intercept the endwall shock over its entire radial extent and brings it into coincidence with the passage shock 66. This embodiment functions as effectively as the embodiment of FIG. 3 in terms of bringing the passage shock into coincidence with the endwall shock. However it suffers from the disadvantage that the airfoil tip is curled in the direction of rotation R. In the event that the blade tip contacts the rubstrip 46 during engine operation, the curled blade tip will gouge rather than abrade the rubstrip necessitating its replacement. Other alternative embodiments may also suffer from this or other disadvantages.

The invention's beneficial effects also apply to a blade having a forward swept airfoil. Referring to FIG. 6 and 7, a forward swept airfoil 122 according to the present invention has a leading edge 128, a trailing edge 130, a root 124 and a tip 126 located at a tip radius rtip. An inner transition point 140 located at an inner transition radius rt-inner is the axially aftmost point on the leading edge. The leading edge of the airfoil is swept forward by a radially varying first sweep angle σ1 in an intermediate region 70 of the airfoil. The intermediate region is radially bounded by the inner transition radius rt-inner and the outer transition radius rt-outer. The first sweep angle τ1 σ1 is nondecreasing with increasing radius, i.e. the sweep angle increases, or at least does not decrease, with increasing radius.

The leading edge 128 of the airfoil is also swept forward by a radially varying second sweep angle σ2 in a tip region 74 of the airfoil. The tip region is radially bounded by the outer transition radius rt-outer and the tip radius rtip. The second sweep angle is nonincreasing (decreases, or at least does not increase) with increasing radius. This is in sharp contrast to the prior art airfoil 122' whose sweep angle increases with increasing radius radially outward of the inner transition radius.

In the forward swept embodiment of the invention, as in the swept back embodiment, the nonincreasing sweep angle σ2 in the tip region 74 causes the endwall shock 64 to be coincident with the passage shock 66 for reducing the aerodynamic losses as discussed previously. This is in contrast to the prior art blade, shown in phantom where the endwall shock and the passage shock are distinct and therefore impose multiple aerodynamic losses on the working medium.

In the swept back embodiment of FIG. 2, the inner transition point is the axially forwardmost point on the leading edge. The leading edge is swept back at radii greater than the inner transition radius. The character of the leading edge sweep inward of the inner transition radius is not embraced by the invention. In the forward swept embodiment of FIG. 6, the inner transition point is the axially aftmost point on the leading edge. The leading edge is swept forward at radii greater than the inner transition radius. As with the swept back embodiment, the character of the leading edge sweep inward of the inner transition radius is not embraced by the invention. In both the forward swept and back swept embodiments, the inner transition point is illustrated as being radially outward of the airfoil root. However the invention also comprehends a blade whose inner transition point (axially forwardmost point for the swept back embodiment and axially aftmost point for the forward swept embodiment) is radially coincident with the leading edge of the root. This is shown, for example, by the dotted leading edge 28" of FIG. 2.

The invention has been presented in the context of a fan blade for a gas turbine engine, however, the invention's applicability extends to any turbomachinery airfoil wherein flow passages between neighboring airfoils are subjected to multiple shocks.

Biederman, Bruce P., Orosa, John A., Spear, David A.

Patent Priority Assignee Title
7204676, May 14 2004 Pratt & Whitney Canada Corp. Fan blade curvature distribution for high core pressure ratio fan
7293955, Sep 26 2002 Dresser-Rand Company Supersonic gas compressor
7334990, Jan 29 2002 Dresser-Rand Company Supersonic compressor
7374403, Apr 07 2005 General Electric Company Low solidity turbofan
7434400, Sep 26 2002 Dresser-Rand Company Gas turbine power plant with supersonic shock compression ramps
7476086, Apr 07 2005 General Electric Company Tip cambered swept blade
7967571, Nov 30 2006 General Electric Company Advanced booster rotor blade
7997872, Oct 19 2006 Rolls-Royce plc Fan blade
8087884, Nov 30 2006 General Electric Company Advanced booster stator vane
8147207, Sep 04 2008 SIEMENS ENERGY, INC Compressor blade having a ratio of leading edge sweep to leading edge dihedral in a range of 1:1 to 3:1 along the radially outer portion
8186962, May 26 2006 IHI Corporation Fan rotating blade for turbofan engine
8292574, Nov 30 2006 General Electric Company Advanced booster system
8317482, Nov 08 2006 SAFRAN AIRCRAFT ENGINES Swept turbomachine blade
8517677, Nov 30 2006 General Electric Company Advanced booster system
9568009, Mar 11 2013 Rolls-Royce Corporation Gas turbine engine flow path geometry
9695695, Jan 30 2012 SAFRAN AIRCRAFT ENGINES Turbojet fan blade
9790797, Jul 05 2011 RTX CORPORATION Subsonic swept fan blade
RE43710, Nov 17 1995 United Technologies Corp. Swept turbomachinery blade
RE45689, Nov 17 1995 United Technologies Corporation Swept turbomachinery blade
Patent Priority Assignee Title
1964525,
2154313,
2628768,
2660401,
2689681,
2915238,
2934259,
2935246,
3416725,
3444817,
3692425,
3989406, Nov 26 1974 Bolt Beranek and Newman, Inc. Method of and apparatus for preventing leading edge shocks and shock-related noise in transonic and supersonic rotor blades and the like
4012165, Dec 08 1975 United Technologies Corporation Fan structure
4012172, Sep 10 1975 Avco Corporation Low noise blades for axial flow compressors
4358246, Jul 16 1979 United Technologies Corporation Noise reduction means for prop-fan and the construction thereof
4370097, Jul 16 1979 United Technologies Corporation Noise reduction means for prop-fan
4408957, Feb 22 1972 Allison Engine Company, Inc Supersonic blading
4714407, Sep 07 1984 Rolls-Royce plc Aerofoil section members for turbine engines
4726737, Oct 28 1986 United Technologies Corporation Reduced loss swept supersonic fan blade
4737077, Sep 12 1986 ECIA - EQUIPMENTS ET COMPOSANTS POUR L INDUSTRIE AUTOMOBILE Profiled blade of a fan and its application in motor-driven ventilating devices
4784575, Nov 19 1986 General Electric Company Counterrotating aircraft propulsor blades
5064345, Nov 16 1989 Bosch Automotive Motor Systems Corporation Multi-sweep blade with abrupt sweep transition
5112192, Jul 26 1990 CHASE MANHATTAN BANK, THE, AS COLLATERAL AGENT Mixing impellers and impeller systems for mixing and blending liquids and liquid suspensions having a wide range of viscosities
5167489, Apr 15 1991 General Electric Company Forward swept rotor blade
5584661, May 02 1994 The United States of America as represented by the Administrator of the; NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, UNITED STATES, THE Forward sweep, low noise rotor blade
6071077, Apr 09 1996 Rolls-Royce plc Swept fan blade
EP266298,
EP774567,
EP801230,
FR2459387,
SU1528965,
WO9107593,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 30 1999United Technologies Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Jul 14 2003ASPN: Payor Number Assigned.
Sep 20 2004M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Aug 15 2005ASPN: Payor Number Assigned.
Aug 15 2005RMPN: Payer Number De-assigned.
Jan 05 2009REM: Maintenance Fee Reminder Mailed.
Jan 30 2009M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
Jan 30 2009M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity.


Date Maintenance Schedule
Mar 18 20064 years fee payment window open
Sep 18 20066 months grace period start (w surcharge)
Mar 18 2007patent expiry (for year 4)
Mar 18 20092 years to revive unintentionally abandoned end. (for year 4)
Mar 18 20108 years fee payment window open
Sep 18 20106 months grace period start (w surcharge)
Mar 18 2011patent expiry (for year 8)
Mar 18 20132 years to revive unintentionally abandoned end. (for year 8)
Mar 18 201412 years fee payment window open
Sep 18 20146 months grace period start (w surcharge)
Mar 18 2015patent expiry (for year 12)
Mar 18 20172 years to revive unintentionally abandoned end. (for year 12)