A device and method for extracorporeal whole body hyperthermia treatment of a patient's blood using alpha-stat regulation of blood ph and pco2 is described. The respiratory rate of a patient is either increased or decreased in accordance with the changes in ph, pco2, and base excess. The regulation of blood during the hyperthermic treatment of the patient's blood stabilizes the biochemical reactions fundamental to the metabolic welfare of the organisms within the patient's blood while the viruses within the patient's blood are eliminated.
|
0. 10. A method of extracorporeal treatment of a patient comprising:
(a) circulating the patient's blood from the patient through an extracorporeal blood flow circuit, and back to the patient, wherein the blood returned to the patient has been heated within the blood flow circuit to an elevated temperature range; (b) measuring blood ph, partial pressure of CO2 gas in the patient's blood (pco2), and HCO3- concentration in the patient's blood; (c) calculating a base excess from the ph, pco2, and HCO3- concentration of the patient's blood measured in step (b); and (d) adjusting a respiratory rate of the patient and administration of a concentration of nahco3 in the patient's blood as a function of at least one of a change in the blood ph, a change in the pco2, and a change in the base excess.
1. A method of extracorporeal treatment of a patient, comprising the steps of:
(a) cannulating a patient for extracorporeal blood circulation wherein a blood flow circuit is defined between a first point of cannulation and a second point of cannulation; (b) then pumping a patient's blood through the blood flow circuit; (c) monitoring a patient's temperature, blood pressure, and a flow rate of blood as the patient's blood passes through the blood flow circuit; (d) as the patient's blood is monitored, heating the patient's blood in the blood flow circuit to an elevated temperature; then (e) measuring blood ph, partial pressure of CO2 gas in the patient's blood (pco2), and HCO3- concentration in the patient's blood; (f) calculating a base excess from the ph, pco2, and HCO3- concentration of the patient's blood measured in step (e); and then (g) adjusting a respiratory rate of the patient and administration of a concentration of nahco3 in the patient's blood as a function of at least one of a change in the blood ph, a change in the pco2, and a change in the base excess.
2. The method as in
3. The method as in
4. The method as in
5. The method as in
6. The method as in
7. The method as in
8. The method as in
9. The method as in
0. 11. The method as in
0. 12. The method as in
0. 13. The method as in
0. 14. The method as in
0. 15. The method as in
0. 16. The method as in
0. 17. The method as in
0. 18. The method as in
|
This invention relates generally to an apparatus and method for eliminating viruses by means of extracorporeal whole body hyperthermia, and more particularly to an apparatus and method that regulates the blood pH, pCO2, and base excess, thereby maintaining a constant CO2 as the patients body temperature is increased.
The use of heat to treat ailments dates back many centuries to ancient Egyptian times, where certain cancers were treated by partial burial of the patient in hot sand. The use of hyperthermia as a treatment has continued into the twentieth century. Hyperthermia presents a unique set of physiologic problems that require careful management in order to achieve success. These problems have plagued soldiers on the battlefield, inner city residents during heat waves, and clinicians trying to treat cancer and AIDS.
In homoiothermal bodies, thermoregulation and maintenance of near normal temperature automatically takes precedence over other homeostatic functions, including electrolyte balance. In order to maintain normal temperatures during external exposure to heat, the body responds through an increase in both cardiac output, and more importantly, respiratory rate well above metabolic needs, thereby ridding the body of excess heat. The bulk of the blood is directed to the cutaneous vessels of the skin through increased cardiac output, while the increase respiratory rate or hyper ventilatory response is akin to the panting of a dog. A negative consequence of hyperventilation is that an increased respiratory rate effectively and drastically reduces the pCO2 (and total CO2) of the circulating blood creating a respiratory alkalosis. This decrease in pCO2 increases the pH gradient across the cellular membrane. To regain electrical neutrality between intra and extracellular compartments there is a shift of ions between these two spaces, many of which may be lost due to renal excretion. Additionally, cellular function may be impaired as enzyme activity is adversely affected by electrolyte imbalance.
The measurement of intracellular pH has only been reliably performed within the last 25 to 30 years, therefore, most of this knowledge had gone unnoticed until 15 years ago. Researchers studying better methods of myocardial protection during hypthermic/cardioplegia cardiac arrest discovered that alkalotic infusion into the coronary arteries prior to the removal of the aortic cross clamp prevented the so called reperfusion injury.
During normal arterial blood flow, at 37°C C. the arterial pH is approximately 7.4, having an arterial carbon dioxide tension of about 40 torr (mmHg). The human body modulates the arterial pCO2 levels as temperature and the CO2 content in the blood are altered. It is known that during hypothermic reactions, when the body temperature is decreased, there is a decrease in pCO2 due to increased solubility, and increases in the blood pH. Generally, the ΔpH/°C C.≡-0.015 when the CO2 content of blood and the [OH-]/[H+] remain constant. Also, pN is defined as the pH of the neutrality of water where [H+]+[OH-]=1, that is when ionic balance is achieved. This balance is governed by the ionization constant of water Kw and varies with temperature. As temperature rises the pN is reduced. Of the three known buffer systems, it is believed that imidazole moiety of a person's blood accounts for this relationship.
Researchers in whole body hyperthermia have used temperature correction of blood gases (pH-stat). During the use of pH-stat, researches have observed electrolyte replacement and metabolic acidosis even with a reduced A--V O2 difference. One explanation for this is that the use of the pH-stat technique artificially imposes a respiratory alkalosis which in turn affects oxyhemoglobin dissociation, reducing the availability of oxygen to the tissue.
In studies of heterotherms, or cold blooded animals, it was noted that as they were exposed and equilibrated to different temperatures, the pCO2 values varied as the temperature dependent solubility factor changed, without concomitant alteration of total CO2 content, which in turn resulted in an inverse change in pH. The misconception of homoiotherm (warm blooded) blood gas regulation insists that normality is based upon the blood pH of 7.40 and a pCO2 of 40 torr and that changes of temperature do not effect this relationship. Indeed, pioneering work in cardiovascular surgery studied the effects of hypothermia on hibernating animals which maintain those values at lowered temperature. However, in the latter case hormonal and central nervous system intervention has affected the organism in ways which are not yet completely understood. In any case it is not the pH of the blood that is important, it is that of the intracellular space where the chemical reactions of life takes place.
Alpha-stat blood gas management achieved better methods of myocardial protection and was proposed for use during open heart surgery. Later, it was discovered that alpha-stat preserved the mechanisms of cerebral autoregulation, i.e. the appropriate blood flow rate for the metabolic needs of the brain. The practice of adding CO2 to the blood in the oxygenator to maintain a normal temperature corrected pCO2 (pH-stat) resulted in a blood flow exceeding demand as the pCO2 is the controlling factor of cerebral autoregulation. The use of pH-stat regulation during hypothermic treatments produces a notable decrease in plasma phosphorous concentrations. Alternatively, the use of alpha-stat during total body hypothermia, reduces the amount of reduction in plasma phosphorous concentrations. The fact that alpha-stat may have an overall beneficial effect on human physiology, during hyperthermia, has largely gone unnoticed.
The properties of imidazole moiety of protein-bound histidine is described by White et al. in a paper entitled "Carbon Dioxide Transport and Acid-Base Balance During Hypothermia" (Pathophysiology & Techniques of Cardiopulmonary Bypass, 1983; Vol. II: 40-48). White et al. states that imidazole moiety is present in a persons blood in sufficient quantity to account for the pH-temperature relationship. The state of protonization (charged state) of imidazole is expressed as a variable (alpha) equal to the ratio of deprotonated to total imidazole groups. White et al. notes that the maintenance of a constant alpha, referred to as
Referring first to
The microprocessor 50 is built into the console 10 and has a keyboard 52 for input and a monitor 54 to display an output. The microprocessor 50 is further coupled by electrical leads 39, and 58-62 in controlling relation to an intravenous (IV) drip 70, pulse oximeter 68, and a ventilator 66 the arrows on the lines illustrating electrical leads 39 and 58-62 are provided to indicate the direction of flow of the electrical signal transmitted through the corresponding lead. The ventilator 66 is shown coupled to the patient with arrows indicating the direction of respiratory flow. The IV drip further has a multi-port line 64 allowing varying medications, etc. to be administered. The arrow on multi-port line 64 indications the direction of flow of the varying medications from the IV drip 70. The microprocessor 50 may be programmed to control the rate of the motor 25, the temperature level of the heat exchanger 26, the respiratory rate controlled by the ventilator 66, and the NaHCO3 in the blood administered through the IV drip 70. The BGA 22 or microprocessor 50 determines the base excess from the pCO2, pO2 and pH of the patient's blood and accordingly adjusts the NaHCO3 administered to the patient through the IV drip 70.
The Base Excess is calculated by:
1. Normal Bicarb: Arterial =24 mEq/L; Venous=26 mEq/L;
2. if ↑ pCO2, Add 1 mEq/L for every 10 torr above 40; if ↓ pCO2, Subtract 1 mEq/L for every 5 torr below 40 (this gives the anticipated bicarb level);
3. From anticipated bicarb, add/subtract actual (measured) bicarb; the result is the base excess or deficit.
The following examples will further clarify the Base Excess/Deficit calculation:
Given that the Arterial blood gas pH=7.5, pCO2=25, and HCO3- concentration=16
1. Normal arterial bicarb=24 mEq/L
2. pCO2 is decreasing, therefore subtract -3 mEq/L; Hence, anticipated bicarb=21 mEq/L
3. (anticipated bicarb=21)-(measured bicarb=16)=5 mEq/L base deficit
Given that the Venous blood gas pH=7.1, pCO2=50, and HCO3- concentration =12
1. Normal arterial venous bicarb=26 mEq/L
2. pCO2 is increasing, therefore add 1 mEq/L; Hence, anticipated bicarb=27 mEq/L
3. (anticipated bicarb=27)-(measured bicarb=12)=15 mEq/L base defecit or -15 mEq/L base excess
A negative base excess, sometimes referred to as base deficit indicates metabolic acidosis and is treated with Sodium bicarbonate (NaHCO3). A positive base excess indicates metabolic alkalosis which is generally not seen during extracorporeal circulation but can occur due to over use of bicarb and can be treated by the use of a slightly acidotic crystalloid solution such as Normal Saline (0.09% NaCl) solution
Generally a base excess of 0±3 mEq/L is clinically acceptable and no action is normally taken. When the base excess exceeds these values, the following action is taken. When there is a base deficit, the extracellular fluid (ECF) [volume×Base deficit=Dose of NaHCO3, where] the ECF=approximately 20% of body weight, therefore 0.2×BD=NaHCO3. When there is a base excess, the operator switches IV solutions, or it may be switched automatically. With adequate urine output, patients undergoing whole body hyperthermia require approximately 1000 ml/hr of crystalloid solution to make up for fluid losses due to urine, sweat and respiration. Normally this solution is a balanced electrolyte solution with a physiological pH. During the correction of metabolic alkalosis the rate and volume of the substituted solution should not be changed.
Referring next to
Referring now to
TABLE 1 | |||
when the | |||
When the | when the | Base | take the |
pH is _, | pCO2 is _, | Excess is | following |
and | and | _, | action: |
↑ | ↑ | ↑ | ↑RR, +AC |
↑ | no change | ↑ | +AC |
↑ | ↓ | ↓ | ↓RR, +NAHCO3 |
↑ | ↓ | no change | ↓RR |
↑ | ↓ | ↑ | ↓RR, +AC |
no change | ↑ | ↑ | ↑RR, +AC |
no change | no change | no change | No Action |
no change | ↓ | ↓ | ↓RR, +NAHCO3 |
↓ | ↑ | ↑ | ↑RR, +AC |
↓ | ↑ | no change | ↑RR |
↓ | ↑ | ↓ | ↑RR, +NAHCO3 |
↓ | no change | ↓ | +NAHCO3 |
↓ | ↓ | ↓ | ↓RR, +NAHCO3 |
During extracorporeal hyperthermic treatment of the blood, a patient must first be cannulated (block 80). The patient's blood is then pumped through the extracorporeal blood flow circuit 12 (block 82), wherein the temperature, rate of flow and pressure are monitored (block 84). As the blood's temperature is elevated (block 86), so to is the patient's body temperature. The blood pH, pCO2, and base excess are continuously measured and normalized to read values at 37°C C. and then the base excess is calculated (block 88).
If the blood pH is found to be increasing (decision block 90 and connector 91), a determination is made at decision block 92 whether the pCO2 is increasing. If the test shows that pCO2 is increasing the microprocessor 50 sends a signal to the ventilator 66 to incrementally increase the respiratory rate and infuse an acidotic crystalloid solution, such as normal saline (block 94). If the pCO2 is not increasing a determination is made whether the pCO2 is decreasing (decision block 96). If the pCO2 is not decreasing, the amount of acidotic crystalloid is increased (block 98). If the pCO2 is decreasing, a determination is made whether the base excess is increasing (decision block 100). If the base excess is increasing, the respiratory rate of the patient is decreased and acidotic crystalloid is increased (block 102). If the base excess is not increasing a determination is made whether the base excess is decreasing (decision block 104). If the base excess is not decreasing the respiratory rate is decreased (block 106). If the base excess is decreasing the respiratory rate is decreased and an amount of NaHCO3 is added (block 108). The process then loops back through connector 110, to pumping more blood through the flow circuit (block 82).
If the test at block 90 shows that the blood pH is not increasing, it is then determined whether the pH is decreasing (C connector 112 and decision block 114). If the pH is not decreasing a determination is made whether the pCO2 is increasing (decision block 116). If the pCO2 is increasing the respiratory rate is increased and an amount of acidotic crystalloid is added (block 118). If the pCO2 is not increasing at decision block 116, it is then determined whether the pCO2 is decreasing (decision block 120). If the pCO2 is decreasing, the respiratory rate is decreased and an amount of NaHCO3 is added (block 122). If it is determined at decision block 120 that the pCO2 is not decreasing, then no change is made and the process loops back to pumping more blood into the flow circuit (block 82).
If the decision at block 114 indicates that the pH is decreasing, a determination is then made whether the pCO2 is increasing (decision block 124). If the pCO2 is not increasing, it is determined whether the pCO2 is decreasing (decision block 126). If the pCO2 is decreasing the respiratory rate is decreased and an amount of NaHCO3 is added (block 128); if the pCO2 is not decreasing an amount of NaHCO3 is added (block 130). The process then loops back through connector D.
If a determination at decision block 124 was made that the pCO2 was increasing, a determination is then made whether the base excess is increasing (decision block 132). If the base excess is increasing, the respiratory rate is increased an amount of acidotic crystalloid is added (block 134). If the base excess is not increasing at decision block 132, it is then determined whether the base excess is decreasing (decision block 136). If the base excess is decreasing, the respiratory rate is increased and an amount of NaHCO3 is added (block 138); if the base excess is not decreasing the respiratory rate is increased (block 140). The process then loops back to pumping blood into the flow circuit (82) through connector 142. The microprocessor 50 continuously regulates the pCO2, pH, and base excess keeping the CO2 content constant while the patient's blood temperature changes above 37°C C. (loops 144 and 146).
This invention has been described herein in considerable detail in order to comply with the Patent Statutes and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use such specialized components as are required. However, it is to be understood that the invention can be carried out by specifically different equipment and devices, and that various modifications, both as to the equipment details and operating procedures, can be accomplished without departing from the scope of the invention itself.
Patent | Priority | Assignee | Title |
10077766, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
10201650, | Oct 30 2009 | DEKA Products Limited Partnership | Apparatus and method for detecting disconnection of an intravascular access device |
10441697, | Feb 27 2007 | DEKA Products Limited Partnership | Modular assembly for a portable hemodialysis system |
10500327, | Feb 27 2007 | DEKA Products Limited Partnership | Blood circuit assembly for a hemodialysis system |
10537671, | Apr 14 2006 | DEKA Products Limited Partnership | Automated control mechanisms in a hemodialysis apparatus |
10780213, | May 24 2011 | DEKA Products Limited Partnership | Hemodialysis system |
10851769, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
10881778, | Nov 04 2011 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
11007311, | Jul 07 2010 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
11253636, | Jan 23 2008 | DEKA Products Limited Partnership | Disposable components for fluid line autoconnect systems and methods |
11400272, | Jun 05 2014 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
11478577, | Jan 23 2008 | DEKA Products Limited Partnership | Pump cassette and methods for use in medical treatment system using a plurality of fluid lines |
11511024, | Jan 23 2008 | DEKA Products Limited Partnership | Pump cassette and methods for use in medical treatment system using a plurality of fluid lines |
11598329, | Mar 30 2018 | DEKA Products Limited Partnership | Liquid pumping cassettes and associated pressure distribution manifold and related methods |
11642445, | Jun 05 2014 | HAMILTON MEDICAL AG | Ventilation system with mechanical ventilation and extracorporeal blood gas exchange |
11833281, | Jan 23 2008 | DEKA Products Limited Partnership | Pump cassette and methods for use in medical treatment system using a plurality of fluid lines |
7967022, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
8042563, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
8246826, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
8273049, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
8292594, | Apr 14 2006 | DEKA Products Limited Partnership | Fluid pumping systems, devices and methods |
8317492, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
8357298, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
8393690, | Feb 27 2007 | DEKA Products Limited Partnership | Enclosure for a portable hemodialysis system |
8409441, | Feb 27 2007 | DEKA Products Limited Partnership | Blood treatment systems and methods |
8425471, | Feb 27 2007 | DEKA Products Limited Partnership | Reagent supply for a hemodialysis system |
8459292, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
8491184, | Feb 27 2007 | DEKA Products Limited Partnership | Sensor apparatus systems, devices and methods |
8499780, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
8518326, | Nov 27 2009 | Extra-corporeal membrane oxygenation control | |
8545698, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
8562834, | Feb 27 2007 | DEKA Products Limited Partnership | Modular assembly for a portable hemodialysis system |
8721879, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
8721884, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
8771508, | Aug 27 2008 | DEKA Products Limited Partnership | Dialyzer cartridge mounting arrangement for a hemodialysis system |
8870549, | Apr 14 2006 | DEKA Products Limited Partnership | Fluid pumping systems, devices and methods |
8888470, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
8926294, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
8968232, | Apr 14 2006 | DEKA Products Limited Partnership | Heat exchange systems, devices and methods |
8985133, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
8992075, | Feb 27 2007 | DEKA Products Limited Partnership | Sensor apparatus systems, devices and methods |
8992189, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
9028691, | Feb 27 2007 | DEKA Products Limited Partnership | Blood circuit assembly for a hemodialysis system |
9115708, | Feb 27 2007 | DEKA Products Limited Partnership | Fluid balancing systems and methods |
9140223, | Dec 29 2008 | C R F SOCIETA CONSORTILE PER AZIONI | Fuel injection system with high repeatability and stability of operation for an internal-combustion engine |
9272082, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
9302037, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
9315775, | Mar 16 2011 | Mayo Foundation for Medical Education and Research; Dynasil Biomedical Corporation | Methods and materials for prolonging useful storage of red blood cell preparations and platelet preparations |
9517295, | Feb 27 2007 | DEKA Products Limited Partnership | Blood treatment systems and methods |
9535021, | Feb 27 2007 | DEKA Products Limited Partnership | Sensor apparatus systems, devices and methods |
9539379, | Feb 27 2007 | DEKA Products Limited Partnership | Enclosure for a portable hemodialysis system |
9555179, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
9597442, | Feb 27 2007 | DEKA Products Limited Partnership | Air trap for a medical infusion device |
9603985, | Feb 27 2007 | DEKA Products Limited Partnership | Blood treatment systems and methods |
9649418, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
9677554, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
9700660, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
9724458, | May 24 2011 | DEKA Products Limited Partnership | Hemodialysis system |
9951768, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
9987407, | Feb 27 2007 | DEKA Products Limited Partnership | Blood circuit assembly for a hemodialysis system |
Patent | Priority | Assignee | Title |
3763422, | |||
4266021, | Dec 16 1977 | GAMBRO LUNDIA AKTIEBOLAG | Method and apparatus for the measurement of the concentration of a compound in a liquid medium |
4454229, | Apr 06 1981 | Determination of the acid-base status of blood | |
5211643, | May 26 1989 | Fresenius AG | Sodium bicarbonate containing precipitate-free dialysis solutions |
5354277, | Sep 04 1992 | THERMASOLUTIONS | Specialized perfusion protocol for whole-body hyperthermia |
5391142, | Jul 29 1992 | FIRST CIRCLE MEDICAL, INC | Apparatus and method for the extracorporeal treatment of the blood of a patient having a medical condition |
5476444, | Sep 04 1992 | THERMASOLUTIONS | Specialized perfusion protocol for whole-body hyperthermia |
5630413, | Jul 06 1992 | Sandia Corporation | Reliable noninvasive measurement of blood gases |
5653685, | Oct 10 1990 | LIFE SCIENCE HOLDINGS, INC | Method of providing circulation via lung expansion and deflation |
5928180, | Mar 25 1997 | TRANSONIC SYSTEMS, INC | Method and apparatus for real time monitoring of blood volume in a filter |
WO9510975, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 07 1999 | First Circle Medical, Inc. | (assignment on the face of the patent) | / | |||
Jan 20 2006 | FIRST CIRCLE MEDICAL, INC | QUANTUCK ADVISORS, LLC | SECURITY AGREEMENT | 018015 | /0372 |
Date | Maintenance Fee Events |
Mar 09 2005 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Apr 13 2009 | REM: Maintenance Fee Reminder Mailed. |
Oct 02 2009 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 22 2006 | 4 years fee payment window open |
Jan 22 2007 | 6 months grace period start (w surcharge) |
Jul 22 2007 | patent expiry (for year 4) |
Jul 22 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 22 2010 | 8 years fee payment window open |
Jan 22 2011 | 6 months grace period start (w surcharge) |
Jul 22 2011 | patent expiry (for year 8) |
Jul 22 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 22 2014 | 12 years fee payment window open |
Jan 22 2015 | 6 months grace period start (w surcharge) |
Jul 22 2015 | patent expiry (for year 12) |
Jul 22 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |