An improved dehumidification system for automotive use includes a rotating, wheel like heat exchanger with axially open cells that carry a water adsorbing material. Opposed ambient air and heated air flows, covering opposite halves of the wheel, continually adsorb water on one side and are recharged on the other side. Alternating radially closed cells between the axially open cells carry no desiccant material, but receive a cross cooling flow, on the water adsorbing side of the wheel only, to remove the heat released during the water adsorption process. The desiccant recharging process on the other side of the wheel is not disturbed by the cross cooling flow.
|
0. 5. An apparatus for treating fluid, comprising:
a generally cylindrical wheel having a central axis and being bounded by an envelope having an inner cylindrical tunnel and a concentric outer cylindrical wall centered on said axis, said cylindrical wheel having axially spaced, annular end faces and a basic structural framework comprised of a plurality of regularly circumferentially spaced, solid, heat conductive leaves that are axially and radially coextensive with said envelope; a first set of cells defined by said leaves and being axially open at both annular faces and radially blocked at both inner and outer cylindrical walls; and a second set cells defined by said leaves and being axially blocked at both annular faces and radially open at both inner and outer cylindrical walls.
0. 6. An apparatus for treating fluid, comprising:
a generally cylindrical wheel having a central axis, a concentric outer cylindrical wall, and axially spaced, annular end faces, said wheel having a basic structural framework comprised of a plurality of regularly circumferentially spaced, solid, heat conductive leaves that are axially and radially coextensive with said envelope, said conductive leaves being in a spiral shape with a generally constant distance between said conductive leaves; a first set of cells defined by said leaves and being axially open at both annular faces and radially blocked at both inner and outer cylindrical walls; and a second set cells defined by said leaves and being axially blocked at both annular faces and radially open at both inner and outer cylindrical walls.
0. 9. An apparatus for treating fluid, comprising:
a generally cylindrical wheel having a central axis and being bounded by an envelope having an inner cylindrical tunnel and a concentric outer cylindrical wall centered on said axis, said cylindrical wheel having axially spaced, annular end faces and a basic structural framework comprised of a plurality of regularly circumferentially spaced, solid, heat conductive leaves that are axially and radially coextensive with said envelope; a first set of cells defined by said leaves and being axially open at both annular faces and radially blocked at both inner and outer cylindrical walls; a second set cells defined by said leaves and being axially blocked at both annular faces and radially open at both inner and outer cylindrical walls; heat conductive, fins closely engaged between the leaves of at least one of said first and second set of cells, wherein said fins have corrugations of substantially equal height.
0. 10. A method for exchanging thermal energy between first and second fluid flows, comprising:
axially forcing said first fluid flow through a first set of cells in a wheel, said wheel having a central axis and being bounded by an envelope having an inner cylindrical tunnel and a concentric outer cylindrical wall centered on said axis, said cylindrical wheel having axially spaced, annular end faces and a basic structural framework comprised of a plurality of regularly circumferentially spaced, solid, heat conductive leaves that are axially and radially coextensive with said envelope, said first set of cells being defined by said leaves and being axially open at both annular faces and radially blocked at both inner and outer cylindrical walls; radially forcing said second fluid flow through a second set of cells, said second set cells being defined by said leaves and being axially blocked at both annular faces and radially open at both inner and outer cylindrical walls.
0. 4. A system, comprising:
a generally cylindrical wheel having a central axis and being bounded by an envelope having an inner cylindrical tunnel and a concentric outer cylindrical centered on said axis, said generally cylindrical wheel having axially spaced, annular end faces and a basic structural framework comprised of a plurality of regularly circumferentially spaced, solid, heat conductive leaves that are axially and radially coextensive with said envelope to define a plurality of individual cells, with a first set including every other one of said cells which are axially open at both annular faces, but radially blocked at both inner and outer cylindrical walls, and with a second set including those cells located between the cells of said first set and which are axially blocked at both annular faces, but radially open at both inner and outer cylindrical walls; heat conductive, axially open first fins closely engaged between the leaves of each of said first set of cells; and, heat conductive, radially open second fins closely engaged between the leaves of said second set of cells.
0. 8. A system, comprising:
a generally cylindrical wheel having a central axis and being bounded by an envelope having an inner cylindrical tunnel and a concentric outer cylindrical centered on said axis, said generally cylindrical wheel having axially spaced, annular end faces and a basic structural framework comprised of a plurality of regularly circumferentially spaced, solid, heat conductive leaves that are axially and radially coextensive with said envelope to define a plurality of individual cells, with a first set including every other one of said cells which are axially open at both annular faces, but radially blocked at both inner and outer cylindrical walls, and with a second set including those cells located between the cells of said first set and which are axially blocked at both annular faces, but radially open at both inner and outer cylindrical walls; heat conductive, axially open first fins closely engaged between the leaves of each of said first set of cells; and, heat conductive, radially open second fins closely engaged between the leaves of said second set of cells, wherein at least one of said first and second fins have corrugations of substantially equal height.
0. 7. A system for treating a first fluid flow, comprising:
a generally cylindrical wheel having a central axis and being bounded by an envelope having an inner cylindrical tunnel centered on said axis, a concentric outer cylindrical wall, and axially spaced, annular end faces, said wheel having a basic structural framework comprised of a plurality of regularly circumferentially spaced, solid, heat conductive leaves that are axially and radially coextensive with said envelope to define a plurality of individual cells, with a first set including every other one of said cells which are axially open at both annular faces, but radially blocked at both inner and outer cylindrical walls, and with a second set including those cells located between the cells of said first set and which are axially blocked at both annular faces, but radially open at both inner and outer cylindrical walls; heat conductive, axially open first fins closely engaged between the leaves of each of said first set of cells; heat conductive, radially open second fins closely engaged between the leaves of said second set of cells; means for rotating said wheel about said central axis; an outside feed duct through which said first fluid flow is axially forced, said outside air feed duct being sealingly engaged with one annular face of said rotating wheel so as to be axially open only to those cells of said first set of cells that are, at any point time, located in a first sub volume of said envelope constituting approximately half the volume thereof, so that outside air flows through those cells and is treated by said coated first fins; a cross flow feed manifold sealingly engaged with the outer cylindrical wall of said envelope within said first sub volume only, through which a second fluid flow is forced radially into those cells of said second set of cells located in said first sub volume only, thereby removing the released latent heat of adsorption, through said second fins, and through the leaves shared with said adjacent first cells located in said first sub volume; and, a cross flow exhaust duct sealingly engaged with said wheel tunnel so as to be radially open to the those cells of the second set of cells that are located in said first sub volume but radially blocked from those cells of the second set of cells that are located in said second sub volume as well as axially blocked from the first set of cells in said first sub volume, said exhaust duct also extending axially away from one end face of said wheel so that said second fluid flow can be discharged from said wheel.
1. For use in a vehicle heating and air conditioning system in which outside air at ambient humidity and temperature is forcibly drawn in and blown over an evaporator core, a system for dehumidifying and cooling the outside air before it reaches said evaporator core, comprising:
a generally cylindrical wheel having a central axis and bounded by an envelope having an inner cylindrical tunnel centered on said axis, a concentric outer cylindrical wall, and axially spaced, annular end faces, said wheel having a basic structural framework comprised of a plurality of regularly circumferentially spaced, solid, heat conductive leaves that are axially and radially coextensive with said envelope to define a plurality of individual cells, with a first set including every other one of said cells which are axially open at both annular faces, but radially blocked at both inner and outer cylindrical walls, and with a second set including those cells located between the cells of said first set and which are axially blocked at both annular faces, but radially open at both inner and outer cylindrical walls; desiccant coated, heat conductive, axially open first fins closely engaged between the leaves of each of said first set of cells; non-desiccant coated, heat conductive, radially open second fins closely engaged between the leaves of said second set of cells; means for rotating said wheel about said central axis; an outside air feed duct through which outside air at ambient temperature to be dehumidified is axially forced, said outside air feed duct being sealingly engaged with one annular face of said rotating wheel so as to be axially open only to those cells of said first set of cells that are, at any point time, located in a first sub volume of said envelope constituting approximately half the volume thereof, so that outside air flows through those cells and is dried by said desiccant coated first fins, which first fins then conduct the released latent heat of adsorption through said leaves to adjacent cells of said second set of cells; a regeneration air duct through which heated air at substantially higher than ambient temperature is axially forced, said regeneration air feed duct being sealingly engaged with one annular face of said rotating wheel so as to be axially open only to those cells of said first set of cells that are, at any point time, located in a second sub volume of said envelope constituting the remaining approximately half volume thereof, so that the desiccant in those cells is regenerated by said heated air before they rotate back into said first sub volume; a cross flow feed manifold sealingly engaged with the outer cylindrical wall of said envelope within said first sub volume only, through which ambient temperature air is forced radially into those cells of said second set of cells located in said first sub volume only, thereby removing the released latent heat of adsorption, through said second fins, and through the leaves shared with said adjacent first cells located in said first sub volume; and, a cross flow exhaust duct sealingly engaged with said wheel tunnel so as to be radially open to the those cells of the second set of cells that are located in said first sub volume but radially blocked from those cells of the second set of cells that are located in said second sub volume as well as axially blocked from the first set of cells in said first sub volume, said exhaust duct also extending axially away from one end face of said wheel so that radial cross flow air and the removed latent heat of adsorption can be discharged from said wheel.
3. For use in a vehicle heating and air conditioning system in which outside air at ambient humidity and temperature is forcibly drawn in and blown over an evaporator core, a system for dehumidifying and cooling the outside air before it reaches said evaporator core, comprising:
a generally cylindrical wheel having a central axis and bounded by an envelope having an inner cylindrical tunnel centered on said axis, a concentric outer cylindrical wall, and axially spaced, annular end faces, said wheel having a basic structural framework comprised of a plurality of regularly circumferentially spaced, solid, heat conductive leaves that are axially and radially coextensive with said envelope to define a plurality of individual cells, with a first set including every other one of said cells which are axially open at both annular faces, but radially blocked at both inner and outer cylindrical walls, and with a second set including those cells located between the cells of said first set and which are axially blocked at both annular faces, but radially open at both inner and outer cylindrical walls, said wheel inner further being axially blocked at said front face; desiccant coated, heat conductive, axially open first fins closely engaged between the leaves of each of said first set of cells; non-desiccant coated, heat conductive, radially open second fins closely engaged between the leaves of said second set of cells; means for rotating said wheel about said central axis; an outside air feed duct through which outside air at ambient temperature to be dehumidified is axially forced, said outside air feed duct being sealingly engaged with the front annular face of said rotating wheel so as to be axially open only to those cells of said first set of cells that are, at any point time, located in a first sub volume of said envelope constituting approximately half the volume thereof, so that outside air flows through those cells and is dried by said desiccant coated first fins, which first fins then conduct the released latent heat of adsorption through said leaves to adjacent cells of said second set of cells; a cross flow feed manifold sealingly engaged with the outer cylindrical wall of said envelope within said first sub volume only, through which ambient temperature air is forced radially into those cells of said second set of cells located in said first sub volume only, thereby removing the released latent heat of adsorption, through said second fins, and through the leaves shared with said adjacent first cells located in said first sub volume; a seal member within the wheel central tunnel radially blocking those cells of the second set located within said second sub volume, whereby cross flow air heated within said first sub volume and exiting into said central tunnel is axially forced out of said tunnel toward the back face of said wheel; a regeneration heater mounted concentrically to said tunnel at said wheel back face, so that heated cross flow air from said central tunnel is discharged therethrough, said auxiliary heater being sufficient to raise the temperature of said discharged cross flow air substantially above ambient temperature; and, a regeneration air duct that receives said heated cross flow air and which is sealingly engaged with one annular face of said rotating wheel so as to be axially open only to those cells of said first set of cells that are, at any point in time, located in a second sub volume of said envelope constituting the remaining approximately half volume thereof, so that the desiccant in those cells is regenerated by said heated air before they rotate back into said first sub volume.
2. For use in a vehicle heating and air conditioning system in which outside air at ambient humidity and temperature is forcibly drawn in and blown over an evaporator core, a system for dehumidifying and cooling the outside air before it reaches said evaporator core, comprising:
a generally cylindrical wheel having a central axis and bounded by an envelope having an inner cylindrical tunnel centered on said axis, a concentric outer cylindrical wall, and axially spaced, annular end faces, said wheel having a basic structural framework comprised of a plurality of regularly circumferentially spaced, solid, heat conductive leaves that are axially and radially coextensive with said envelope to define a plurality of individual cells, with a first set including every other one of said cells which are axially open at both annular faces, but radially blocked at both inner and outer cylindrical walls, and with a second set including those cells located between the cells of said first set and which are axially blocked at both annular faces, but radially open at both inner and outer cylindrical walls; desiccant coated, heat conductive, axially open first fins closely engaged between the leaves of each of said first set of cells; non-desiccant coated, heat conductive, radially open second fins closely engaged between the leaves of said second set of cells; means for rotating said wheel about said central axis; an outside air feed duct through which outside air at ambient temperature to be dehumidified is axially forced, said outside air feed duct being sealingly engaged with one annular face of said rotating wheel so as to be axially open only to those cells of said first set of cells that are, at any point time, located in a first sub volume of said envelope constituting approximately half the volume thereof, so that outside air flows through those cells and is dried by said desiccant coated first fins, which first fins then conduct the released latent heat of adsorption through said leaves to adjacent cells of said second set of cells; a cross flow feed manifold sealingly engaged with the outer cylindrical wall of said envelope within said first sub volume only, through which ambient temperature air is forced radially into those cells of said second set of cells located in said first sub volume only, thereby removing the released latent heat of adsorption, through said second fins, and through the leaves shared with said adjacent first cells located in said first sub volume; a cross flow exhaust duct sealingly engaged with said wheel tunnel so as to be radially open to the those cells of the second set of cells that are located in said first sub volume but radially blocked from those cells of the second set of cells that are located in said second sub volume as well as axially blocked from the first set of cells in said first sub volume, said cross flow exhaust duct also extending axially away from one end face of said wheel so that radial cross flow air and the removed latent heat of adsorption can be discharged from said wheel; a regeneration heater in said cross flow exhaust duct sufficient to raise the temperature of said discharged cross flow air substantially above ambient temperature; and, a regeneration air duct that receives said heated cross flow air and which is sealingly engaged with one annular face of said rotating wheel so as to be axially open only to those cells of said first set of cells that are, at any point time, located in a second sub volume of said envelope constituting the remaining approximately half volume thereof, so that the desiccant in those cells is regenerated by said heated air before they rotate back into said first sub volume.
|
This invention relates to vehicle dehumidifying mechanisms in general, and specifically to such a system with an improved thermal and air flow efficiency.
U.S. Pat. No. 5,509,275 issued Apr. 23, 1996 to Bhatti, et al., and co-assigned to the assignee of the subject invention, discloses a system for continually dehumidifying ambient air that is drawn into a heating, ventilating and air conditioning (HVAC) system of a motor vehicle. Typically, hot air which is also quite humid is simply pulled directly in and forced over a cold evaporator core, which cools the air as well as condensing water out of the air. While drier air enters the passenger cabin, relying upon condensation by the evaporator core brings its own problems, especially microbial growth and its attendant odor. The patent noted provides a desiccant wheel of novel design that continually turns, at slow speed, within the HVAC housing, removing moisture in desiccant lined tubes in an adsorption half of the wheel, which are regenerated in a heated half of the wheel through which hot air is forced. The two "halves" of the wheel are defined by stationary rubbing seals. The tubes run axially from face to face of the wheel, but are not tightly packed, leaving space between for a radial cross flow of outside air that is blown over the outside of the tubes, in both halves of the wheel. The radial cross flow cools the tubes in the adsorption half of the wheel, removing the latent heat released by the desiccant when it adsorbs moisture. The cooling of the tubes in the adsorption half of the wheel is beneficial, since the heat released by the working desiccant is thereby prevented from reaching the evaporator core.
However, the same cross flow, when it crosses the other half of the wheel, is cooler than the heated air simultaneously passing through the inside of the tubes to regenerate the desiccant. Therefore, the cross flow air can potentially reduce the efficiency of the concurrent regeneration process as it passes through the other half of the wheel. In addition, much of the limited volume of the wheel is the empty space necessarily left between the tubes. Since space is at a premium in any HVAC housing, more complete utilization of the volume within the wheel would be desirable.
The subject invention discloses a more space efficient desiccant wheel that provides maximum utilization of the space within the wheel, combined with a novel system of ducts and seals that confines the radial cross cooling flow only to that half of the wheel where it is most beneficial.
In the preferred embodiment disclosed, the entire internal volume of the wheel, defined between a pair of axially spaced, annular end faces and a concentric outer cylindrical wall and central inner tunnel, is occupied by a closely packed array of evenly circumferentially spaced cells. Each cell is comprised of a pair of solid conductive metal leaves, separated by a constant thickness in a spiral pattern radiating from the central tunnel to the outer wall. A first set of cells, including every other cell contains a constant thickness, corrugated conductive metal fin, with axially oriented corrugations that run the entire axial length of the cell, from end face to end face. The cells in the first set are also axially open at each end face, but radially blocked throughout, because of the orientation of the fin corrugations. Therefore, in the first set of cells there is a potential axial flow path through, but not radial. A second set of cells, including those cells intermediate the first set, contains similar fins, with the same thickness and orientation, but with the axial end of each fin cut off at an angle to provide diagonally and radially opposed openings through the outer wall and central inner tunnel. Each cell of the second set of cells is deliberately blocked at both annular end faces, however. Therefore, in the second set of cells, there is a potential radial flow path from outer wall to inner tunnel (a compound radial and axial flow path), but no axial flow path from end face to end face. The fins in the first set of cells are desiccant coated, while those in the second set of cells are not, and all fins are tightly engaged with the leaves separating the individual cells, so as to provide efficient heat conductive paths through the adjacent cells that are otherwise sealed from one another in terms of potential air flow. In effect, all possible space within the wheel is taken up by cell spaces and their contained fins.
Within the HVAC system and housing, a novel system of ducts and seals directs various air flows through selected cells with maximum thermal efficiency, taking best advantage of the improved space efficiency of the wheel itself. Stationary rubbing seals against the faces of the wheel divide the wheel space enveloped into two basic halves that are also stationary, an adsorption half and a regeneration half, as with the previously patented design noted above. As the wheel slowly turns, cells from each set of cells turn through each half of the space successively and repeatedly. Humid outside air is directed through an outside air feed duct at a front end face of the wheel within the adsorption half of the divided space envelope. Since cells in the second set are axially blocked, humid air flows axially through only cells in the first set, passing axially over their desiccant coated fins. Moisture is adsorbed, and the latent heat released is conducted by the same fins across shared leaves and into adjacent cells in the second set.
Concurrently, outside air (or air at a similar ambient temperature) is fed radially through a feed manifold to the outer wall of the wheel, within the adsorption half of the envelope, and radially enters only cells from the second set (since cells in the first set are radially blocked). The cross flow of air flows radially through and axially across the fins of those cells of the second set of cells located within the adsorption half of the envelope, removing the released heat of adsorption conducted from adjacent cells. Because of the design of the wheel, all available volume within the adsorption half of the envelope is occupied either by cells involved in moisture adsorption, or cells involved in heat removal, with no dead or wasted space. Cross flow air in the adsorption half of the envelope eventually exits its cells into the central tunnel, which is axially blocked by a cap at the front end face. A semi-cylindrical, stationary rubbing seal blocks those radial openings in the central tunnel located in the regeneration half of the envelope. The capped tunnel and the semi-cylindrical seal together create a radial cross flow exhaust duct that directs the cross flow axially out and away from the wheel at the back face, preventing it from radially entering those cells of the second set located in the regeneration half of the envelope.
Also, concurrently, externally heated air is directed through a regeneration duct to the back end face of the wheel on the regeneration half of the space envelope, flowing axially only through those cells of the first set located in the regeneration half (since, again, cells of the second set are axially blocked). The heated air dries and regenerates the desiccant in the cells of the first set, without being cooled by any cross flow air in adjacent cells of the second set, improving the efficiency of operation. Regeneration air with moisture driven out of the desiccant is then axially exhausted away from the front face of the wheel. In addition, in the embodiment disclosed, the radial cross flow air that is exhausted from the central tunnel at the back face of the envelope tunnel is captured and used as pre heated entry air for the regeneration duct and its heater, so that the removed heat of adsorption is not wasted.
These and other features of the invention will appear from the following written description, and from the drawings, in which:
Referring first to
Referring next to
Referring next to
Referring next to
Still referring to
In conclusion, maximum use is made of the available space within the wheel 22, while the various air flows are directed by the ducts and seals to those parts of the wheel 22 where they are most effective, and blocked from those parts of the wheel 22 where they are potentially counter productive. Variations in both the structure of wheel 22 and the various ducts and seals could be made. The leaves 24 could be flat and radiate like spokes of a wheel, creating cells that were pie shaped, rather than constant in height. However, the fins to fit within pie shaped cells would be much more difficult to manufacture, not having constant height corrugations. The fins 26 and 28 within the two respective sets of cells D and C could be shaped differently, so long as they were axially open through the cells D (which cells are radially blocked), and radially open through the cells C (which cells are axially blocked). For example, the fins 28 within the cells C could maintain the axially oriented corrugations, but be louvered or otherwise relieved in the corrugation walls so as to allow a radial flow. If the fins in the cells C could be manufactured with corrugation walls that were radial, rather than axially oriented, they would provide a radial flow path, while inherently blocking axial flow through the cells C. It would be very difficult to get fins with radially oriented corrugations to conform to the curved shape of the cells C, however. As far as the ducts and seals disclosed, the outside air flow and the regenerating air flows could be directed at either face of the wheel 22, and could flow either in the same direction, or opposed directions, so long as the seals kept the two flows confined to the two respective sub volumes A and R as defined. The cross flow cooling air exiting those cells C located within the sub volume A could flow in either radial direction, although it is clearly easier to direct it radially inwardly through the outer wall O and then exhaust it out of the tunnel T, rather than vice versa. The cross flow cooling air running through the cells C could simply be exhausted to the outside without being raised in temperature and then looped around back into the regeneration duct 42. However, using the exhausted heated cross flow air from the cells C located within the sub volume A as pre heated air for the regeneration half of the wheel 22 is desirable for overall thermal efficiency. A regeneration air exhaust duct like 46 is not absolutely necessary, as the regeneration air exiting the cells D located within the sub volume R would be exhausted from the wheel 22, anyway. Therefore, it will be understood that it is not intended to limit the invention to just the embodiment disclosed.
Bhatti, Mohinder Singh, Kadle, Prasad Shripad
Patent | Priority | Assignee | Title |
8132408, | Nov 30 2007 | Caterpillar Inc. | Annular intercooler having curved fins |
Patent | Priority | Assignee | Title |
3255818, | |||
3424240, | |||
3818984, | |||
4098330, | Jul 23 1976 | General Motors Corporation | Annular metal recuperator |
4574872, | Nov 04 1982 | Matsushita Electric Industrial Co., Ltd. | Heat exchanger apparatus |
5081834, | May 29 1990 | Solar Turbines Incorporated | Circular heat exchanger having uniform cross-sectional area throughout the passages therein |
5431716, | Oct 01 1992 | Dometic AG | Sorption device |
5509275, | Sep 22 1994 | Delphi Technologies, Inc | Dehumidifying mechanism for auto air conditioner |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 23 2001 | Delphi Technologies, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 18 2006 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 11 2010 | REM: Maintenance Fee Reminder Mailed. |
Mar 04 2011 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 15 2006 | 4 years fee payment window open |
Jan 15 2007 | 6 months grace period start (w surcharge) |
Jul 15 2007 | patent expiry (for year 4) |
Jul 15 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 15 2010 | 8 years fee payment window open |
Jan 15 2011 | 6 months grace period start (w surcharge) |
Jul 15 2011 | patent expiry (for year 8) |
Jul 15 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 15 2014 | 12 years fee payment window open |
Jan 15 2015 | 6 months grace period start (w surcharge) |
Jul 15 2015 | patent expiry (for year 12) |
Jul 15 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |