A gas conversion process in which both hydrocarbons and hydrogen are produced from a synthesis gas feed which comprises a mixture of H2 and CO, uses hydrogen from a portion of the feed for one or more of (i) hydrocarbon synthesis catalyst rejuvenation and (ii) hydroconversion upgrading of at least a portion of the synthesized hydrocarbons. Hydrogen is produced from a slipstream of the synthesis gas fed into the hydrocarbon synthesis reactor by one or more of (i) physical separation means such as pressure swing adsorption and (ii) chemical means such as a water gas shift reactor. If a shift reactor is used due to insufficient capacity of the synthesis gas generator, physical separation means such as pressure swing adsorption will still be used to separate a pure stream of hydrogen from the shift reactor gas effluent.
|
1. A gas conversion process comprising
(a) reacting a gaseous hydrocarbonaceous material, oxygen and optionally steam at conditions effective to form a synthesis gas comprising a mixture of H2 and CO, (b) contacting a portion of said synthesis gas with a hydrocarbon synthesis catalyst at reaction conditions effective to react said H2 and CO and form hydrocarbons and reversibly deactivate said catalyst, (c) producing hydrogen from another portion of said synthesis gas, and (d) using the hydrogen for at least one of (i) rejuvenating said catalyst, and (ii) hydroconverting at least a portion of said synthesized hydrocarbons.
2. A process according to
3. A process according to
4. A process according to
5. A process according to
7. A process according to
9. A process according to
10. A process according to
11. A process according to
12. A process according to
13. A process according to
0. 14. A process according to
0. 15. A process according to
0. 16. A process according to
0. 17. A process according to
0. 18. A process according to
|
1. Field of the Invention
The invention relates to a process in which both hydrocarbons and hydrogen are produced from syngas. More particularly, the invention relates to a gas conversion process for synthesizing hydrocarbons and producing hydrogen from syngas, with the hydrogen used for at least one of (i) hydrocarbon synthesis catalyst rejuvenation and (ii) hydrocarbon product upgrading.
2. Background of the Invention
Hydrocarbon synthesis processes are known in which a synthesis gas feed comprising a mixture of H2 and CO is fed into a hydrocarbon synthesis reactor in which it reacts in the presence of a Fischer-Tropsch catalyst under conditions effective to form higher molecular weight hydrocarbons. These processes include fixed bed, fluid bed and slurry hydrocarbon synthesis, all of which are well documented in various technical articles and in patents. In many cases it is desired that the synthesized hydrocarbons comprise mostly C5+ hydrocarbons (e.g., C5+-C200) and preferably C10+ hydrocarbons, at least a portion of which are solid at standard conditions of room temperature and pressure. It is preferred in a slurry hydrocarbon synthesis process that the hydrocarbons comprise mostly C5+ paraffins. These hydrocarbons are upgraded to more valuable products by one or more hydroconversion operations in which at least a portion of the molecular structure is changed by reacting with hydrogen. Hydroconversion operations therefore all require hydrogen. Hydrogen is also required for rejuvenating the hydrocarbon synthesis catalyst and sometimes for maintaining or changing the H2 to CO ratio of the syngas feed for the hydrocarbon synthesis. It is desirable to have a hydrocarbon synthesis process which generates the hydrogen required for the hydrocarbon synthesis catalyst rejuvenation and also for the hydroconversion upgrading of the synthesized hydrocarbons, rather than depending on an outside source of hydrogen.
The present invention relates to a gas conversion process for catalytically synthesizing hydrocarbons and producing hydrogen from a synthesis gas (syngas) comprising a mixture of H2 and CO, and upgrading the synthesized hydrocarbons, wherein the hydrogen is used for at least one of (a) hydrocarbon synthesis catalyst rejuvenation and (b) upgrading at least a portion of the synthesized hydrocarbons by at least one hydroconversion operation. By gas conversion process is meant to include at least hydrocarbon synthesis and hydrogen production from syngas, and also conversion of at least a portion of the synthesized hydrocarbons. By conversion is meant a process in which the molecular structure of at least a portion of the hydrocarbon in a conversion zone is changed and includes both catalytic and non-catalytic processes, with or without hydrogen as a coreactant as is explained below. In a broad sense therefore, the invention comprises synthesizing hydrocarbons and producing hydrogen from a syngas, and using the syngas produced hydrogen for at least one of the processes set forth above. More specifically, the invention comprises a gas conversion process including hydrocarbon synthesis and hydrogen production from synthesis gas comprising a mixture of H2 and CO, and conversion of at least a portion of said synthesized hydrocarbons, said process comprising contacting said synthesis gas with a hydrocarbon synthesis catalyst, reacting said H2 and CO in the presence of said synthesis catalyst and species which reversibly deactivate said catalyst, at reaction conditions effective to form hydrocarbons and reversibly deactivate said catalyst, upgrading at least a portion of said synthesized hydrocarbons by at least one conversion operation, and at least one of (a) rejuvenating said catalyst by contacting it with said hydrogen produced from said syngas and (b) upgrading at least a portion of said hydrocarbons by reacting them with said hydrogen produced from said syngas in the presence of a hydroconversion catalyst to alter their molecular structure. In further embodiments, the hydrogen produced from the syngas may be used for the hydrocarbon synthesis and/or the hydrogen production. The hydrogen is produced from the syngas using one or more of (a) physical separation means such as pressure swing adsorption (PSA), membrane separation or thermal swing adsorption (TSA), and (b) chemical means such as a water gas shift reaction. Physical means for the hydrogen production will typically be used to separate the hydrogen from the syngas, irrespective of whether or not chemical means such as a water gas shift reaction is used. In order to obtain hydrogen of the desired degree of purity (e.g., at least about 99%). While it is possible that the syngas will be obtained from an outside source, typically the syngas formation will also be a part of the gas conversion process. Thus, in an embodiment in which the syngas production is part of the gas conversion plant, the invention comprises (a) reacting a gaseous hydrocarbonaceous material, oxygen and optionally steam at conditions effective to form a syngas comprising a mixture of H2 and CO, (b) contacting a portion of said syngas with a hydrocarbon synthesis catalyst at reaction conditions effective to react said H2 and CO and form hydrocarbons and reversibly deactivate said catalyst, (c) producing hydrogen from another portion of said syngas, and (d) using the hydrogen for at least one of (i) rejuvenating said catalyst and (ii) hydroconverting at least a portion of said synthesized hydrocarbons.
The hydrocarbon synthesis is accomplished by reacting the syngas in an HCS reaction zone or reactor, in the presence of a Fischer-Tropsch catalyst, at conditions effective to form hydrocarbons and preferably C5+ hydrocarbons. As is known, during the HCS reaction, the HCS catalyst reversibly deactivates due to the presence of catalyst deactivating species, such as nitrogen compounds present in the syngas (e.g., HCN and NH3) and possibly others formed by the HCS reaction. It is also known that the catalytic activity is restored (rejuvenated) by contacting the catalyst with hydrogen or a gas comprising hydrogen. At least a portion of the synthesized hydrocarbon product removed from the HCS reactor is upgraded by at least one conversion operation, to reduce its viscosity or pour point, or to convert them into boiling fractions of higher value. Typically the conversion will comprise at least one hydroconversion operation in which the hydrocarbons react with hydrogen in the presence of a hydroconversion catalyst. It is preferred that a gas conversion plant provide at least a portion of the hydrogen needed for one or more of these uses within the plant, rather than be dependent on an outside source.
Producing hydrogen from the syngas using physical separation means provides relatively pure hydrogen, along with an offgas which comprises a hydrogen depleted and CO rich mixture of H2 and CO. This CO rich offgas may be used as fuel or fed into the HCS reaction zone. If the demand for hydrogen is greater than can be met by separating hydrogen from the syngas, or if an ancillary or alternate means for producing hydrogen is desired, chemical means such as a water gas shift reactor may be used to produce, from the syngas, all or a portion of the hydrogen required. In this embodiment, at least one of (a) a portion of the syngas and (b) the CO rich offgas resulting from physically separating hydrogen from the syngas, are fed into a water gas shift reactor in the presence of steam and a water gas shift catalyst to form a mixture of H2 and CO2 from the CO and steam, which is then passed through physical separation means to separate the H2 from the rest of the gas and form relatively pure H2, and a CO rich offgas, with the offgas recycled back into either the HCS reaction zone, into the shift reactor, or used as fuel.
The hydrocarbon component of the feed for the syngas generation, while conveniently derived from natural gas which comprises mostly methane as the hydrocarbon component, may be obtained by any available and convenient means from any suitable hydrocarbonaceous material, including coal, coke, hydrocarbon liquids and gas, as is well known. Typically a plant for synthesizing hydrocarbons will be proximate a source of such hydrocarbonaceous materials and the syngas generating operation will be an integral part of the plant. Feeds comprising a low molecular weight (e.g., C1-C4) hydrocarbon, preferably alkane and more preferably mostly methane, as in natural gas, are preferred. Natural gas is particularly preferred because it comprises primarily methane, is convenient, clean and doesn't leave large quantities of ash, shale, sulfur compounds and the like to be handled and disposed of. The syngas may be formed by various means, including contacting a hot carbonaceous material, such as coal, coke or tar, with steam and from burning such material under partial oxidation conditions to form methane or a low molecular weight hydrocarbon gas as the hydrocarbon component of feed to a syngas generator, which is then fed into the syngas generator in which it is partially oxidized with oxygen or air and either steam reformed or passed into a water gas shift reactor. Partial oxidation and steam reforming is accomplished with the steam reforming catalyst in either a fixed or fluid bed, with a fluid bed having superior mixing and heat transfer characteristics. In catalytic partial oxidation, the hydrocarbon component of the feed to the syngas generator is premixed with oxygen, and optionally steam, and passed into the syngas generator in which it reacts in the presence of a noble metal catalyst and preferably a supported noble metal catalyst as is known. These processes use a low molecular weight hydrocarbon, typically a C1-C4 alkane, and preferably methane as in natural gas which, along with steam, oxygen or air is fed into the syngas generating unit. In a fluid bed syngas generating (FBSG) process, the partial oxidation and steam reforming both occur in the presence of the steam reforming catalyst. FBSG is disclosed, for example, in U.S. Pat. Nos. 4,888,131 and 5,160,456. In autothermal reforming, partial oxidation occurs in the absence of a catalyst and precedes adiabatic steam reforming which occurs in a fixed bed of catalyst. The syngas exiting the reactor comprises a mixture of H2 and CO along with water vapor or steam, nitrogen, CO2 and minor amounts of unreacted methane. The amount of CO2 present in the feed to the syngas generator will effect the reaction equilibrium and may be used, along with the conditions in the unit, to adjust the H2 to CO ratio of the syngas. Most of the water is removed from the syngas before it is passed into an HCS reactor. Irrespective of either the source of the hydrocarbon for the syngas production or the process, such hydrocarbon feeds invariably contain elemental nitrogen or nitrogen containing compounds which react in the syngas generator to form nitrogenous species, such as HCN and NH3, which deactivate the HCS catalyst during the HCS reaction.
In an HCS process, liquid and gaseous hydrocarbon products are formed by contacting a syngas comprising a mixture of H2 and CO with a Fischer-Tropsch type of HCS catalyst, under shifting or non-shifting conditions and preferably under non-shifting conditions in which little or no water gas shift reaction occurs, particularly when the catalytic metal comprises Co, Ru or mixture thereof Suitable Fischer-Tropsch reaction types of catalyst comprise, for example, one or more Group VIII catalytic metals such as Fe, Ni, Co, Ru and Re. In one embodiment the catalyst comprises catalytically effective amounts of Co and one or more of Re, Ru, Fe, Ni, Th, Zr, Hf, U, Mg and La on a suitable inorganic support material, preferably one which comprises one or more refractory metal oxides. Preferred supports for Co containing catalysts comprise titania, particularly when employing a slurry HCS process in which higher molecular weight, primarily paraffinic liquid hydrocarbon products are desired. Useful catalysts and their preparation are known and illustrative, but nonlimiting examples may be found, for example, in U.S. Pat. Nos. 4,568,663; 4,663,305; 4,542,122; 4,621,072 and 5,545,674.
With respect to the hydrocarbon synthesis, fixed bed, fluid bed and slurry hydrocarbon synthesis (HCS) processes for forming hydrocarbons from a syngas comprising a mixture of H2 and CO are well known and documented in the literature. In all of these processes the syngas is reacted in the presence of a suitable Fischer-Tropsch type of hydrocarbon synthesis catalyst, at reaction conditions effective to form hydrocarbons. Some of these hydrocarbons will be liquid, some solid (e.g., wax) and some gas at standard room temperature conditions of temperature and pressure of 25°C C. and one atmosphere, particularly if a catalyst having a catalytic cobalt component is used. Slurry HCS processes are often preferred because of their superior heat (and mass) transfer characteristics for the strongly exothermic synthesis reaction and because they are able to produce relatively high molecular weight, paraffinic hydrocarbons when using a cobalt catalyst. In a slurry HCS process a syngas comprising a mixture of H2 and CO is bubbled up as a third phase through a slurry in a reactor which comprises a particulate Fischer-Tropsch type hydrocarbon synthesis catalyst dispersed and suspended in a slurry liquid comprising hydrocarbon products of the synthesis reaction which are liquid at the reaction conditions. The mole ratio of the hydrogen to the carbon monoxide may broadly range from about 0.5 to 4, but is more typically within the range of from about 0.7 to 2.75 and preferably from about 0.7 to 2.5. The stoichiometric mole ratio for a Fischer-Tropsch HCS reaction is 2.0, but in the practice of the present invention it may be increased to obtain the amount of hydrogen desired from the syngas for other than the HCS reaction. In a slurry HCS process the mole ratio of the H2 to CO is typically about 2.1/1. Slurry HCS process conditions vary somewhat depending on the catalyst and desired products. Typical conditions effective to form hydrocarbons comprising mostly C5+ paraffins, (e.g., C5+-C200) and preferably C10+ paraffins, in a slurry HCS process employing a catalyst comprising a supported cobalt component include, for example, temperatures, pressures and hourly gas space velocities in the range of from about 320-600°C F., 80-600 psi and 100-40,000 V/hr/V, expressed as standard volumes of the gaseous CO and H2 mixture (0°C C., 1 atm) per hour per volume of catalyst, respectively. During the hydrocarbon synthesis operation, the HCS catalyst loses activity (deactivates) by deactivating species mentioned above present in the syngas and resulting from the synthesis reaction. This deactivation is reversible and catalytic activity is restored (the catalyst rejuvenated) by contacting the deactivated catalyst with hydrogen. The activity of the HCS catalyst in the reactive slurry is intermittently or continuously rejuvenated by contacting the slurry with hydrogen or a hydrogen containing gas to form a catalyst rejuvenated slurry either in-situ in the HCS reactor or in an external rejuvenation vessel, as is disclosed, for example, in U.S. Pat. Nos. 5,260,239; 5,268,344, and 5,283,216.
Physical separation processes useful for producing hydrogen from the syngas include adsorption-desorption processes and membrane separation, both of which are well known and commercially available. Adsorption-desorption processes include TSA and PSA, both of which comprise a plurality of adsorbent containing vessels operated in a cyclic manner. Adsorbents include molecular sieves, silica gel and activated carbon. The difference between pressure swing adsorption and thermal swing adsorption, is that the gas constituents other than hydrogen which are primarily adsorbed by the adsorbent during the adsorption part of the cycle are desorbed from the adsorbent during regeneration by a pressure swing cycle in PSA, as opposed to a thermal swing cycle in thermal swing adsorption. The pressure differential between adsorption and desorption is typically on the order of at least a magnitude. During operation, the feed gas, which in this case is a slip stream of the syngas, is fed into one or more vessels or adsorption zones in which the syngas components other than hydrogen (along with a minor amount of hydrogen) are adsorbed by the adsorbent. When the adsorbent has achieved capacity, the feed flow into the vessel is shut off, the pressure reduced and the absorbed non-hydrogen components of the syngas are desorbed and removed as a purge gas. If desired, some hydrogen can be used to sweep the vessel at the end of the desorption cycle. The vessel is repressurized and placed back on stream for the next adsorption cycle. Thus, the purge gas contains the CO and any other non-hydrogen syngas components, along with a minor amount of hydrogen. This purge gas is the adsorption offgas which may be sent to disposal or burned as fuel, but which is preferably recycled back into one or more HCS reactors as part of the feed to utilize the valuable CO for the hydrocarbon synthesis. The hydrogen separated from the syngas during the adsorption is typically 99% pure and even purer than 99%. A typical PSA unit has at least one vessel on adsorption, while at least one other vessel is being depressurized and purged, with yet at least one other vessel being repressurized. In membrane separation, bundles of hollow fibers are present in the vessel and the syngas is passed into the vessel in which it flows over the outside of the fibers and out of the vessel. A hydrogen rich permeate gas forms inside each fiber and is removed as a separate, permeate stream. In a typical installation a plurality of such vessels are connected in series, with the permeate from each vessel being the feed into the next successive vessel. High capacity is achieved by using parallel sets of series units. The hydrogen is typically not as pure as that achieved with PSA, but is generally at least about 80% pure. The non-permeate effluents are combined as a CO rich offgas which is utilized in the same manner as for that recovered from the PSA separation. Yet another embodiment of physical separation comprises a combination of PSA or TSA adsorption-desorption and membrane separation. In a typical separation process of this type, the syngas is first passed through a membrane unit to produce a hydrogen-rich gas stream as the permeate. This hydrogen-rich permeate is then passed through a PSA or TSA unit to produce the high purity hydrogen stream and a CO-rich offgas stream. With this process, the amount of offgas produced is less than that obtained using either method by itself.
When using a water gas shift reaction to produce hydrogen, a portion or slip stream of syngas is passed into a water gas shift reactor in which the CO reacts with water vapor in the presence of a shift catalyst, such as nickel on a refractory metal oxide support, at reaction conditions effective to form a mixture of H2 and CO2 which exits the shift reactor, along with the other syngas components, including unreacted CO. If desired, the CO2 may be removed from the shift reactor effluent by means well known to those skilled in the art, such as amine scrubbing. A commercially available process which employs hindered amine scrubbing for CO2 removal is Exxon's Flexsorb® process. The hydrogen rich shift reactor effluent, with or without CO2 removal and, after cooling and drum separation for removal of any excess water, is passed through physical separation means for separating the hydrogen from the CO and other non-hydrogen components present in the gas, to form a relatively pure stream of hydrogen and a CO containing offgas. These gas streams are then utilized in the same manner as above, but with the CO containing offgas typically burned as fuel due to the lower CO content of the offgas. Whether or not a shift reactor is employed depends on the amount of hydrogen desired and the capacity of the syngas generator to satisfy the syngas requirements for both the hydrocarbon synthesis and the hydrogen production.
At least a portion of the hydrocarbons produced by an HCS process according to the invention are typically upgraded to more valuable products, by subjecting all or a portion of the C5+ hydrocarbons to conversion. By conversion is meant one or more operations in which the molecular structure of at least a portion of the hydrocarbon is changed and includes both noncatalytic processing (e.g., steam cracking), and catalytic processing (e.g., catalytic cracking) in which a fraction is contacted with a suitable catalyst. If hydrogen is present as a reactant, such process steps are typically referred to as hydroconversion and include, for example, hydroisomerization, hydrocracking, hydrodewaxing, hydrorefining and the more severe hydrorefining referred to as hydrotreating, all conducted at conditions well known in the literature for hydroconversion of hydrocarbon feeds, including hydrocarbon feeds rich in paraffins. Illustrative, but nonlimiting examples of more valuable products formed by conversion include one or more of a synthetic crude oil, liquid fuel, olefins, solvents, lubricating, industrial or medicinal oil, waxy hydrocarbons, nitrogen and oxygen containing compounds, and the like. Liquid fuel includes one or more of motor gasoline, diesel fuel, jet fuel, and kerosene, while lubricating oil includes, for example, automotive, jet, turbine and metal working oils. Industrial oil includes well drilling fluids, agricultural oils, heat transfer fluids and the like. Illustrative, but non-limiting examples of hydroconversion processes useful in the practice of the invention are disclosed in U.S. Pat. Nos. 4,832,819; 4,943,672; 5,059,299; 5,378,348 and 5,457,253.
Referring to
While the invention has been described in particular detail for an FBSG syngas generator using processed natural gas as the hydrocarbon feed to the generator, a slurry HCS unit and a hydroisomerization unit for the hydrocarbon conversion, the practice of the invention is not limited to these specific embodiments as those skilled in the art will know and appreciate. Thus, any suitable and convenient source of syngas, feed for the syngas generator and syngas generating process may be used, as may either fluid catalyst bed or fixed catalyst bed, non-slurry HCS processes. Similarly, the conversion process will comprise at least one of those listed above.
It is understood that various other embodiments and modifications in the practice of the invention will be apparent to, and can be readily made by, those skilled in the art without departing from the scope and spirit of the invention described above. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the exact description set forth above, but rather that the claims be construed as encompassing all of the features of patentable novelty which reside in the present invention, including all the features and embodiments which would be treated as equivalents thereof by those skilled in the art to which the invention pertains.
DeGeorge, Charles William, Denton, Robert Dean
Patent | Priority | Assignee | Title |
8124049, | Oct 29 2008 | Air Liquide Process & Construction, Inc.; AIR LIQUIDE PROCESS AND CONSTRUCTION, INC | Zero steam export with CO2 recovery in a high thermal efficiency hydrogen plant |
8889746, | Sep 08 2011 | EXPANDER ENERGY INC | Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation in a GTL environment |
9115324, | Feb 10 2011 | EXPANDER ENERGY INC | Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation |
9156691, | Apr 20 2011 | EXPANDER ENERGY INC | Process for co-producing commercially valuable products from byproducts of heavy oil and bitumen upgrading process |
9169443, | Apr 20 2011 | EXPANDER ENERGY INC | Process for heavy oil and bitumen upgrading |
9212319, | May 09 2012 | EXPANDER ENERGY INC | Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation in a GTL environment |
9266730, | Mar 13 2013 | EXPANDER ENERGY INC | Partial upgrading process for heavy oil and bitumen |
9315452, | Sep 08 2011 | EXPANDER ENERGY INC | Process for co-producing commercially valuable products from byproducts of fischer-tropsch process for hydrocarbon fuel formulation in a GTL environment |
9328291, | May 24 2013 | EXPANDER ENERGY INC | Refinery process for heavy oil and bitumen |
9340732, | May 24 2013 | EXPANDER ENERGY INC | Refinery process for heavy oil and bitumen |
9732281, | Apr 20 2011 | EXPANDER ENERGY INC. | Process for co-producing commercially valuable products from byproducts of heavy oil and bitumen upgrading process |
Patent | Priority | Assignee | Title |
2251554, | |||
2609382, | |||
3890113, | |||
4049741, | Sep 18 1975 | Mobil Oil Corporation | Method for upgrading Fischer-Tropsch synthesis products |
5260239, | Dec 18 1992 | Exxon Research & Engineering Company | External catalyst rejuvenation system for the hydrocarbon synthesis process |
5283216, | Sep 24 1992 | EXXON RESEARCH & ENGINEERING CO | Rejuvenation of hydrocarbon synthesis catalyst |
5322617, | Aug 07 1992 | HER MAJESTY THE QUEEN IN RIGHT OF CANADA AS REPRESENTED BY THE MINISTER OF ENERGY, MINES AND RESOURCES | Upgrading oil emulsions with carbon monoxide or synthesis gas |
5844005, | May 02 1997 | EXXON RESEARCH & ENGINEERING CO | Hydrocarbon synthesis using reactor tail gas for catalyst rejuvenation |
EP269297, | |||
EP400743, | |||
EP512635, | |||
EP583836, | |||
GB2299767, | |||
NL8102071, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 28 2002 | ExxonMobil Research and Engineering Company | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 28 2003 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 20 2007 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 07 2011 | REM: Maintenance Fee Reminder Mailed. |
Mar 23 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 01 2006 | 4 years fee payment window open |
Jan 01 2007 | 6 months grace period start (w surcharge) |
Jul 01 2007 | patent expiry (for year 4) |
Jul 01 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 01 2010 | 8 years fee payment window open |
Jan 01 2011 | 6 months grace period start (w surcharge) |
Jul 01 2011 | patent expiry (for year 8) |
Jul 01 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 01 2014 | 12 years fee payment window open |
Jan 01 2015 | 6 months grace period start (w surcharge) |
Jul 01 2015 | patent expiry (for year 12) |
Jul 01 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |