An ultraviolet detector comprises a metal tubular member which hermetically encloses an anode and a cathode therein and is filled with a discharged gas introduced therein from a metal exhaust tube. After the anode and the cathode are enclosed within the tubular member, the ultraviolet detector can be made without being subjected to any glass fusing process. Accordingly, the inside of the sealed vessel V1 can be prevented from being contaminated with fluorine, whereby the ultraviolet detector with stable characteristics can be provided.
|
1. An ultraviolet detector comprising:
a sealed vessel including a tubular member, a window member and a stem, said tubular member having an opening and being made of a metal material blocking ultraviolet radiation, said window member being made of a glass material transparent to ultraviolet radiation and closing said opening, said stem having a metal portion contacting to said tubular member and a glass portion not contacting said tubular member; an anode a cathode disposed within said sealed vessel at positions opposing said window member; a cathode, an anode disposed within said sealed vessel between said window member and said anode cathode, secured to said tubular member or said metal portion of said stem; a lead pin penetrating said glass portion of said stem for securing said anode cathode and supplying voltage to said anode cathode; and a gas enclosed in said sealed vessel.
2. An ultraviolet detector according to
3. An ultraviolet detector according to
|
1. Field of the Invention
The present invention relates to an ultraviolet detector which detects ultraviolet radiation incident thereon by converting them into an electric signal.
2. Related Background Art
An example of conventional ultraviolet detectors is disclosed in Japanese Utility model Publication No. 49-17184. This publication discloses an ultraviolet detector in which an anode and a cathode are disposed within a sealed vessel constituted by a glass envelope and a glass bottom plate welded to the bottom portion of the glass envelope.
Though the conventional ultraviolet detector mentioned above is an excellent detector which has a long life and can stably detect ultraviolet radiation, its characteristics may not be sufficient. Specifically, when used for a long period of time, its characteristics may deteriorate over time, thus lacking in stability.
In order to overcome such shortcomings, various studies have conventionally been made. The inventors have elucidated that these shortcomings result from the glass material used as a window material for the ultraviolet detector. Typical glass materials which are transparent to ultraviolet radiation contain fluorine. Upon welding of the envelope and bottom plate of the ultraviolet detector, fluorine contained in the glass material evaporated from the glass material and adsorbed onto the surfaces of the anode and cathode, the inner surface of the sealed vessel, and the like. Normal operation of the detector and the aging process in fabrication both include the gas discharge between the electrodes. Electrons and ions generated by the gas discharge impinge onto the surfaces of the anode and cathode respectively. It causes the desorption of fluorine adsorbed on the surface of these electrodes. The fluorine containments on the other sites in the vessel can also be desorbed by means of the heat which arises in the aging processes of the detector fabrication and even in the normal operation condition of the detector. The desorbed fluorine alters the ionization property of the discharged gas filled in the vessel. This alternation commonly results in the lowering of the breakdown voltage and that leads to occasional and continuous false discharges and unwanted increase of the sensitivity. These effects considerably degrade the stability and the reliability of the detector.
In order to overcome the foregoing shortcomings resulting from the use of such a glass material, it is an object of the present invention to provide an ultraviolet detector having characteristics which are better than those conventionally attained.
The ultraviolet detector in accordance with the present invention comprises a sealed vessel, an anode, a cathode, a lead pin and a gas enclosed in the sealed vessel. The sealed vessel includes a tubular member having an opening and being made of a metal material blocking ultraviolet radiation, a window member being made of a glass material transparent to ultraviolet radiation and closing aforementioned opening and a stem having a metal portion contacting to the tubular member and a glass portion not contacting the tubular member. The anode is disposed within the sealed vessel at positions opposing said window member by the lead pin which penetrates the glass portion of the stem for supplying voltage. The cathode is disposed within the sealed vessel between the window member and the anode and secured to the tubular member or the metal portion of the stem.
In such a configuration, since the tubular member is made of a metal material blocking ultraviolet radiation, incident ultraviolet radiation are introduced through the window member made of an ultraviolet-transparent material toward the anode and cathode of the detector, whereby the detector exhibits a high directivity. Further, since the tubular member is made of a metal material, even when this tubular member is connected to the metal portion of the stem by pressure or welding, impurities such as fluorine do not attach to the sealed vessel, anode, and cathode. Accordingly, the ultraviolet detector in accordance with the present invention is prevented from being affected by fluorine or the like, whereby the break down voltage of the detector can be held stably.
And more, the cathode of the present invention is secured to the tubular member or the metal portion of the stem without a stem pin. So it is easy to manufacture the ultraviolet detector having discharging gap with a high precision.
According to the present invention, the cathode may be integrated with the tubular member or the metal portion of the stem may be a ring shaped rim of the stem.
Such configuration aids in facilitating manufacture of high accurate ultraviolet detector.
The present invention will be more fully understood from the detailed description given hereinbelow and the accompanying drawings, which are given by way of illustration only and are not to be considered as limiting the present invention.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will be apparent to those skilled in the art from this detailed description.
In the following, embodiments of the ultraviolet detector will be explained. Elements identical to each other will be referred to with marks identical to each other, without their overlapping explanations being repeated. In the following explanation, vertical orientations conform to those in the drawings.
The sealed vessel V1 comprises a tubular member 3, made of a metal material blocking ultraviolet radiation, having two openings; a window member 4, made of an ultraviolet-transparent glass material, closing one of the openings of the tubular member 3; a ring-shaped metal member 5 secured to the tubular member 3 so as to close the other opening of the tubular member 3; and a glass sealant 7 sealing the opening in the ring-shaped metal member 5. The lower side wall portions of the tubular member 3 and ring-shaped metal member 5 are curved so as to project outward, and their curved portions are electrically welded together so as to overlap each other. The middle side wall portion of the ring-shaped metal member 5 is in parallel with the middle side wall portion of the tubular member 3, thus constituting a cylinder. The upper side wall portion of the ring-shaped metal member 5 is curved inward, and this upper curved portion has an outer surface 5a which is used for positioning the anode 1.
The region of the anode 1 opposing the window member 4 is depressed, with respect to its surrounding area, toward the cathode 2. Also, a grid or mesh 1m is formed in this region. The anode 1 extends from the surrounding area of the depression toward the positioning outer surface 5a of the ring-shaped metal member 5, and its end portion 1a in the extending direction is curved outward so as to be in parallel with the outer surface 5a of the upper end of the ring-shaped metal member 5. The anode 1 is positioned with respect to the ring-shaped member 5 when its end portion 1a is simply fixed with respect to the outer surface 5a.
The cathode 2 is placed at a position opposing the mesh region 1m formed at the depression of the anode 1. From the lower surface of the cathode 2, a lead pin 6 extends through the center of the ring-shaped metal member 5. The lead pin 6 is firmly embedded in the glass sealant 7 filling the opening of the ring-shaped metal member 5. Accordingly, the anode 1 is positioned with respect to the cathode 2 connected to the lead pin 6 when the end portion la is simply fixed with respect to the outer surface 5a of the ring-shaped metal member 5. Also embedded in the glass sealant 7 is a metal evacuation pipe 8 communicating with the inside of the sealed vessel V1. The metal evacuation pipe 8 is used for introducing a rare gas such as argon into the sealed vessel V1. After such a gas is introduced, the outer end of the metal evacuation pipe 8 is sealed. For the cathode 2, any material can be used as long as it has a work function of 4.1 eV or higher. For example, Ni (nickel), Mo (molybdenum), or W (tungsten) may be used. The material for the cathode 2 in this embodiment is Ni, whereas the lead pin 6 and the tubular member 3 are made of covar. The window member 4 is made of ultraviolet-transparent glass (UV glass), and ultraviolet radiation having a wavelength of about 190 nm or longer can be transmitted therethrough. In the case where the UV glass is made of ultraviolet-transparent borosilicate glass, its coefficient of thermal expansion can be made closer to that of covar metal, whereby it can be easily attached to the tubular member 3, thus facilitating the manufacture of the ultraviolet detector.
In the following, a method of making the ultraviolet detector D1 shown in
Subsequently, the lower surface of the lower end 1a of the anode 1 is welded onto the positioning surface 5a. Accordingly, the mesh region 1m of the anode 1 and the upper surface of the cathode 2 are positioned on the basis of the positioning surface 5a. Namely, the accuracy in distance between the anode 1 and the cathode 2 (i.e., discharging gap) is determined by the processing precision of the anode 1 and protrusion height of the cathode 2 respect to the positioning surface 5a. Even when the cathode 2 connected to the lead pin 6 is somewhat deformed upon shock or heat, the distance between the anode 1 and the cathode 2 is held with a high accuracy, thus reducing characteristic errors in each ultraviolet detector being produced.
Next, the window member 4 is fusion-bonded to the inside of the tubular member 3 so as to close the upper opening of the tubular member 3 from the inside. And then, this partially assembled part is treated by acid solution so that contaminants including fluorides and oxides are removed. Thereafter, the tubular member 3 (cap) is mounted on the ring-shaped metal member 5 such that the inner surface of the outward curved portion (flange) at the lower end of the tubular member 3 is superposed on the outer surface of the outward curved portion (flange) at the lower end of the ring-shaped metal member 5, and these curved portions are welded together. Since the tubular member is not made of glass but a metal, fluorine which is contained in the ultraviolet-transparent glass, for example by 1.9 wt % does not attach to the sealed vessel V1 even in this process. Also, since the tubular member 3 is not made of glass, silica, which is a main component of glass, does not evaporate upon this welding process, fine particles of silica are prevented from attaching to the sealed vessel V1 and electrodes 1 and 2 and thereby causing abnormal discharge. Then, the evacuation pipe 8 is connected to a high vacuum apparatus so as to remove the gas from within the sealed vessel V1, and the sealed vessel V1 is externally heated so as to affect baking. After the pressure within the sealed vessel V1 is sufficiently lowered to attain a substantially vacuum state, a reducing mixed gas is introduced into the sealed vessel V1 from the lower end of the metal evacuation pipe 8. After the gas is introduced, the lower end of the metal pipe 8 is pinched and sealed by pressure, thereby establishing a hermetic state within the sealed vessel V1. Since the metal evacuation pipe 8 is not made of glass, even when one end thereof is thus sealed, fluorine and silica are not introduced into the vessel V1.
In the following, an ultraviolet detector D2 in accordance with a second embodiment of the present invention will be explained.
Finally,
Without being restricted to the foregoing embodiment, the present invention can further be modified in various manners.
From the invention thus described, it will be obvious that the invention may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended for inclusion within the scope of the following claims.
The basic Japanese Applications No.8-255080 (255080/1996) filed on Sept. 26, 1996 and No.8-270776 (270776/1996) filed on Oct. 14, 1996 are hereby incorporated by reference.
Shimazu, Yuji, Warashina, Hidenaga
Patent | Priority | Assignee | Title |
7189956, | Oct 29 2004 | HAMAMATSU PHOTONICS K K | Photomultiplier and radiation detector |
7238928, | Oct 29 2004 | HAMAMATSU PHOTONICS K K | Photomultiplier with particular stem/pin structure |
7244946, | May 07 2004 | WALTER KIDDE PORTABLE EQUIPMENT, INC | Flame detector with UV sensor |
7468515, | Dec 12 2005 | ADEMCO INC | Ultra violet light sensor |
7772771, | Jan 17 2003 | HAMAMATSU PHOTONICS K K | Alkali metal generating agent, alkali metal generator, photoelectric surface, secondary electron emission surface, electron tube, method for manufacturing photoelectric surface, method for manufacturing secondary electron emission surface, and method for manufacturing electron tube |
Patent | Priority | Assignee | Title |
3344302, | |||
4409485, | Oct 02 1981 | The United States of America as represented by the Secretary of the Navy | Radiation detector and method of opaquing the mica window |
4581536, | Mar 04 1983 | Detector Electronics Corp. | Radiation detection tube having spurious radiation shield |
5504386, | Apr 09 1992 | Hamamatsu Photonics K. K. | Photomultiplier tube having a metal-made sidewall |
5874728, | May 02 1996 | HAMAMATSU PHOTONICS K K | Electron tube having a photoelectron confining mechanism |
5959301, | Sep 26 1996 | Hamamatsu Photonics K.K. | Ultraviolet detector |
DE1564073, | |||
GB1146526, | |||
JP4917184, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 07 2002 | Hamamatsu Photonics K.K. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 10 2004 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 29 2004 | ASPN: Payor Number Assigned. |
Feb 21 2008 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Apr 30 2012 | REM: Maintenance Fee Reminder Mailed. |
Sep 19 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 26 2006 | 4 years fee payment window open |
Feb 26 2007 | 6 months grace period start (w surcharge) |
Aug 26 2007 | patent expiry (for year 4) |
Aug 26 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 26 2010 | 8 years fee payment window open |
Feb 26 2011 | 6 months grace period start (w surcharge) |
Aug 26 2011 | patent expiry (for year 8) |
Aug 26 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 26 2014 | 12 years fee payment window open |
Feb 26 2015 | 6 months grace period start (w surcharge) |
Aug 26 2015 | patent expiry (for year 12) |
Aug 26 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |