A laptop device includes a personal computer, a cellular transceiver, a speakerphone, and a hybrid communications control unit. The device has connectors for attaching a headset, cellular control unit, land telephone line, and additional speakers and microphones. The micro-processor-controlled hybrid communications control unit includes a modem, a data access arrangement, and a tone generator as well as digital, analog, and power switches. The hybrid communications control unit switches the communications components and provides, under program control, the proper protocols, level, and impedance matching to connect the modem, speakerphone, headset, speaker/microphone, or cellular control unit to the landline or to the cellular network via the transceiver. Matching and switching operations are automatic and transparent to the user. The unit can also connect two of the terminal devices or connect the cellular and landlines for call relaying. The device is capable of connecting plural calls at the same time. The hybrid communications control unit may be controlled by its internal firmware, by toggle switches, or by commands issued from the personal computer.
|
1. A portable hybrid communications system comprising:
(a) entry means for entering a data signal; (b) public telephone network connection means for accessing a public telephone network in response to public telephone accessing control signals; (c) modem means for modulating and demodulating data signals; (d) cellular transceiving means for accessing a cellular network in response to cellular network accessing control signals; (e) analog switch means connected to the public telephone network connection means, to the cellular transceiving means, and to the modem means; (f) digital data connecting means for selectively creating a digital data transmission connection with the cellular transceiving means; (g) central processing means connected with said entry means, said public telephone network connection means, said modem means, said analog switch means, and said digital data connection means for generating public telephone accessing control signals and cellular network accessing control signals and for selectively operably connecting the modem means to either the public telephone network or the cellular network so that the central processing means may transmit or receive information over the public or cellular network.
0. 45. A method of controlling the path of data signals in a communications systems which comprises at least a speaker phone, a cellular transmit/receive unit (tru) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a tru interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of:
placing the power switch of the computer to the ON position applying power to the computer; sending a control signal from the CPU to the analog switching means to cause the analog switching mean to switch the output of the modem to the landline through the transmit lead of the landline interface means and to cause the analog switching means to switch the output of the landline, through the receive lead of the landline interface means, to the input of the modem; and activating the communications software program in the computer; thereby allowing data signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing data signals to be received from and transmitted to a location which has dialed the landline telephone number of the system and a proper command-to-answer coding has been input on the keyboard of-the computer. 0. 46. A portable hybrid communications control unit for selectively transmitting and receiving data over different telephone networks including a cellular network using a cellular transceiver, comprising
(a) entry means for entering a data signal; (b) public telephone network connection means for accessing a public telephone network in response to public telephone accessing signals; (c) modem means for modulating and demodulating data signals; (d) cellular transceiving connection means adapted to be connected with a cellular transceiver for accessing a cellular network in response to cellular network accessing control signals; (e) analog switch means connected to the public telephone network connection means, to the cellular transceiving connection means, and to the modem means; (f) digital data connecting means for selectively creating a digital and data transmission connection with the cellular transceiving means; and (g) central processing means connected with said entry means, said public telephone network connection means, said cellular transceiver connection means, said modem means, said analog switch means, and said digital data connection means for generating public telephone accessing control signals and cellular network accessing control signals and for selectively operably connecting the modem means to either the public telephone network or the cellular network through the cellular transceiver so that the central processing means may transmit or receive information over the public or cellular network.
0. 42. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (tru) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a tru interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of:
placing the power switch of the computer to the ON position applying power to the computer; activating the speaker phone; sending a sense signal to the CPU indicating the speaker phone has been activated; sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the microphone of the speaker phone to the landline through the transmit lead of the landline interface means and to cause the analog switching means to switch the output of the landline, through the receive lead of the landline interface means, to the speaker of the speaker phone; and activating the communications software program in the computer; thereby allowing voice signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing voice signals to be received from and transmitted to a location which has dialed the landline telephone number of the system and a proper command-to-answer coding has been input on the keyboard of the computer. 0. 44. A method of controlling the path of data signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (tru) having a telephone number, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a tru interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of:
placing the power switch of the cellular tru to the ON position applying power to the cellular tru; sending a sense signal to the CPU indicating the power switch of the cellular tru has been placed to the ON position; placing the power switch of the computer to the ON position applying power to the computer; sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the modem to the transmit input of the cellular tru through the tru interface means and to cause the analog switching means to switch the receive output of the cellular tru to the input of the modem through the tru interface means; and activating the communications software program in the computer; thereby allowing data signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing data signals to be received from and transmitted to a location which has dialed the telephone number of the cellular phone system and a proper command-to-answer coding has been input on the keyboard of the computer. 0. 43. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a telephone-type headset, a cellular transmit/receive unit (tru) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a tru interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of:
placing the power switch of the computer to the ON position applying power to the computer; activating the telephone-type headset; sending a sense signal to the CPU indicating the telephone-type headset has been activated; sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the microphone of the telephone-type headset to the landline through the landline interface means and to cause the analog switching means to switch the output of the landline, through the receive lead of the landline interface means, to the speaker of the telephone-type headset; and activating the communications software program in the computer; thereby allowing voice signals to be transmitted to and receive from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing voice signals to be received from and transmitted to a location which has dialed the landline telephone number of the system and a proper command-to-answer coding has been input on the keyboard of the computer. 0. 25. Apparatus for controlling the path of voice and data signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (tru), a cellular (CU) handset and a computer having at least a communications software program, a keyboard and an I/O port for communications, said apparatus for controlling comprising:
analog switching means structured to receive voice signals and data signals from a plurality of different predetermined input sources and to route the received voice signals and data signals to different predetermined selectable destinations, said routing being determined by control signals received by said analog switching means; landline interface means operatively connected to said analog switching means, said landline interface means being structured to be connected to a landline; tru interface means operatively connected to said analog switching means, said tru interface means being structured to be connected to the cellular transmit/receive unit; cellular interface means operatively connected to said analog switching means, said cellular interface means being structured to be connected to the cellular (CU) handset; speaker phone interface means operatively connected to said analog switching means, said speaker phone interface means being structured to be connected to the speaker phone; a modem operatively connected to said analog switching means; and a central processing unit operatively connected to said analog switching means, landline interface means, tru interface means, cellular interface means and said modem to receive sense signals therefrom and to send control signals thereto, said central processing unit being structured to be connected to the I/O port for communications of the computer.
0. 39. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (tru) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a tru interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of:
placing the power switch of the cellular tru to the ON position applying power to the cellular tru; sending a sense signal to the CPU indicating the power switch of the cellular tru has been placed to the ON position; placing the power switch of the cellular (CU) handset to the ON position; sending a sense signal to the CPU indicating the power switch of the cellular (CU) handset has been placed to the ON position; sending a control signal from the CPU to the cellular interface means to cause power to be applied to the cellular (CU) handset; and sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the microphone of the cellular (CU) handset to the transmit input of the cellular tru through the tru interface means and to cause the analog switching means to switch the receive output of the cellular tru to the speaker of the cellular (CU) handset through the tru interface means; thereby allowing voice signals to be transmitted to and received from a location whose telephone number has been dialed on the cellular (CU) handset and also allowing voice signals to be received from and transmitted to a location which has dialed the telephone number of the cellular tru and the cellular (CU) handset. 0. 41. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a telephone-type headset, a cellular transmit/receive unit (tru) having a telephone number, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a tru interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communication, said method comprising the steps of:
placing the power switch of the cellular tru to the ON position applying power to the cellular tru; sending a sense signal to the CPU indicating the power switch of the cellular tru has been placed to the ON position; placing the power switch of the computer to the ON position applying power to the computer; activating the telephone-type headset; sending a sense signal to the CPU indicating the telephone-type headset has been activated; sending control signals to cause the analog switching means to switch the output of the microphone of the telephone-type headset to the transmit input of the cellular tru through the tru interface means and to cause the analog switching means to switch the receive output of the cellular tru to the speaker of the telephone-type headset through the tru interface means; and activating the communications software program in the computer; thereby allowing voice signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing voice signals to be received from and transmitted to a location which has dialed the telephone number of the cellular phone system and a proper command-to-answer coding has been input on the keyboard of the computer. 0. 40. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (tru) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a tru interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of:
placing the power switch of the cellular tru to the ON position applying power to the cellular tru; sending a sense signal to the CPU indicating the power switch of the cellular tru has been placed to the ON position; placing the power switch of the computer to the ON position applying power to the computer; activating the speaker phone; sending a sense signal to the CPU indicating the speaker phone has been activated; sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the microphone of the speaker phone to the transmit input of the cellular tru through the tru interface means and to cause the analog switching means to switch the receive output of the cellular tru to the speaker of the speaker phone through the tru interface means; and activating the communications software program in the computer; thereby allowing voice signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing voice signals to be received from and transmitted to a location which has dialed the telephone number of the cellular phone system and a proper command-to-answer coding has been input on the keyboard of the computer. 0. 32. In combination:
a computer having at least a communications software program, a keyboard and an I/O port for communications; a speaker phone having at least a speaker and a microphone; a cellular transmit/receive unit (tru) and a cellular (CU) handset, sand cellular (CU) handset including a microphone and a speaker; apparatus for controlling the path of voice and data signals from and to said computer, said speaker phone, said cellular transmit/receive unit (tru) and said cellular (CU) handset, said apparatus for controlling comprising: analog switching means structured to receive voice signals and data signals from a plurality of different predetermined input sources and to route the received voice signals and data signals to different predetermined selectable destinations, said routing being determined by control signals received by said analog switching means; landline interface means operatively connected to said analog switching means, said landline interface means being structured to be connected to a landline; tru interface means operatively connected to said analog switching means, said tru interface means being structured to be connected to the cellular transmit/receive unit; cellular interface means operatively connected to said analog switching means, said cellular interface means being structured to be connected to the cellular (CU) handset; speaker phone interface means operatively connected to said analog switching means, said speaker phone interface means being structured to be connected to the speaker phone; a modem operatively connected to said analog switching means; and a central processing unit operatively connected to said analog switching means, landline interface means, tru interface means, cellular interface means and said modem to receive sense signals therefrom and to send control signals thereto, said central processing unit being structured to be connected to the I/O port for communications of the computer. 2. The system of
3. The system of
4. The system of
5. The system of
6. The system of
7. The system of
9. The system of
10. The system of
11. The system of
12. The system of
13. The system of
14. The system of
15. The system of
16. The system of
17. The system of
18. The system of
19. The system of
20. The system of
21. The system of
22. The system of
23. The system of
24. The system of
0. 26. The apparatus of claims 25 wherein said analog switching means comprises at least one analog multiplexer/demultiplexer unit operatively connected to receive an input from any one of said plurality of different predetermined input sources and provide an output to one of said different predetermined selectable destinations, said plurality of different predetermined input sources comprises the microphone of the cellular (CU) handset through the cellular interface means, the microphone of the speaker phone through the speaker phone interface means and the output of the modem, said different predetermined selectable destinations comprises the cellular transmit/receive unit through the tru interface means and the landline through the landline interface means.
0. 27. The apparatus of
0. 28. The apparatus of
0. 29. The apparatus of
0. 30. The apparatus of
0. 31. The apparatus of
0. 33. The apparatus of
0. 34. The combination of
0. 35. The combination of
0. 36. The combination of
0. 37. The combination of
0. 38. The combination of
0. 47. The system of
0. 48. The system of
0. 49. The system of
0. 50. The system of
0. 51. The system of
0. 52. The system of
0. 53. The system of
0. 54. The system of
0. 55. The system of
|
A microfiche appendix is attached. The total number of microfiche is 1 and the total number of frames is 79.
Technology offers the consumer many choices in communications hardware, allowing both data and voice transmission. These choices include portable computers with internal modems, hands-free speakerphones, landline telephones, and cellular telephones.
Modern portable computers may be equipped with an internal modem and data access arrangement that allows the internal modem to be connected through an RJ-11 connector to the Public Switched Telephone Network. Examples of this technology include portable computers manufactured by Zenith and NEC. These portable computers generally include a speaker used for call progress monitoring; and this speaker is used strictly as an analog output device. The internal modems are used only for sending and receiving modulated digital information through the public switched telephone network. Methods of modulation include the Bell 212, Bell 103 CCITT V.21, CCITT V.22 and CCITT v.22 bis standards.
Hands-free speakerphones can be found in many offices and homes. Generally, these speakerphones are used as an adjunct to a classical telephone which consists of a cradle and handset, and these speakerphones are used for analog voice communications over the public switched telephone network. Digital switching techniques are sometimes used within the speaker phone circuits to prevent analog feedback from microphone pickup of the speaker output.
Cellular telephones as currently manufactured by Motorola (USA), OKI (Japan) and others consist of a radio transceiver unit (TRU) and a control unit (CU), analogous to the cradle and handset of a conventional landline telephone. The transceiver unit is connected to the control unit with numerous wires, these wires transferring the analog information as in a conventional landline telephone, and also transferring digital information not used in a conventional landline telephone. This digital information may contain key press, display, and monitoring information, as well as cellular call set-up instructions. An example of this digital and analog connection can be found in AMPS based cellular telephones, as well as other functionally similar specifications. A complete description of the AMPS system is provided in "The Bell System Technical Journal", 1979, V.1 58, No. 1, pages 1-269. Cellular phones may also provide a hands-free speakerphone, similar to speakerphones available for landline phones.
Landline and cellular telephones generally provide means of indicating to the user their current operating state. For example, when a key is pressed, an audible tone is heard, providing audio feedback, or, when an incoming call is sensed, an audible tone (RING) is heard.
There have been attempts in the prior art to combine some of the devices described above. For example, the addition of a modem to a cellular phone and means for controlling a cellular phone was disclosed by the present inventor in his U.S. Pat. No. 4,697,281. Although this patent provides for modem, transceiver unit and control unit analog and digital control, it does not provide a method for connecting numerous communication devices selectively to both land line and cellular telephone networks.
U.S. Pat. No. 4,718,080 shows a device which connects a standard landline telephone or modem to a cellular car phone, while U.S. Pat. No. 4,578,537 shows an interface which may connect a personal computer, a speakerphone, and a modem to one or more landlines. As a final example, U.S. Pat. No. 4,685,123 teaches a method of adapting one or more telephone lines for either data or voice communications.
None of these known devices or methods succeeds in achieving the functionality ultimately possible from the combination of a modem, portable computer, cellular phone, speakerphone, headset, and landline connection. Were these devices combined within a compact, portable package, the user could use the computer, transmit data, and/or place a cellular voice call, using speakerphone or headset, from any location served by a cellular network. Further, the user could bring the unit into home or office and connect it to the public switched telephone network. With both cellular and landline connections available, the user could place two calls at once, transmitting voice or data over either line. Significantly, the portable computer could initiate all these operations under program control. If all these devices could be combined in an integrated unit so that any pair of devices could function together, the result would be an uniquely valuable business and personal tool.
Prior to the invention disclosed herein, this combination was not conceived of in the art for a number of reasons, but primarily because the devices described were considered to be incompatible. For example, as explained in the inventor's prior U.S. Pat. No. 4,697,281, an ordinary modem loses data during cell handoffs, when operated over a cellular link. As another example, ordinary telephones do not provide the correct control signals to place calls on the cellular network, and cellular control units cannot be used as landline handsets. Thus, an integrated portable unit which combines a personal computer, cellular transmitter, modem and speaker phone with headset, cellular control unit, and land telephone connections could not be implemented by merely wiring known devices together.
It is a primary object of the present invention to provide a novel and improved portable hybrid communication system incorporating an integrated, portable unit which includes a personal computer, cellular transmitter, modem, and speakerphone, and which has external connections for a headset, cellular control unit, and land telephone line, such that any of these devices may be used with any other device. The invention further includes a novel and improved method and apparatus to switch the numerous analog and digital parts of landline telephones, cellular telephones and modems so that any parts of this unit may be used together. This is all accomplished with a control system mounted on a circuit card which fits in a modem slot or similar card receiving slot in a portable computer.
Another object of the present invention is to provide a novel and improved portable hybrid communication system which provides a personal computer with the means to command a specific pairing of a cellular transmitter, modem, and speakerphone, as well as external connections to a headset, cellular control unit and landline telephone line. This command may be sent by an automated program, or at the interactive request of the person using the personal computer.
Yet another object of the present invention is to provide a novel and improved portable hybrid communication system which can switch a modem onto either a landline or cellular telephone network.
A further object of the present invention is to provide a novel and improved portable hybrid communication system which controls the power to a cellular control unit as necessary, so that power to the control unit is available only when the control unit is to be used.
Yet another object of the present invention is to provide a novel and improved portable hybrid communication system which can sense the ON or OFF condition of the power to a transceiver unit.
A further object of the present invention is to provide a novel portable hybrid communication system which has complete control of a transceiver unit, providing the necessary signals to the transceiver unit for the transceiver unit to function properly, and sensing all of the signals generated by the transceiver unit, said control being possible without the need of a cellular control unit.
Yet another object of the present invention is to provide a novel portable hybrid communication system with complete control of a cellular control unit, providing the necessary signals to the control unit for the control unit to function properly, and sensing all of the signals generated by the control unit, allowing use of the cellular control unit.
A further object of the present invention is to provide a novel portable hybrid communication system that can sense whether of not a headset, cellular control unit, landline, or other device is connected to the invention.
A further object of the invention is to provide a novel portable hybrid communication system that selectively provides suitable control signals and data transfer protocols depending on the devices used and depending on whether cellular or land lines are being used.
A further object of the invention is to provide a novel portable hybrid communication control system that performs analog signal conditioning so that the analog signals of the speakerphone, headset, control unit, modem, tone generator, transceiver, and landline are matched in impedance and level according to definite standards.
A further object of the invention is to provide a novel portable hybrid communication system that can relay a cellular call over a land line or a land line call over a cellular network.
A further object of the invention is to provide a novel portable hybrid communication system that can simultaneously connect a modem or voice terminal device to the cellular network, while connecting another device (modem or terminal) to a landline, permitting simultaneous voice and data communications.
A further object of the invention is to provide a novel portable hybrid communication system which integrates a modem, portable computer, and cellular transmitter into a case, the case having a retractable cellular antenna.
These objects and others are achieved by providing a novel and improved portable hybrid communication system which is a laptop device including a personal computer, a cellular transceiver, a speakerphone, and a hybrid communications control unit. The device has connectors for attaching a headset, cellular control unit, land telephone line, and additional speakers and microphones.
The hybrid communications control unit is microprocessor controlled and includes a modem, a data access arrangement, and a tone generator as well as digital, analog, and power switches. The hybrid communications control unit switches the communications components and provides, under program control, the proper protocols, level, and impedance matching to connect the modem, speakerphone, headset, speaker/-microphone, or cellular control unit to the landline or to the cellular network via the transceiver.
Matching and switching operations are automatic and transparent to the user. The unit can also connect two of the terminal devices or connect the cellular and landlines for call relaying. Finally, the device is capable of connecting plural calls at the same time over different networks.
The hybrid communications control unit may be controlled by its internal firmware, by toggle switches, or by commands issued from the personal computer.
Other objects and advantages of the invention will be apparent to those skilled in the art from the drawings, description, and claims herein.
FIG. 3,., is a block diagram of a typical speakerphone system; speakerphone,.
The drawings of
In
In
The novel means for connecting and controlling these prior art devices will now be described with particular reference to FIG. 4. In this figure, units previously described are given like reference numerals. The hybrid communications control unit of the present invention is shown generally at 68. The hybrid communications control unit contains a microprocessor 70 with RAM and ROM memory and input and output ports, an analog switch 72, a digital switch 74, a power arbitration unit 76, a computer interface 78, a tone generator 80, a modem 82, a data access arrangement 42, and end user accessible toggle switches 86. All power to the unit and its parts is obtained from an external power supply 88. A portable personal computer 90 is connected to the unit 60 through the computer interface 78.
The power supply 88 is preferably the battery of the portable computer 90, or an external power supply for the portable computer, but the power supply 88 may also be any other source of power.
The microprocessor 70 may preferably be a Toshiba Z84--C15, which incorporates a Zilog Z80 processor, Z80--PI0 parallel port, Z80--SIO serial port, and Z80--CTC. As explained previously, both random access and readonly memories are connected to the microprocessor for data and software storage. The read-only memory preferably contains operating software which is the machine-code equivalent of the source code contained in the microfiche appendix attached to this specification.
The portable personal computer 90 may be any programmable computing device, such as a hand-held calculator or portable computer. One suitable model is an ITC CAT 286 which uses the MS-DOS operating system and is compatible with the IBM personal computer AT.
The hybrid communications control unit 68 connects to the public switched telephone network 40 using wires 41 and data access arrangement circuit 42, which are the essential components of the landline telephone 34 of FIG. 2. The physical connection is preferably by means of a conventional RJ-11 modular telephone connector. Analog lines 92 connect from the data access arrangement 42 to analog switch 72, where the analog signals may be switched or conditioned using methods which will be described later in more detail. This switching and conditioning allows the analog lines from the data access arrangement 42 to be selectively connected by the analog switch with the analog lines of any other connected device, such as speakerphone 52. This selective connections is controlled by the microprocessor 70, either as a result of a user request made known to the microprocessor 70 through toggle switches 86 or because of a request from the portable personal computer 90 transmitted through the computer interface 78.
The toggle switches 86 are connected to input ports of microprocessor 70. They may be of the type that can be sensed directly by the microprocessor 70, that is of a 5 volt DC logic level, or they may require debouncing or other conditioning before being sensed by the microprocessor 70. Preferably, four toggle switches are provided. The first switch can be manually actuated to signal the microprocessor 70 that the cellular control unit 14 is inserted. The second toggle switch, when manually activated, signals the microprocessor that the user wishes to mute the output of a microphone 103 in use during a voice communication. The third toggle switch provides power to the cellular control unit 14, and the last toggle switch both controls power to the cellular transceiver 4 and provides a logic signal to the microprocessor 70 in the manner explained below. The power control functions of these last two toggle switches may occur directly, with the toggle switch making or breaking a connection between the power supply and the controlled unit as shown in
As shown in
Of course, a larger number of toggle switches may be provided depending on the preference of the end user. These additional switches might initiate any function performed by the present invention.
The hybrid communication control unit 68 is preferably constructed on a circuit card about four inches wide by five inches long. In the preferred embodiment, as shown in
The type of connector 95 used depends on the computer selected for construction of the present invention. The connector might be any multi-pin male, multi-pin female, or EIA connector. Alternatively, the card containing hybrid communication control unit 68 might be provided with edge contacts to mate with a printed circuit board edge connector in the computer 90. While the most common and desirable connection means have been described herein, those skilled in the art will recognize that other known connections means could be used.
In addition, the card of hybrid communications control unit 68 could be installed in computer 90 in many locations other than modem slot 89. For example, the card could be installed in a memory expansion or other expansion slot of computer 90. The card could also be located externally to the case of computer 90, either mounted on the case or designed as a separate unit to be cabled to computer 90. Similarly, the card could be located in any available space inside the computer case and connected by cable to the modem connector, an expansion connector, or another connector provided on the motherboard 93 of computer 90.
Since the hybrid communications control unit 68 may be installed in the computer 90, it should be recognized that, for so me applications, the microprocessor 70 can be eliminated and its functions can then be performed by the computer 90. For this type of operation, the computer interface 78 would be connected back into an input port of the computer 90 and the input-output ports of the computer 90 would be connected to other components in the hybrid communications control unit 68 in the same manner as are the input-output ports of the microprocessors 70. For this type of operation, the computer 90 must have RAM and ROM memory and the capability to operate in response to a program which performs the functions of the program in Appendix A.
A cellular antenna 10 may be extended from or retracted into a compartment 97 of the portable computer case so as to protect the antenna when not in use and so as to increase the functionality and aesthetic appeal of the computer case when the system is used but cellular access is not desired. In the embodiment shown, the antenna moves in a linear fashion in and out of the compartment. Locking means (not shown) may hold the antenna in a fixed position. For example, ball-and-socket or frictional locks could be used. Alternatively, the antenna could be retracted by folding about a hinge into a recess in the portable computer case. In another embodiment, an external jack for connection of a roof-mount or other antenna could be provided.
The card bearing the hybrid communication control unit 68 is also provided with several other connectors. A first of these connectors on the card forms a connector for the speakerphone 52 and has three pins which provide transmit, receive, and signal ground lines. A second connector on the card is for the cellular transceiver and provides a pin for each line in the cellular bus 24 (shown in FIG. 1). This connector must be compatible with the cellular control unit jack of the cellular transceiver selected, and may be provided with an extension cable to facilitate the connection. A third connector of the card allows external connection of the cellular control unit 14 to the card, and is of the type that mates with the second connector previously described. A fourth connector allows external connection of additional speakers and microphones. This connector preferably takes the form of a headset jack. A final connector accepts the RJ-11 plug of the public switched telephone network as described previously. Additional connectors may be provided for additional speakers or other known telephone and computing equipment.
The computer interface 78 is preferably of the type that converses directly with a central logic bus of the portable computer 90, using the Signetics INS 8250 universal asynchronous receiver and transmitter and conventional techniques. Of course, the device might also converse with the portable computer using RS-232 C or another known standard.
The data access arrangement 42 (DAA) may be a standalone DAA, such as Midcom part number 681--0012. A slight reduction in construction costs can be obtained by assembling a DAA out of components using techniques well-known in the art, so as to provide the protection required to connect to the public switched telephone network. This method is preferred. Digital DAA control lines 94 connect the DAA 42 to the input/output ports of microprocessor 70, and the control lines include a ringing line. The DAA 42 may be controlled directly by the microprocessor 70 using the DAA digital control lines 94. This control prompts the data access arrangement to issue appropriate signaling directions to, and relay directions from, the public switched telephone network. Such signalling directions include Dual Tone Multi-Frequency (DTMF) dialing, on-hook and off-hook conditions, timed on/off hook sequences used for pulse dialing, and ringing sense. When ringing on the public switched telephone network line 41 is detected by the DAA 42, the DAA preferably causes an interrupt in the program sequence of microprocessor 70. Alternatively, the ringing line of the DAA control lines 94 can be latched and then polled by the microprocessor periodically.
The DTMF signals are obtained from the tone generator 80 which is shown as a separate entity but may also be located either within the data access arrangement 42 or within the modem 82. The tone generator 80 is connected to the analog switch by analog lines 96 and to the microprocessor 70 by tone control lines 98. The tone generator operates in response to control signals from the microprocessor transmitted through the tone control lines 98. The microprocessor may obtain the sequence of tones to be transmitted from control unit 14 or portable computer 90 in a manner that will be explained further. Analog signals of the tone generator may be passed to the data access arrangement 42 through the analog switch 72.
The analog switch 72 may be a 4053 manufactured by Toshiba, and a number of devices are connected to this analog switch 72. The connections internal to the hybrid communications control unit 68 will be described first. As explained previously, DAA 42 is connected to analog switch 72 by analog line 92. Tone generator 80 is connected to the analog switch 72 by analog lines 96, and modem 82 is connected to analog switch 72 by analog lines 102. Analog switch control lines 100 connect the analog switch 72 to microprocessor 70. The analog switch 72 accepts digital commands from the microprocessor 70 through analog switch control lines 100 to connect and disconnect the attached devices.
Next, the connections of the analog switch to devices external to the hybrid communications control unit 68 will be described. An optional microphone 103 may be connected to analog switch 72 by analog lines 104, while an optional speaker 105 may be connected to the analog switch by analog lines 106. The speakerphone 52 may be connected to the analog switch by analog lines 64, and the cellular transceiver 4 is connected to the analog switch by analog lines 108. The cellular control unit 14 is connected to the analog switch by analog lines 110.
As shown in
Preferably, the output signals of all terminal devices, such as the microphone signal, are converted to a low-impedance, -10 DbV signal as part of the connection to analog switch 72. This signal is suitable for direct input to DAA 42, and is converted appropriately at the analog switch connection for input to other line devices, such as the cellular transceiver. The input signals of all connected terminal devices, such as the external speaker input, are provided at the analog switch connection with circuitry which converts a medium-impedance -10 DbV signal, as produced by DAA 42, to a signal with the characteristics required for input to the individual terminal device. The analog outputs of other line devices, such as transceiver 4, are converted at their analog switch connections to produce a signal with the same level and impedance characteristics as the signal produced by DAA 42.
Of course, other standard impedances and signal levels could be chosen within the scope of the invention. In another preferred embodiment, standards for terminal and line devices could be made the same to facilitate implementation of call relaying and connection of terminal devices to other terminal devices.
In the first example, the output of microphone 103, which may be a high-impedance (greater than 10 K Ohms), -40 DbV signal, is converted by op-amp circuit 112 to a low-impedance (less than 1K Ohms), -10 DbV signal suitable for direct switching to the DAA 42. O-amp circuit 114 converts this same low-impedance, -10 dBV signal to a -20 dBV low-impedance signal suitable for input to cellular transceiver 4.
In the second example shown in
The following chart shows typical input and output impedance and level values for devices included in the present invention. Naturally, these values will vary depending on the specific devices selected.
IMPEDANCE | |||
ITEM | DIRECTION | LEVEL (DBV) | (KILO OHMS) |
DTMF | OUTPUT | -6 | 1-10 |
MODEM | OUTPUT | -9 | >10 |
MODEM | INPUT | -10 TO -40 | >10 |
DAA | OUTPUT | -10 TO -40 | 1-10 |
DAA | INPUT | -9 MAXIMUM | <1 |
TRU | OUTPUT | -20 | 1-10 |
TRU | INPUT | -20 | >10 |
CU | OUTPUT | -20 | 1-10 |
CU | INPUT | -20 | >10 |
SPEAKER- | OUTPUT | -40 | >1 |
PHONE | |||
SPEAKER- | INPUT | 0 | <10 |
PHONE | |||
MICRO- | OUTPUT | -40 | >100 |
PHONE | |||
SPEAKER | INPUT | -0 | <0.01 |
Referring again to
The analog switch 72 acts as a cross-point switch, so that it is possible for more than one pair of analog signals to be connected at once without interference. For example, the cellular transceiver 4 could be connected to the speakerphone 52 while the data access arrangement 42 is connected to the modem 82, allowing simultaneous voice and data communications. This operation is made possible in part by the unique circuit disclosed and the standardization of analog levels of the present invention.
The modem 82 is directed by the microprocessor 70 using a modem control line 129. These directives include turning on and off the various stages of the modem's modulation and demodulation circuits. The analog signals produced by modem 82 are connected to the analog switch 72 so that the analog signals are available for switching, in a manner similar to the analog connection of the data access arrangement 42 to the analog switch 72. The microprocessor preferably receives and retransmits data to and from modem 82 and computer interface 78. Alternatively, a direct data connection or connection switchable manually or under the control of microprocessor 70 may be provided.
The operation of the power arbitration unit 76 will now be described. Input/output ports of microprocessor 70 are connected by power arbitration control lines 94 to the power arbitration unit 76. The power arbitration unit 76 contains circuitry which responds to the digital signals of microprocessor 70 to connect and disconnect external power from external power supply 88 to control unit 14 and transceiver 4. This power arbitration uses conventional microprocessor controlled switching units and techniques and the microprocessor signals are used at the request of the user or by the microprocessor's own internal program. Power wires 162 are provided between the control unit 14 and power arbitration unit 76. These wires provide the control unit 14 with power for operation, and are controlled by the microprocessor 70 using the power arbitration unit 76, thus giving the microprocessor 70 control of signal and power availability to the control unit 14. Power line 132 and external power line 134 connect power arbitration 76 and transceiver 4 so that the power arbitration unit 76 can control power to transceiver 4 in response to signals from microprocessor 70. The microprocessor 70 may store the status of power to the control unit and transceiver in random access memory for use as described later.
Digital switch 74 is connected to microprocessor 70 by digital switch control line 135 and digital data line 136. The digital switch is also connected to the cellular transceiver 4 by digital lines 130 and to the control unit 14 by digital lines 131. The digital signals provided by the transceiver unit 4 and control unit 14 are presented to the digital switch 74 of the hybrid control unit where they may be conditioned as necessary before being presented to the microprocessor 70.
Specifically, the digital switch control line 135 is connected to a control unit-to-transceiver pass thru control line 148 which is connected through a resistor to the base of the control-unit to-transceiver pass thru transistor 140. The collector of transistor 140 is connected to digital data line 131, while the emitter of transistor 140 is connected to digital data line 130.
Digital data line 131 is connected through a resistor to a control unit sense line 156, which is connected through an internal input/output bus 160 to one of the digital data lines 136. Likewise, digital data line 130 is connected through a resistor to a transceiver sense line 158, which is also connected through the bus 160 to a different digital data line 136.
Two additional digital data lines 136 are connected through bus 160 to a control unit assert line 152 and a transceiver assert line 154 respectively. Control unit assert line 152 is connected through a resistor to the base of the control unit pulldown transistor 138. The collector of this transistor 138 is connected directly to digital data line 131, while its emitter is connected directly to ground. Likewise, transceiver assert line 154 is connected through a resistor to this base of the transceiver pulldown transistor 142. The collector of the transistor 142 is connected directly to digital data line 130, while its emitter is connected directly to ground.
The digital lines 131 of the control unit 14 and digital lines 130 of the transceiver 4 are, in the preferred embodiment, open-collector type lines. Inside the transceiver 4 and control unit 14 are pull-up resistors 144 and 146 that provide the voltage used to sense the logic level when the digital lines 131 and 130 are in their open collector state. These pull-ups may be placed within the digital switch 74 when not provided by the control unit 14 and transceiver 4. When the microprocessor asserts digital switch and control 135, the control unit-to-transceiver pass thru control line 148 is asserted, turning on the control unit-to-receiver pass thru transistor 140 thus connecting the control unit digital line 131 to the transceiver digital line 130 and allowing data to flow between the control unit 14 and transceiver 4. When the control unit-to-transceiver pass thru transistor 140 is turned off, the control unit 14 and transceiver 4 cannot exchange digital information.
The control unit and transceiver may be used independent of each other if proper digital information is provided to them. The microprocessor can provide the proper digital information by using its digital data lines 166. A plurality of digital lines 136 are used to enable assertion and sensing of each pair of digital data lines 130 and 131. These asserting and sensing lines are bussed internally to the digital switch 74 on the internal Input/Output Bus 160. When asserted, the appropriate digital data line 136 asserts the control unit assert line 152 or transceiver assert line 154 to turn on respectively control unit pull down transistor 138 or transceiver pull down transistor 142. This will change the state respectively of the control unit digital line 131 or transceiver digital line 130 from their open collector pulled up (high) condition to an asserted pulled down (ground) condition, thus allowing transmission of digital signals between the microprocessor 70 and the control unit 14 or transceiver 4 respectively. Any digital signals present on the digital lines 131 or 130 are sensed by the microprocessor through the control unit sense line 156 or the transceiver sense line 158, which are connected through bus 160 to appropriate digital data lines 136. Preferably, individual digital switch control lines 135 and digital data lines 136 are provided from the input/output ports of the microprocessor. If sufficient ports are not available, additional multiplexing circuits may be interposed between microprocessor 70 and digital switch 74 in a manner well known in the art.
Of course, methods of digital signaling other than the open collector method could have been chosen for the signaling used between the control unit 4 and transceiver 4, such as open-emitter, with pulldown resistors and pullup transistors, or methods where no open circuit conditions exist.
Referring again to
The relationship and connections of conventional devices to the hybrid communications control unit will now be described. The speakerphone 52 is preferably built into a case holding the portable computer 90. The hybrid communications control unit obtains access to the analog signals of the speakerphone 52 using the analog wires 64 included in the speakerphone 80, which terminate in a three-pin connector which mates with the speakerphone connector on the hybrid communications control unit board. The microprocessor 70 controls switching and conditioning of the analog signals using the analog switch 72, in a manner similar to the switching of the data access arrangement signals by analog switch 72.
The invention may incorporate other optional speakers 105 and microphones 103, with their analog signals connected to the analog switch 72 using analog wires 106 and 104, respectively, in a manner similar to that used with the analog signals of the data access arrangement 42 or speakerphone 52. An external speaker and microphone in the form of a telephone headset is preferably used in the present invention.
The cellular transceiver unit 4 is preferably built into the personal computer case in a space which might otherwise be occupied by a disk drive. The transceiver is connected to the invention by wires similar to those in the transceiver unit bus 24 (shown in FIG. 1), specifically analog wires 108, digital wires 130, power wires 132 and external power wires 134. All analog signals present at the transceiver unit 4 are switched and conditioned by the analog switch 72.
Thus, the total operating condition of the transceiver unit 4 is known and may be controlled by the microprocessor 70. Control signals may be initiated through the microprocessor's internal program or by user interaction with the microprocessor, either through the toggle switches 86 or through the portable computer 90. The microprocessor 70 can switch the analog signals of the transceiver unit 4 onto any of the remaining analog paths by controlling the operating state of the analog switch 72. The microprocessor 70 can selectively apply or remove external power to the transceiver unit 4 using the power arbitration unit 76.
The cellular control unit 14 preferably connects to a jack on the portable computer case, this jack being connected to the hybrid communications control unit board through a cable and connector which mates with the appropriate connector on the board (previously described). The analog wires 110 are connected to the analog switch 72, thus providing the microprocessor with the ability to switch the analog signals of the control unit as required. The digital wires 131 are connected to the digital switch 74, thus providing the microprocessor 70 with status sense and digital control of the control unit 14 as described previously, and the power wires 162 are connected to the power arbitration unit 76, providing the microprocessor with the ability to control the power to the control unit 14 as explained previously. Thus, the microprocessor 70 has complete control of the functioning of the control unit 14 as it has with the transceiver unit 4.
In the first mode of operation, voice calls can be placed and received on the public switched telephone network. At the request of the user communicated by toggle switches 86 or as a result of a user- or software-generated signal from the portable computer 90 sensed through computer interface 78, the microprocessor 70 instructs the data access arrangement 42 through the digital control lines 94 to take the public line off-hook.
If tone dialing is to be used, the microprocessor directs the analog switch 72 to connect data access arrangement 42 and tone generator 80, whereupon the microprocessor transmits tone commands for the number to be dialed to tone generator 80 through tone control line s 98. If pulse dialing is desired, the microprocessor transmits the proper series of on- and off- hook signals to the data access arrangement 42 using DAA control lines 94.
After dialing, the microprocessor commands the analog switch 72 to connect the analog wires 92 of the data access arrangement 42 to the analog wires 64 of the speakerphone 52 thus providing the user with speakerphone access to the public switched telephone network 40.
On completion of the call, the user can instruct the microprocessor to disconnect the public telephone line using the switch or computer means previously described. The microprocessor will then instruct the data access arrangement to place the landline on-hook, and instruct the analog switch to disconnect the voice device and data access arrangement.
When the public switched telephone network signals to the data access arrangement 42 that an incoming call is present, that condition (ringing) is sensed by the microprocessor through the ringing line of data access arrangement control lines 94, either through an interrupt or by polling the circuit. The microprocessor makes the user or portable computer aware of this condition by sending a message through the computer interface 78 or by placing an audible tone generated by the data access arrangement 42 or elsewhere (such as the tone generator 80) on any speaker analog path (such as an optional speaker 105 by means of wires 106). The user may then elect to answer or ignore the call. This decision is sent to the microprocessor 70 by the user using the portable computer 90. Alternatively, a toggle switch could be provided for this purpose. In addition, the microprocessor 70 may be instructed any time prior to the ringing condition to always answer the call (auto-answer mode).
For incoming calls, the microprocessor 70 selects the device to be connected in a novel manner, based on the devices connected and programmed priorities. The microprocessor knows the present power-on condition of the transceiver unit 4 and control unit 14 by monitoring the power arbitration unit 76. The presence of optional speakers 105 can be sensed at the optional speaker connection, using the toggle switch method similar to that previously described for the high current external power switch for the transceiver unit. The presence of public switched telephone network 40 can be sensed using the data access arrangement 86 and analog switch 72 as described previously with reference to FIG. 9. The microprocessor can then choose, based on the availability of speakers and microphones and based on its preprogrammed priorities, the most appropriate analog path to use for all analog signals. Preferably, the microprocessor will first check for the presence of a headset, connecting the incoming call thereto if the headset is present. If there is no headset present, the microprocessor will direct that the incoming call be connected to the speakerphone. Those skilled in the art will appreciate that these priorities could be modified and that other devices could be included in the priority. While the priority is preferably built into the firmware, priorities could also be modifiable by the end user, either by sending a command from the personal computer or by adjusting toggle or dual-inline-pin switches.
The device of the present invention may also place and answer calls over the public switched telephone network 40 using analog devices that are not part of the speakerphone 52, such as speaker 105 and microphone 103 which are preferably embodied in a unitary headset which plugs into the hybrid communications control unit board.
In a second mode of operation, the modem 82 can be used to send and receive data over the public switched telephone network 40 using the data access arrangement 42 in a manner similar to that previously described using the speakerphone 52, except that the analog switch 72 connects the modem 82 to the data access arrangement 42 rather than connecting the speakerphone. After the call is set up, the microprocessor 70 directs modem 82 to transmit data using standard protocols and error checking that are well-known in the art. Data is transmitted to and received from the microprocessor 70 by the portable computer 90 through computer interface 78. The microprocessor 70 retransmits the transmitted data to the modem 82, where the digital data is converted to a modulated analog signal and transmitted over the public switched telephone network. The microprocessor receives incoming data from the modem and retransmits this received data to the portable computer 90.
In a third mode of operation, the system can place and receive calls over the cellular telephone network. Cellular calls may be placed using the speakerphone 52 or the headset comprising speaker 105 and microphone 103, but in a manner different from that previously described for placing and receiving speakerphone calls over the public switched telephone network. Microprocessor 70 first sends the proper digital signals to transceiver 4 through digital data lines 136, digital switch 74, and digital data lines 130, instructing the transceiver to initiate a call to the desired number. The microprocessor then instructs analog switch 72 to connect the analog wires 108 of the transceiver unit 4 and the analog wires 64 of the speakerphone 52. When the user indicates to the microprocessor that the call is complete, disconnect instructions are transmitted to the transceiver and analog switch.
When there is an incoming call on the cellular network, the system processes the incoming call in a novel and unique manner. The processing required depends on the type of transceiver used. For example, Motorola brand transceivers generate a digital signal to alert the user to ringing, while OKI brand transceivers generate an alternating series of analog tones. The OKI transceiver also uses analog tones to indicate busy, ringing, and out-of-service area signals. These signals differ from the incoming call signal.
If the transceiver used produces digital signals, an incoming call will be signalled on digital line 130, causing the digital switch 74 to request service from the microprocessor 70. The microprocessor will read the data from the transceiver; if the data indicates an incoming call, the microprocessor will inform the user and may connect the call to the speakerphone, headset, or other device.
If the transceiver produces an analog signal to announce an incoming call, this signal will appear on analog data line 108. Analog switch 72 will generate a service request to microprocessor 70 using the circuitry described earlier and shown in FIG. 9. The microprocessor will evaluate the cadence or period of the signal to determine whether it is actually an incoming call signal, rather than one of the other signals described previously. On confirmation of an incoming call condition, the microprocessor will inform the user and take action as described previously.
In a fourth mode of operation, the invention allows the modem 82 to be used during a cellular telephone network call placed using the transceiver unit 4. The microprocessor first signals the transceiver 4 to initiate the call as described in the procedure for placing a cellular voice call. Next, the processor directs analog switch 72 to connect transceiver 4 to modem 82 using analog lines 108 and analog lines 102, respectively. The microprocessor 70 then accepts data from the portable computer 90 through interface 78 for retransmission. The microprocessor then selects a special protocol for use on the cellular network, this automatic protocol selection being novel and unique. Rather than using standard data transfer methods as with the landline, the microprocessor will preferably retransmit the data through the modem in variable-sized packets with special protocols and error checking appropriate to a cellular environment. These methods are described in detail in the inventor's U.S. Pat. No. 4,697,281, which disclosure is incorporated herein by reference. Data received from the cellular link will be demodulated by the modem 82 and checked by the processor, which will remove the overhead bits needed for error checking and then retransmit the data to the portable computer 90. As in the other operating modes described, the setup process is reversed when the call is complete.
In a fifth mode of operation, the microprocessor 70 can cause the control unit 14 to assume its "original" function of placing and receiving calls over the cellular telephone network. The microprocessor 70 sends controlling information to the power arbitration unit, analog switch 72, and digital switch 74 directing these devices to connect all control unit wires and paths to their corresponding transceiver unit ires and paths. Transceiver functions can then be controlled directly by the control unit.
In a sixth mode of operation, the cellular control unit 14 can be used to place calls on the public telephone network. This mode of operation provides novel and unique functionality since cellular control units cannot normally be used with public telephone network lines. In this operation mode, the speaker and microphone of the cellular control unit are used in conjunction with the data access arrangement 42 to place and receive calls over the public switched telephone network 40 in a manner similar to that shown for placing and receiving calls over the public switched telephone network using the speakerphone 52.
The keypad 18 (shown in
Further, as the control unit 14 contains a display, audible signals and digital messages previously described that originate from microprocessor 70 may be augmented by a visual message on that display, shown at 16 in FIG. 1. The microprocessor 70 produces the visual message by sending the appropriate digital commands through the digital switch 74 means to the control unit 14 and thus to its display 16.
Also, as the control unit may not always have its microphone 22 and speaker 20 enabled, the microprocessor 70 ma issue appropriate directives to the control unit 14 through digital data line 136 to enable the control unit's microphone and speaker. Disabling of the speaker and microphone can be directed in a like manner.
As the key pad of the control unit 14 contains an ON/OFF switch, said switch may be used as a toggle switch 86 in a manner similar to that of the previously described high current power switch for the transceiver unit 4.
Additional functions possible with minor modifications to the preferred embodiment include connections that are not commonly desired such as speakerphone to control unit.
The present device can also relay calls in a novel and unique manner by connecting the data access arrangement to the transceiver unit. While the software in the attached microfiche appendix does not implement this feature, the flow diagram of
Referring now to
This same general procedure can be used to relay calls from landline to cellular.
In addition, those skilled in the art will appreciate that more than one of the functions described hereto can be performed simultaneously so long as the analog switch chosen is capable of connecting more than a single pair of devices. Thus, in a novel and unique manner, the system can either provide voice and data channels at the same time, or provide two voice channels at the same time, one channel being over the public telephone network and one channel being over the cellular network.
The present invention relates to communications in the portable environment generally, and more specifically to the cellular and landline telephone networks, and their access using both voice and data methods a well as portable computer control of that access.
Patent | Priority | Assignee | Title |
10097679, | Jun 11 2001 | Qualcomm Incorporated | Integrated personal digital assistant device |
10217137, | Dec 19 2000 | GOOGLE LLC | Location blocking service from a web advertiser |
10326871, | Jun 11 2001 | Qualcomm Incorporated | Integrated personal digital assistant device |
10354079, | Dec 19 2000 | GOOGLE LLC | Location-based security rules |
6839830, | Mar 01 2000 | Realtek Semiconductor Corporation | Logical pipeline for data communications system |
7032223, | Mar 01 2000 | Realtek Semiconductor Corporation | Transport convergence sub-system with shared resources for multiport xDSL system |
7075941, | Mar 01 2000 | Realtek Semiconductor Corporation | Scaleable architecture for multiple-port, system-on-chip ADSL communications systems |
7085285, | Mar 01 2000 | Realtek Semiconductor Corporation | xDSL communications systems using shared/multi-function task blocks |
7123906, | Oct 17 2003 | Verizon Patent and Licensing Inc | Integrated telephony service |
7200138, | Mar 01 2000 | Realtek Semiconductor Corporation | Physical medium dependent sub-system with shared resources for multiport xDSL system |
7295571, | Mar 01 2000 | Realtek Semiconductor Corp. | xDSL function ASIC processor and method of operation |
7665043, | Dec 28 2001 | Qualcomm Incorporated | Menu navigation and operation feature for a handheld computer |
7725127, | Jun 11 2001 | Qualcomm Incorporated | Hand-held device |
7818748, | Mar 01 2000 | Realtek Semiconductor Corporation | Programmable task scheduler |
8103313, | Nov 09 1992 | ADC Technology Inc. | Portable communicator |
8174993, | Oct 03 2003 | Dell Products L P | System, method and device for tuning a switched transmission line for ethernet local area network-on-motherboard (LOM) |
8325751, | Mar 01 2000 | Realtek Semiconductor Corp. | Mixed hardware/software architecture and method for processing communications |
8677286, | May 01 2003 | Qualcomm Incorporated | Dynamic sizing user interface method and system for data display |
8774375, | Apr 27 2007 | System and methods for establishing a telephony session from a remote dialing unit | |
8855722, | Aug 12 1999 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Integrated handheld computing and telephony device |
8976108, | Jun 11 2001 | Qualcomm Incorporated | Interface for processing of an alternate symbol in a computer device |
9460445, | Dec 19 2000 | AT&T Intellectual Property I, L.P. | Surveying wireless device users by location |
9466076, | Dec 19 2000 | GOOGLE LLC | Location blocking service from a web advertiser |
9501780, | Dec 19 2000 | GOOGLE LLC | Surveying wireless device users by location |
9537997, | Dec 19 2000 | AT&T Intellectual Property I, L.P. | System and method for remote control of appliances utilizing mobile location-based applications |
9549056, | Jun 11 2001 | Qualcomm Incorporated | Integrated personal digital assistant device |
9571958, | Jun 30 2000 | GOOGLE LLC | Anonymous location service for wireless networks |
9584647, | Dec 19 2000 | GOOGLE LLC | System and method for remote control of appliances utilizing mobile location-based applications |
9696905, | Jun 11 2001 | Qualcomm Incorporated | Interface for processing of an alternate symbol in a computer device |
9763091, | Dec 19 2000 | GOOGLE LLC | Location blocking service from a wireless service provider |
9852450, | Dec 19 2000 | GOOGLE LLC | Location blocking service from a web advertiser |
Patent | Priority | Assignee | Title |
3613004, | |||
3674935, | |||
3711777, | |||
3714586, | |||
3714650, | |||
3745251, | |||
3766479, | |||
3878333, | |||
3899772, | |||
3974343, | Jan 10 1975 | ALCATEL NETWORK SYSTEMS, INC | Small modular communications switching system with distributed programmable control |
4025853, | Feb 12 1976 | Bell Telephone Laboratories, Incorporated | Method and apparatus for radio system cochannel interference suppression |
4109283, | May 21 1976 | RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, PRINCETON, NJ 08540, A CORP OF DE | Frequency counter for a television tuning system |
4284849, | Nov 14 1979 | SECURITY LINK FROM AMERITECH | Monitoring and signalling system |
4415774, | Nov 25 1981 | Motorola, Inc | Line powered modem automatic answer device powered from equipment |
4419756, | Jun 05 1980 | Bell Telephone Laboratories, Incorporated | Voiceband data set |
4425665, | Sep 24 1981 | Advanced Micro Devices, Inc. | FSK Voiceband modem using digital filters |
4503288, | Aug 31 1981 | INFORMATION MACHINES CORPORATION, A CA CORP | Intelligent telephone |
4519068, | Jul 11 1983 | Motorola, Inc.; MOTOROLA, INC , A DE CORP | Method and apparatus for communicating variable length messages between a primary station and remote stations of a data communications system |
4577182, | Apr 10 1984 | Peter, Miller | Alarm system |
4578537, | Aug 05 1983 | CYGNET TECHNOLOGIES, INC , | Telecommunication apparatus serving as an interface between a digital computer and an analog communication medium |
4578796, | Nov 03 1983 | Bell Telephone Laboratories, Incorporated; AT&T Information Systems Inc. | Programmable multiple type data set |
4591661, | Aug 15 1984 | Joseph A., Benedetto | Portable cordless telephone transceiver-radio receiver |
4677656, | Jun 19 1984 | Motorola, Inc. | Telephone-radio interconnect system |
4694473, | Mar 08 1985 | Canon Kabushiki Kaisha | Data communication system with block synchronization data in mobile radio |
4697281, | Mar 14 1986 | SPECTRUM INFORMATION TECHNOLOGIES, INC | Cellular telephone data communication system and method |
4718080, | Dec 16 1985 | Microprocessor controlled interface for cellular system | |
4775997, | Sep 18 1984 | TELULAR CORPORATION, A DE CORP | System for interfacing a standard telephone set with a radio transceiver |
4823373, | Oct 16 1986 | Canon Kabushiki Kaisha | Line switching control system for mobile communication |
4837812, | Dec 21 1985 | Ricoh Company, Ltd. | Dual connection mode equipped communication control apparatus |
4887290, | Aug 05 1987 | ZAWACKI, NORBERT, W | Cellular alarm backup system |
4991197, | Sep 01 1988 | Intelligence Technology Corporation | Method and apparatus for controlling transmission of voice and data signals |
5046082, | May 02 1990 | GTE WIRELESS SERVICE CORP | Remote accessing system for cellular telephones |
5170470, | May 02 1988 | National Semiconductor Corp | Integrated modem which employs a host processor as its controller |
EP295146, | |||
EP309627, | |||
GB2170977, | |||
GB3433900, | |||
WO8700718, | |||
WO8905553, | |||
WO9003076, | |||
WO9107044, | |||
WO8700718, | |||
WO8905553, | |||
WO9003076, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 05 1992 | MLR, LLC | (assignment on the face of the patent) | / | |||
Sep 27 1999 | SPECTRUM INFORMATION TECHNOLOGIES, INC | MLR PATNERS - SALVATORE MARINO | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010327 | /0981 | |
Sep 27 1999 | SPECTRUM INFORMATION TECHNOLOGIES, INC | LEEDOM, CHARLES M , JR | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010327 | /0981 | |
Sep 27 1999 | SPECTRUM INFORMATION TECHNOLOGIES, INC | ROBINSON, ERIC J | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010327 | /0981 | |
Sep 20 2000 | MLR PARTNERS | MLR, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011213 | /0268 | |
Feb 21 2006 | SITI-SITES COM, INC A CORPORATION OF DELAWARE | MLR, LLC A LIMITED LIABILITY COMPANY OF VIRGINIA | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017931 | /0798 | |
Feb 21 2006 | MLR, LLC | SITI-SITES COM, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017303 | /0308 |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
May 27 2006 | 4 years fee payment window open |
Nov 27 2006 | 6 months grace period start (w surcharge) |
May 27 2007 | patent expiry (for year 4) |
May 27 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 27 2010 | 8 years fee payment window open |
Nov 27 2010 | 6 months grace period start (w surcharge) |
May 27 2011 | patent expiry (for year 8) |
May 27 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 27 2014 | 12 years fee payment window open |
Nov 27 2014 | 6 months grace period start (w surcharge) |
May 27 2015 | patent expiry (for year 12) |
May 27 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |