A container for creating a microenvironment is disclosed. The container includes a shell, a door and a plurality of supports having a unique design which are used to securely retain items, such as silicon wafers, in a spaced apart parallel relationship. The supports are removable. An electrical path is provided to ground the supports. Kinematic coupling structures are also provided for positioning the container on a surface so as to, for example, properly align the door with the port of a wafer processing tool.

Patent
   RE38221
Priority
Oct 13 1995
Filed
Aug 30 2001
Issued
Aug 19 2003
Expiry
Oct 13 2015
Assg.orig
Entity
Large
6
16
EXPIRED
0. 41. A method of making a container, comprising:
forming a negatively charged shell with a shell opening;
disposing a pair of electricly conductive supports in the shell;
forming a door configured to seal the shell opening; and
grounding the supports.
0. 22. A container for creating a microenvironment which protects items being stored therein from damage, said container comprising:
a shell including a shell opening, the shell comprising an inherently negatively charged material;
a pair of grounded supports cooperating to retain a plurality of items stored in the container, said supports in a generally parallel, spaced apart position with respect to each other; and
a door configured for sealing said shell opening.
0. 34. A method of storing a plurality of items in a container, the container comprising a shell, a pair of grounded supports, and a door, the shell with a shell opening for insertion of the items into the shell and for removal of the items from the shell, the shell comprising an inherently negatively charged material, the supports cooperating to retain the plurality of items stored in the container in a generally parallel, spaced apart position with respect to each other, the door configured for sealing the shell opening, the method comprising:
placing a first of the items into the shell; and
sealing the shell opening with the door.
14. A container for creating a microenvironment which protects items stored therein from damage, said container including:
(a) a shell having an opening for insertion and removal of items from said shell;
(b) a pair of supports which cooperate to retain a plurality of items stored in the container in a parallel, spaced apart position with respect to each other, each of said supports having a plurality of channels, each of said channels having a backside, at least a portion of which is curved in the circumferential direction;
(c) a door for sealing said opening of said shell to prevent contamination of the items stored in said shell; and
(d) means for kinematically coupling said container to another surface.
1. A container for creating a microenvironment which protects items stored therein from damage, said container including:
(a) a shell having an opening for insertion and removal of items from said shell, said shell made of a material which inherently possess a slightly negative electrical charge;
(b) a pair of supports which cooperate to retain a plurality of items stored in the container in a parallel, spaced apart position with respect to each other;
(c) a door for sealing said opening of said shell to prevent contamination of the items stored in said shell; and
(d) means for creating an electrical path through which such supports are grounded so that particles within the shell are drawn away from said items and supports and toward the shell of said container.
2. The container of claim 1, wherein said items stored in the container are semiconductor wafers.
3. The container of claim 1 further including a pair of handles located on opposite sides of the container's center of gravity.
4. The container of claim 3 wherein each of said handles has a groove including an alignment notch so that the handle can be securely gripped by a robot.
5. The container of claim 1 further including a kinematic coupling plate secured to the exterior of said shell by a plurality of posts, said kinematic coupling plate having three alignment grooves each of said alignment grooves having a cross section which is generally a Y-shape.
6. The container of claim 5 wherein said alignment grooves of said kinematic coupling plate are used to align the container door with the port of a tool used to process semiconductor wafers so that a seal is created around the shell's opening and the tool's port before the container's door is opened and the wafers are withdrawn from the shell, through the port, and into the tool for processing.
7. The container of claim 1 further including a kinematic coupling plate secured to the exterior of the shell, said kinematic coupling plate being made of an electrically conductive material.
8. The container of claim 7 wherein said means for creating an electrical path through which the supports are grounded includes an electrically conductive connection between each of said supports and said kinematic coupling plate.
9. The container of claim 1 wherein said door includes means on its exterior surface for coupling said door to another surface.
10. The container of claim 1 wherein each of said supports is releasably secured to the shell so that such supports can be removed for cleaning or replacement.
11. The container of claim 2 wherein said supports have a plurality of channels, each of said channels having a backside which is curved in the circumferential direction.
12. The container of claim 11 wherein the radius of curvature of the backside of said channels in the circumferential direction is generally the same as the radius of curvature in the circumferential direction of said wafers.
13. The container of claim 2 wherein each of said pair of supports include a plurality of wafer dividers, each of said wafer dividers having a continuously varying slope to help support one of said semiconductor wafers.
15. The container of claim 14 wherein the curved portion of the backside of each channel has a radius of curvature in the circumferential direction which is generally the same as the radius of curvature in the circumferential direction of the items to be stored.
16. The container of claim 14 wherein said supports are releasably secured to said shell.
17. The container of claim 14 further including means for providing an electrical path through which said supports are electrically grounded so that particles within the shell are drawn away from said items and supports and toward the shell of said container.
18. The container of claim 14 wherein said means for kinematically coupling said container to said surface includes at least three grooves on said container which each mate with separate projections on said surface.
19. The container of claim 14 wherein said means for kinematically coupling said container to said surface includes at least three projections on said container with each mating with separate grooves on the surface.
20. The container of claim 14 wherein said door has a cushion on its interior surface which assists said pair of supports to reduce movement and vibration of items stored in the container during transport.
21. The container of claim 14 wherein each of said pair of supports have a plurality of dividers, each divider shaped to have a continuously varying slope to help support a wafer.
0. 23. The container of claim 22, further comprising a kinematic coupling plate and a plurality of screws, said plurality of screws forming a conductive path between the supports and the kinematic coupling plate.
0. 24. The container of claim 23, the kinematic coupling plate comprising a plurality of receiving members, each of said receiving members receiving one of said plurality of screws.
0. 25. The container of claim 22, wherein each of said items stored in the container are semiconductor wafers.
0. 26. The container of claim 22, further comprising a kinematic coupling plate secured to the exterior of said shell by a plurality of posts, said kinematic coupling plate comprising three alignment grooves, each of said alignment grooves including a generally Y-shaped cross section.
0. 27. The container of claim 22, further comprising a kinematic coupling plate secured to the exterior of the shell, the kinematic coupling plate comprising an electrically conductive material.
0. 28. The container of claim 22, said door comprising means for coupling said door to another surface.
0. 29. The container of claim 28, wherein said coupling means is disposed on an exterior surface of said door.
0. 30. The container of claim 22, each of said supports releasably secured to said shell.
0. 31. The container of claim 22, each of said supports defining a plurality of channels, each of said plurality of channels having a backside curved in a circumferential direction.
0. 32. The container of claim 31, in which each of said channel backsides is characterized by a channel backside radius, each said channel backside radius generally equal to a radius of curvature of said items being stored in said container.
0. 33. The container of claim 22, each of said supports comprising a plurality of dividers, each of said plurality of dividers having a continuously varying slope.
0. 35. The method of claim 34, further comprising placing a second of the items into the shell, such that the first and second items are in a spaced apart, generally parallel relationship.
0. 36. The method of claim 34, wherein sealing the shell opening with the door comprises supporting each of the items in the shell with three areas of support.
0. 37. The method of claim 34, wherein placing said first of the items into the shell comprises contacting said first of the items and the pair of supports.
0. 38. The method of claim 37,
the container further comprising an electrically conductive kinematic plate and at least one screw, said at least one screw providing an electrically conductive pathway between the support and the kinematic plate, and
wherein placing said first of the items into the shell comprises grounding the first of said items.
0. 39. The method of claim 38, further comprising aligning the shell opening with a processing equipment port.
0. 40. The method of claim 39, the kinematic plate having a plurality of kinematic plate grooves and in which aligning the shell opening with the processing equipment port includes mating the kinematic plate grooves with processing equipment posts.
0. 42. The method of claim 41, in which the supports are electrically coupled to a kinematic coupling plate.
0. 43. The method of claim 42, in which the supports are electrically coupled to the kinematic coupling plate by at least one screw.
0. 44. The method of claim 41, in which grounding the supports comprises electrically connecting the supports to a kinematic coupling plate with a screw.
0. 45. The method of claim 41, in which disposing the pair of supports in the shell includes electrically insulating the pair of supports from the shell.

As shown in FIG. 1, the container of the present invention has an exterior shell 10. The exterior shell 10 has six sides 12, 14, 16, 18, 20 and 22.

Side 12 comprises a door frame 6 having a pair of opposing end portions 7 and a pair of side portions 8. Sides 14 and 16 of the exterior shell 10 are defined generally by straight walls extending from the opposite end portions 7 of the door frame 6. Wall 18 extends between walls 14 and 16 and is in the shape of a partial cylinder. The radius of curvature of wall 18 is generally the same as the radius of curvature of the wafer to be stored in the container. Top and bottom walls 20 and 22 complete the shell. Walls 20 and 22 have a generally flat surface 24 and a reinforcement member 26 projecting outwardly from the flat surface 24. Reinforcement member 26 prevents warpage of the container and especially walls 20 and 22. Reinforcement members 26 have four legs 28, 30, 32 and 34. Extending across wall 18 between the two legs 30 is a cross-brace 31. In a similar fashion, cross-brace 33 extends between the two legs 32. Cross-braces 31 and 33 can be used to support the exterior shell 10 on a flat surface if it is positioned so that wall 18 is down.

Also shown in FIG. 1 is a kinematic coupling plate 40. FIGS. 1-5 and 8-11 show the structure of the kinematic coupling plate in greater detail. This plate is secured to wall 20 by a plurality of mounting posts 42 (see FIG. 5). Three separate coupling grooves 44, 45 and 46 are formed into the kinematic coupling plate 40. These grooves are designed to mate with posts on the processing equipment (not shown) to align the access opening 8 with a port on the processing equipment. As best shown in FIG. 10, the grooves 44, 45 and 46 are Y-shaped to include a narrow, deeper, center channel 47 and wider, less deep, upper channel 48 which serves to catch and direct the alignment post of the processing equipment into the center channel 47 to achieve proper alignment. Proper alignment results when the three alignment posts on the processing equipment (not shown) mate with the center channel 47 of the grooves 44, 45 and 46.

The kinematic coupling plate 40 is made of a conductive material. It is also designed to include a pair of screw receiving members 49. As explained below, members 49 each receive a screw which is used to electrically couple the kinematic coupling plate 40 to the wafer supports 60 located inside the container. This electrical coupling creates a path by which the wafer supports can be grounded to dissipate any electrical charge on the wafers or wafer supports and, thus, prevent damage to the wafers caused by static electricity.

FIG. 1 also shows a pair of handles 50. These handles are located at the center of gravity of the container. The handles are ergonomically designed so they are easily gripped from a variety of angles by the human hand. The design of the handles 50 allows them to be effectively grasped by robotic handling equipment.

More specifically, each handle 50 includes a support column 51 which joins the handle 50 to the shell 10 and a wider gripping member 52. The gripping member 52 has an exterior shape which permits it to be comfortably grasped by a human hand. The gripping member 52 also has a recessed channel formed in its end. Channel 53 is generally straight, but includes a notch 54. The channel 53 and notch 54 are present to be engaged by gripping members of a robotic arm. As such, the container is designed for easy, efficient and safe handling by humans or robots.

FIGS. 3, 4 and 6 show some of the interior structure of the shell 10 not visible in FIG. 1. For example, FIGS. 3 and 4 show wafer supports 60 and 62 which cooperate to hold up to thirteen wafers 80. Typically, twelve of the wafers 80 are product wafers and one is a test wafer. The wafer supports 60 and 62 are all made of a material which is electrically conductive and resistant to high temperatures. The wafer supports 60 and 62, as shown, each have fourteen wafer dividers 65. A wafer edge receiving channel 66 is formed between each pair of dividers 65. The channels on wafer support 60 cooperate with the channels on wafer support 62 to hold the wafers 80 in a parallel spaced apart registration as shown in FIGS. 3 and 4. Those skilled in the art will recognize that the wafer supports 60 and 62 can be modified to hold more wafers (for example, 25) or fewer wafers (for example, 7) without deviating from the present invention. Likewise, the wafer supports 60 and 62 could also be dimensioned to retain something other than a wafer or to retain wafers of differing sizes.

In the preferred embodiment shown in the drawings, each of the channels 66 is especially formed to retain 300 mm wafers. The back side of each channel is curved in the circumferential direction (e.g. the direction of the circumference of the wafer 80) and in the transverse direction (e.g., the direction across the thickness of the wafer 80). The curvature of the backside of each channel 66 is approximately the same radius of curvature as the outside edge of the 300 mm wafers 80, in both the circumferential and transverse directions. Providing the same radius of curvature along the circumferential direction presents contact between the channel's back side and the edge of the wafer 80 along an arc rather than merely at a point.

Significant advantages are provided by shaping the wafer divider 65 as shown in FIG. 17. The wafer dividers have a continuously varying slope such that gravity helps center the wafer 80 in the middle of the carrier. With this style of wafer divider 65, the wafer always rests on a portion of the wafer divider that has a finite slope, so edge contact is guaranteed. Further, if for any reason the wafer is moved off of dead center, one edge is raised more quickly than the other edge is lowered. Thus, for carriers where the wafers are transported horizontally, gravity may be used to help center the wafer with this support. Once centered, the wafer's vertical location is precisely defined. As the carrier is moved from one location to the next, small levels of vibration may help to center the wafer in the carrier, thus improving the horizontal positional accuracy of the wafers as well as the vertical positional accuracy.

An additional benefit of the wafer design, as shown in FIG. 17, is that it presents the lowest possible cross-section for a given support strength. The divider 65 presents an area of interference for the wafer 80 as it is inserted into and removed from the carrier. Thin dividers are preferred because there is less chance of a wafer 80 hitting the divider and causing particles to be generated. On the other hand, the divider 65 must be thick enough to support the wafer 80 and to avoid deflection over the life of the container. In light of these conflicting requirements, the divider design has a continuously varying angle as shown in FIG. 17.

In the preferred embodiment, a pair of screws 64 are provided. One of the screws 64 is used to form a conductive path between the wafer support 60 and the conductive kinematic coupling plate 40. The other screw 64 is used to provide a conductive path between wafer support 62 and the kinematic coupling plate 40. This arrangement provides the advantage of grounding the wafer supports 60 and 62 via screws 64 and the kinematic coupling plate 40 so that the wafer supports 60 and 62 have no electrical charge. The walls of the shell 10 are not grounded and have a slightly negative charge which will cause particles in the container to migrate and attach themselves to the walls of the container where they can do no harm to the wafers. So that the screws 64 do not ground the exterior shell 10, it may be desirable to line the bores in the shell 10 through which the screws 64 pass with an insulative material.

To close the access opening 8 of the shell 10, a door 90 is provided. The door 90 is shaped and dimensioned to fit within the door frame 6. When in place, the door engages the door frame 6 to seal the container. Likewise, the outer edge of door frame 6 can be used to form a seal around the access opening 8 between the door frame 6 and the port of a tool used to process semiconductor wafers 80. The risk of contamination is reduced if such a seal is created before the door 90 is opened. When such a seal is created, the door 90 can safely be opened so that the wafers 80 can be withdrawn from the shell 10, through the port and into the tool for processing without substantial risk of contamination. Typically, a plurality of latches (not shown) to hold the door in the closed position will be provided. Also, a flexible gasket or ring can be provided between the door 90 and frame 6 to ensure complete sealing between the door 90 and frame 6.

The door 90 can be provided with a wafer cushion 92. As shown in FIG. 16, cushion 92 has a pair of rigid rails 93 and 94 and a plurality of deformable cross-members 95. Thirteen deformable cross-members 95 are shown in FIG. 16. Each cross-member 95 has a pair of dividers 96. Each divider 96 is aligned with a divider 97 on rigid rail 93 and a divider 98 on rigid rail 94. Thus, as the door 90 is closed, the wafers 80 engage the channels formed by the dividers 96, 97 and 98. Cross-members 95 will deform until the edges of wafers 80 also engage the rigid rails 93 and 94. Even if the wafers 80 are jarred during transport, contact with and support by cushion 92 is not lost because of the deformable cross-members 95.

The inclusion of such a wafer cushion 92 on the door 90 yields three areas of support for the wafers 80, thereby reducing movement and vibration of the wafers 80 during transport. Supporting the wafers 80 in three areas reduces damage to the wafers due to scraping, rubbing or impacting surfaces within the container. It also limits generation of particles due to such scraping, rubbing or impacting. Finally, means can be provided on the exterior door for kinematically coupling the door 90 to another surface. This can be a series of three grooves (not shown) similar to those shown in kinematic coupling plate 40 which mate with projections on the surface of three projections on the door 90 which mate with grooves on the surface.

Although the present invention has been illustrated and described with reference to the preferred embodiment thereof, the invention may also be used in conjunction with the transport and storage of liquid crystal displays, flat panel displays, photomasks, rigid memory disks, substrates, and the like. Also, various components of the invention may be constructed so that they are removable and replaceable to extend the life of the container. This is certainly true of the wafer supports 60 and 62 and wafer cushion 92 which can be removed and replaced with supports or cushions more ideally suited for other items to be held in the container. It should be understood, therefore, that the illustrations and descriptions provided herein are not intended to be limiting and that numerous modifications can be made within the scope of this invention and the claims set forth below.

Wiseman, Brian, Gregerson, Barry, Gallagher, Gary

Patent Priority Assignee Title
10173812, Apr 26 2013 MORGAN STANLEY SENIOR FUNDING, INC Wafer container with latching mechanism for large diameter wafers
10723525, Apr 26 2013 Entegris, Inc. Wafer container with latching mechanism for large diameter wafers
7252199, Mar 26 2004 Entegris, Inc Disk cassette system
7422107, Jan 25 2006 MORGAN STANLEY SENIOR FUNDING, INC Kinematic coupling with textured contact surfaces
7703609, Jun 28 2006 VANTEC CO , LTD Wafer carrier positioning structure
7914246, Jan 05 2001 Applied Materials, Inc. Actuatable loadport system
Patent Priority Assignee Title
4450960, Aug 30 1982 EMPAK, INC Package
4557382, Aug 17 1983 Empak Inc. Disk package
4721207, Apr 28 1986 Tensho Electric Industrial Co., Ltd. Hard disk container
4739882, Feb 13 1986 Entegris, Inc Container having disposable liners
4747488, Dec 01 1986 Hard disk container
5240753, Jul 07 1989 Otsuka Kagaku Kabushiki Kaisha Molded articles for holding wafers
5390811, Aug 30 1991 Shin-Etsu Handotai Co., Ltd.; Shin-Etsu Polymer Co., Ltd. Wafer basket for containing semiconductor wafers
5399398, Sep 07 1992 Toppan Printing Co., Ltd. Photomask container
5472086, Mar 11 1994 EMPAK, INC Enclosed sealable purgible semiconductor wafer holder
5476176, May 23 1994 Empak, Inc. Reinforced semiconductor wafer holder
5584401, Jul 29 1994 Yodogawa Kasei Kabushiki Kaisha Substrate-supporting side boards and a cassette utilizing the boards
5755332, Mar 11 1994 Empak, Inc. Enclosed sealable purgible semiconductor wafer holder
JP57113446,
JP6283486,
JP6349387,
JP6437047,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 30 2001Entegris, Inc.(assignment on the face of the patent)
Aug 05 2005ENTEGRIS, INC MINNESOTA CORPORATION ENTEGRIS, INC DELAWARE CORPORATION MERGER SEE DOCUMENT FOR DETAILS 0234010777 pdf
Mar 02 2009Entegris, IncWells Fargo Bank, National Association, As AgentSECURITY AGREEMENT0223540784 pdf
Jun 09 2011WELLS FARGO BANK NATIONAL ASSOCIATIONEntegris, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0267640880 pdf
Date Maintenance Fee Events
Mar 21 2007REM: Maintenance Fee Reminder Mailed.
Jun 04 2007M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 04 2007M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity.
Jun 08 2007ASPN: Payor Number Assigned.
May 04 2011R1553: Refund - Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Aug 19 20064 years fee payment window open
Feb 19 20076 months grace period start (w surcharge)
Aug 19 2007patent expiry (for year 4)
Aug 19 20092 years to revive unintentionally abandoned end. (for year 4)
Aug 19 20108 years fee payment window open
Feb 19 20116 months grace period start (w surcharge)
Aug 19 2011patent expiry (for year 8)
Aug 19 20132 years to revive unintentionally abandoned end. (for year 8)
Aug 19 201412 years fee payment window open
Feb 19 20156 months grace period start (w surcharge)
Aug 19 2015patent expiry (for year 12)
Aug 19 20172 years to revive unintentionally abandoned end. (for year 12)