A portable iontophoresis apparatus for facilitating delivery of medication across the cutaneous membrane into adjacent underlying tissues and blood vessels. The apparatus employs a modular, detachable non-reusable medicament-containing applicator electrode which is adapted to attach to a base assembly. The apparatus is designed to be hand-held and includes a circumferential tactile electrode band on the base assembly which provides electrical connection between the skin of the user's hand and one pole of a bipolar power source housed within the base assembly. The opposing pole of the power source is connected to the applicator electrode. The user's body completes the electrical circuit between the applicator and tactile electrodes. A method for using the device for the treatment of herpes simplex infection and related viral infections which produce similar cutaneous lesions is presented. The apparatus, when used in accordance with the method described herein, demonstrated >90% treatment efficacy in clinical trials.
|
0. 4. A method of treating herpes type I and type II infection in an individual by self-administration of an anti-viral agent, the method comprising the steps of:
(a) providing a portable hand-held electrokinetic device having an applicator electrode in electrical communication with a self-contained electrical power source housed within the device, said applicator electrode including an electrokinetically transportable anti-viral agent comprising 9 -[ (b) rupturing the reservoir to supply the anti-viral agent to the substrate; (c) while holding the device, manipulating the device to place the contact surface of the applicator electrode into overlying relation with an individual's infection site with the anti-viral agent in the substrate interposed between said applicator electrode and the infection site enabling electrical contact between the applicator electrode and the infection site; (d) applying from said electrical power source a voltage gradient between the applicator electrode and the infection site to establish electrical contact therebetween by completing an electrical circuit with said power source through the individual's hand holding the device, the infection site, the anti-viral agent and the applicator electrode, whereby said anti-viral agent is electrokinetically motivated from the substrate into the infection site; and (e) while holding the device in overlying relation with the infection site, providing the electrical contact between the applicator electrode and the infection site until a therapeutically effective dose of said anti-viral agent has been electrokinetically transported into said infection site.
0. 1. A method for treating mucocutaneous herpes type I and type II infections present mucocutaneous lesion comprising the iontophoretic transdermal delivery of a [2-hydroxyethoxy(methyl)]guanine into tissue overlying said lesion.
0. 2. A method for treating herpes conditions in accordance with
0. 3. A method for treating lesions associated with cold sores and genital herpes comprising the dispensation, application and transdermal self-application of an active antiviral agent contained within a hand-held iontophoretic device to said lesions wherein said antiviral agent is 5-iodo-2-deoxyuridine or derivatives thereof.
|
This application is a divisional of allowed U.S. patent application Ser. No. 08/646,853 filed May 8, 1996, now U.S. Pat. No. 5,676,648, issued Oct. 14, 1997.
1. Field of the Invention
This invention relates generally to the transdermal electrokinetic mass transfer of medication into a diseased tissue, and, more specifically, to a portable apparatus for the iontophoretic delivery of medication across the skin and incorporation of the medication into diseased tissues and blood vessels adjacent to the delivery site. The apparatus provides a new method for treating and managing diseases presenting cutaneous lesions.
2. Prior Art
Iontophoresis has been employed for several centuries as a means for applying medication locally through a patient's skin and for delivering medicaments to the eyes and ears. The application of an electric field to the skin is known to greatly enhance the skin's permeability to various ionic agents. The use of iontophoretic transdermal delivery techniques has obviated the need for hypodermic injection for many medicaments, thereby eliminating the concomitant problems of trauma, pain and risk of infection to the patient.
Iontophoresis involves the application of an electromotive force to drive or repel oppositely charged ions through the dermal layers into a target tissue. Particularly suitable target tissue include tissues adjacent to the delivery site for localized treatment or tissues remote therefrom in which case the medicament enters into the circulatory system and is transported to a tissue by the blood. Positively charged ions are driven into the skin at an anode while negatively charged ions are driven into the skin at a cathode. Studies have shown increased skin penetration of drugs at anodic or cathodic electrodes regardless of the predominant molecular ionic charge on the drug. This effect is mediated by polarization and osmotic effects.
Regardless of the charge of the medicament to be administered, a iontophoretic delivery device employs two electrodes (an anode and a cathode) in conjunction with the patient's skin to form a closed circuit between one of the electrodes (referred to herein alternatively as a "working" or "application" or "applicator" electrode) which is positioned at the delivered site of drug delivery and a passive or "grounding" electrode affixed to a second site on the skin to enhance the rate of penetration of the medicament into the skin adjacent to the applicator electrode.
Recent interest in the use of iontophoresis for delivering drugs through a patient's skin to a desired treatment site has stimulated a redesign of many of such drugs with concomitant increased efficacy of the drugs when delivered transdermally. As iontophoretic delivery of medicaments become more widely used, the opportunity for a consumer/patient to iontophoretically administer a transdermal dosage of medicaments simply and safely at non-medical or non-professional facilities would be desirable and practical. Similarly, when a consumer/patient travels, it would be desirable to have a personal, easily transportable apparatus available which is operable for the iontophoretic transdermal delivery of a medication packaged in a single dosage applicator. The present invention provides a portable iontophoretic medicament delivery apparatus and a unit-dosage medicament-containing applicator electrode which is disposable and adapted for use with the apparatus for self-administering medicament.
The present invention discloses a portable iontophoretic transdermal or transmucoscal medicament delivery apparatus and a unit dosage medicament applicator electrode adapted for use with the apparatus for the self-administration of a unit dose of a medicament into the skin. The apparatus is particularly suited for the localized treatment of herpes infections. Recurrent herpetic infections (fever blisters or herpes labialis) are very common and usually involve the mucocutaneous juncture. The established treatment for recurrent herpetic lesions (oral or genital) has been primarily supportive; including local topical application of anesthesia. Severe cases have been treated with systemic Acyclovir® (Zovirax Burroughs-Wellcome). Some cases the condition is managed with prophylactic long-term dosing administration with a suitable anitviral agent at great expense. Systemic treatment of acute herpetic flare-ups may reduce the normal 10-12 day course of cutaneous symptoms into a 6-8 day episode. Topical treatment of lesions with Acyclovir® has not been as effective as in vitro studies would suggest. A compound which is not presently available to clinicians but has demonstrated significant anti herpetic activity is 5-iodo-2 deoxyuridine (IUDR). Both of those agents have shown limited clinical efficacy when applied topically to the herpetic lesion. It is the present inventor's contention that the limited efficacy of topical administration previously observed is, at least in part, due to the poor skin penetration of these medicaments when applied topically. The present invention provides improved transdermal delivery of these medicaments and demonstrates improved clinical results in the case of Herpes.
Oral Herpes (most commonly Herpes simplex I infection) as well as genital Herpes (usually Herpes Simplex II infection) afflict many people, cause discomfort, shame, and may contribute to more severe and costly illnesses such as cervical cancer, prostate cancer, and perinatal blindness from herpetic conjunctivitis. The present invention discloses a portable, user-friendly transdermal delivery device and a method for using the device with Acyclovir®
When current flows across the user's skin to from the application electrode in response to an applied voltage the current promotes and hastens the penetration of the medicament 23 contained in a reservoir 26 within the working electrode 12 into the skin. The polarity of the working electrode 12 is preferably unidirectional to promote the above described penetration without requiring a separate grounding electrode. The working application electrode 12 will be described in greater detail below.
The base assembly 11 of apparatus 10 serves as a housing to the aforesaid components as a handle. The portion of the base assembly 11, exclusive of the tactile electrode, is preferably made of a plastic such as polyethylene, acrylonitrile, butadiene, styrene or similar durable plastic. The battery portion 24 is connected to a voltage multiplier 22 which steps up the voltage supplied by the battery 24 and applies the stepped up voltage to the current driver 19. Current driver 19 presents a defined current and voltage output at the application electrode 12 the value of the current, which may be empirically determined being sufficient to drive the medicament through the porous, open-celled material 27 (
The open-celled sponge-like material 27, i.e., a substrate, surrounding reservoir 26 should be inert to the medicament or treatment agent being employed, as well as being non-corrosive and stable when in contact with the treatment agent. Suitable materials include plastic pads, such as polyethylene, paper or cotton, porous ceramics, open-celled porous polytetrafluoroethylene, polyurethane and other inert plastics, and open-celled silicone rubber, such as may be employed with vertically aligned medicament-containing tubes. A typical medicament that can be contained within the rupturable polymer reservoir 26 is xylocaine or similar topical anesthetic. The disposable electrode 12 possesses the advantages of preventing leaching or migration of the medicament from within the rupturable polymer reservoir, no attendant loss of efficacy, a long shelf life and little or no electrode corrosion. A suitable electrical control circuit for use in the iontophoretic medicament delivery apparatus 12 is shown in U.S. patent application, Ser. No. 07/579,799, filed Sep. 10, 1990, now U.S. Pat. No. 5,160,316 and hereby specifically incorporated by reference herein in pertinent part.
The inventor has conducted a clinical study using a prototype iontophoretic device in accordance with the present invention for the treatment of cold sores. The clinical response was promising. A second independent, qualified investigator, a board-certified Urologist, conducted a study using the present apparatus and method for treating male genital herpes lesions with encouraging results. Table 1 summarizes data (discussed below) supporting the claim to unexpected clinical benefits treating disease with this novel method. The method and medicament application device when used together for treating these common, embarrassing, and previously not easily-treatable ailments provide surprising advantages.
The embodiment of the device shown in FIG. 1 and described hereinabove is a improvement over the prototype used in the clinical study, which was a larger unit, not user friendly, which required physically connecting wires to the patient's body which created anxiety, and could not be used without attending personnel. Notwithstanding design, the apparatus used in the clinical study summarized in Table 1 employed electronics similar to the apparatus described herein and was used to optimize the clinical performance of the embodiment 12 of the device described herein.
TABLE 1 | ||||
STAGE I TREATMENT RESULTS | ||||
RESPONSE | IUDR | ACYCLOVIR ® | TOTALS | |
No response | 1 | 1 | 2 | |
Some response | 1 | 3 | 4 | |
Major response | 26 | 42 | 68 | |
The study included a control situation wherein seven patients were found who had simultaneous concurrent herpes lesions at separate locations on their bodies. In each case one lesion was treated with iontophoretic application of antiviral agent (Acyclovir® or IUDR) and the other lesion was treated in the standard method employed in the prior art comprising repeated topical application of the same antiviral agent. The iontophoretically enhanced treated lesion received a single 10-15 minute treatment. All iontophoretically treated lesions demonstrated resolution in 24 hours and none of the unassisted topically treated lesions demonstrated a similar response. The results for the control group are summarized in Table 2.
TABLE 2 | |||
CONTROL GROUP RESULTS | |||
No response | Some resp. | Major resp. | |
IUDR | |||
Treated lesion | 0 | 0 | 7 |
Control lesion | 5 | 2 | 0 |
ACYCLOVIR ® | |||
Treated lesion | 0 | 0 | 1 |
Control lesion | 1 | 0 | 0 |
The clinical studies included patient volunteers with full informed consent who suffered from recurrent cold sores. The study demonstrated greatest treatment efficacy if the herpes lesion received iontophoretic treatment within 36 hours of lesion onset. The treatment incorporated an electrode saturated with Acyclovir® ointment (ZOVIRAX®) or IUDR (STOXIL®) ophthalmic drops as supplied by the manufacturer. Thus mounted Anodic electrode of the prototype system was used for a 10-15 minute application directly to the lesion with the average current setting of 0.2 ma-0.6 ma which was well tolerated by all patients.
The lesion was evaluated in 24 hours. In 92% of the iontophoretically treated cases (>70 lesions treated) a major response was noted. A major response was categorized by resolution of pain in <6 hours and lesion crusted and healing within 24 hours. The normal course of cold sores involves an average period of 10-12 days before resolution and healing occurs. The present apparatus and clinical method for treatment of mucocutaneous Herpes Simplex (type I and Type II) eruptions presented herein have been described and performed with excellent results. This novel user friendly apparatus in combination with the disclosed clinical treatment method presents a very effective new treatment for Herpes Simplex eruptions.
While the invention has been described above with references to specific embodiments thereof, it is apparent that many changes, modifications and variations in the materials, arrangements of parts and steps can be made without departing from the inventive concept disclosed herein. For example, an impregnated conductive gel can also be used to as medicament containing medium to increase the physical stability and the tissue adhering characteristics of the electrode. Accordingly, the spirit and broad scope of the appended claims is intended to embrace all such changes, modifications and variations that may occur to one of skill in the art upon a reading of the disclosure. All patent applications, patents and other publication cited herein are incorporated by reference in their entirety.
Patent | Priority | Assignee | Title |
6735470, | May 31 2000 | HG MEDICAL TECHNOLOGIES LLC | Electrokinetic delivery of medicaments |
7127285, | Mar 12 1999 | NITRIC BIOTHERAPEUTICS, INC ; General Electric Capital Corporation | Systems and methods for electrokinetic delivery of a substance |
7706873, | May 05 2004 | System and method for controlled delivery of a therapeutic agent to a target location within an internal body tissue | |
8328788, | Mar 12 1999 | HG MEDICAL TECHNOLOGIES LLC | Methods and systems for electrokinetic delivery of a substance |
8352024, | Mar 10 2000 | HG MEDICAL TECHNOLOGIES LLC | Electrokinetic delivery system for self-administration of medicaments and methods therefor |
8666486, | Mar 04 2004 | Yissum Research Development Company of the Hebrew University of Jerusalem | Safe device for iontophoretic delivery of drugs |
9555238, | Mar 04 2004 | Hadasit Medical Research Services & Development Limited; Yissum Research Development Company of the Hebrew University of Jerusalem; Yissum Research Development Company of the Hebrew University of Jerusalem Ltd | Safe device for iontophoretic delivery of drugs |
Patent | Priority | Assignee | Title |
2126070, | |||
279524, | |||
2834344, | |||
3019787, | |||
3048170, | |||
3107672, | |||
3163166, | |||
3298368, | |||
3520297, | |||
3645260, | |||
3716054, | |||
3831598, | |||
4325367, | Jun 13 1977 | Iontophoretic treatment apparatus | |
4383529, | Nov 03 1980 | Wescor, Inc. | Iontophoretic electrode device, method and gel insert |
4474570, | Jul 10 1981 | HISAMITSU PHARMACEUTICAL CO , INC | Iontophoresis device |
4510939, | Dec 22 1982 | BioSonics, Inc. | Means for transferring electrical energy to and from living tissue |
4665921, | May 28 1984 | Teranishi Electric Works, Ltd. | High potential generating toothbrush |
4689039, | Jul 19 1985 | Ken, Hayashibara | Electrotherapeutic apparatus for iontophoresis |
4702732, | Dec 24 1984 | TRUSTEES OF BOSTON UNIVERSITY, A CORP OF MA | Electrodes, electrode assemblies, methods, and systems for tissue stimulation and transdermal delivery of pharmacologically active ligands |
4747819, | Oct 29 1984 | ALZA CORPORATION, A CORPORATION OF DE | Iontophoretic drug delivery |
4787888, | Jun 01 1987 | University of Connecticut | Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a) |
4838273, | Apr 30 1979 | NDM, INC | Medical electrode |
484522, | |||
4913148, | Jul 31 1985 | Hepax Limited | Method for the treatment of herpes simplex and herpes zoster |
4919648, | Aug 18 1983 | Drug Delivery Systems Inc. | High tack drug patch |
4953565, | Nov 26 1986 | Shunro Tachibana | Endermic application kits for external medicines |
4957480, | Feb 02 1988 | MYOTONOLOGY, INC | Method of facial toning |
4979938, | May 11 1989 | Iomed, Inc. | Method of iontophoretically treating acne, furuncles and like skin disorders |
4997418, | Apr 21 1988 | C. P., Chambers; C P CHAMBERS | Epidermal iontophoresis device |
5037381, | Jul 27 1990 | VYTERIS, INC | Electrically assisted transdermal transport device and method for renewing the device |
5042975, | Jul 25 1986 | Rutgers, The State University of New Jersey | Iontotherapeutic device and process and iontotherapeutic unit dose |
5090402, | Aug 12 1987 | L'Oreal | Massaging appliance |
5133352, | Apr 12 1990 | NEXMED HOLDINGS, INC | Method for treating herpes simplex |
5160316, | Sep 10 1990 | APS ORGANIZATION, LLP, THE, A MASSACHUSETTS REGISTERED LIMITED LIABILITY PARTNERSHIP | Iontophoretic drug delivery apparatus |
5162042, | Jul 05 1988 | ALZA Corporation | Electrotransport transdermal system |
5169384, | Aug 16 1991 | Apparatus for facilitating post-traumatic, post-surgical, and/or post-inflammatory healing of tissue | |
5203768, | Jul 24 1991 | ALZA Corporation | Transdermal delivery device |
5250022, | Sep 25 1990 | Rutgers, The State University of New Jersey | Iontotherapeutic devices, reservoir electrode devices therefore, process and unit dose |
5279543, | Jan 29 1988 | The Regents of the University of California | Device for iontophoretic non-invasive sampling or delivery of substances |
5284471, | Sep 25 1989 | VYTERIS, INC | Electrode and method used for iontophoresis |
5298017, | Dec 29 1992 | ALZA Corporation | Layered electrotransport drug delivery system |
5310404, | Jun 01 1992 | ALZA Corporation | Iontophoretic delivery device and method of hydrating same |
5312326, | Jun 02 1992 | ALZA Corporation | Iontophoretic drug delivery apparatus |
5314502, | Mar 30 1990 | ALZA Corporation | Iontophoretic delivery device |
5331979, | Jul 27 1992 | MEDICAL IONOSONIC TECHNOLOGIES, LLP | Iontophoretic cigarette substitute |
5354321, | Oct 10 1990 | Patch arrangement for galvanic treatment | |
5360440, | Mar 09 1992 | Boston Scientific Scimed, Inc | In situ apparatus for generating an electrical current in a biological environment |
5362307, | Jan 24 1989 | Regents of the University of California, The | Method for the iontophoretic non-invasive-determination of the in vivo concentration level of an inorganic or organic substance |
5362308, | Sep 25 1990 | Rutgers, The State University of New Jersey | Disposable dosage unit for iontophoresis-facilitated transdermal delivery, related devices and processes |
5374241, | Jul 21 1989 | IOMED, LLC; ENCORE MEDICAL ASSET CORORATION | Electrodes for iontophoresis |
5374242, | Dec 03 1991 | ALZA Corporation | Iontophoretic delivery device and power supply therefor |
5376107, | Mar 05 1990 | Kowa Co., Ltd.; Yuasa Battery Co., Ltd. | Electrotherapeutic device |
5391195, | Apr 17 1991 | ENRAF-NONIUS B V | Device for carrying out an iontophoresis treatment on a patient |
5395310, | Oct 28 1988 | ALZA CORPORATION, A CORPORATION OF DE | Iontophoresis electrode |
5413590, | Jul 17 1991 | PETER MAXWELL PRITCHARD GREYLAND & HARLESTON HILL | Skin treatment device |
5415629, | Sep 15 1993 | MEDICAL IONOSONIC TECHNOLOGIES, LLP | Programmable apparatus for the transdermal delivery of drugs and method |
5421816, | Oct 14 1992 | Endodermic Medical Technologies Company | Ultrasonic transdermal drug delivery system |
5441936, | Dec 07 1993 | Lion Bioscience AG | Antiviral peptides |
5443441, | Mar 05 1993 | Apparatus and method for transdermal delivery of cosmetic compositions | |
5458569, | Jun 08 1993 | VYTERIS, INC | Wearable iontophoresis system |
5464387, | Jul 24 1991 | ALZA Corporation | Transdermal delivery device |
5466217, | Jun 02 1992 | ALZA Corporation | Iontophoretic drug delivery apparatus |
5470349, | Jun 18 1991 | Courage & Khazaka Electronic GmbH | Device for treating inflammatory skin changes in the initial stage, and method for using same |
5494679, | Jan 22 1992 | VYTERIS, INC | Molecules for iontophoretic delivery |
5501705, | Oct 31 1988 | Method for the treatment of psoriasis with electric current | |
5514167, | Oct 24 1994 | MGB Technologies Corporation | Hand holdable human skin treatment apparatus |
5558632, | Jul 21 1989 | IOMED, LLC; ENCORE MEDICAL ASSET CORORATION | Electrodes for iontophoresis |
5562607, | Jan 18 1995 | ALZA Corporation | Electrotransport device having reusable controller power saver |
5589563, | Apr 24 1992 | POLYMER TECHNOLOGY GROUP, THE | Surface-modifying endgroups for biomedical polymers |
5603693, | Sep 10 1993 | Asulab S.A. | Three part device for the transdermic administration of drugs by electrophoresis or iontophoresis |
5607461, | Oct 20 1995 | NEXMED HOLDINGS, INC | Apparatus and method for delivering electrical stimulus to tissue |
5607691, | Jun 12 1992 | Affymax Technologies N.V. | Compositions and methods for enhanced drug delivery |
5618275, | Oct 27 1995 | Sonex International Corporation | Ultrasonic method and apparatus for cosmetic and dermatological applications |
5658247, | Oct 03 1994 | MEDICAL IONOSONIC TECHNOLOGIES, LLP | Ionosonic drug delivery apparatus |
5667487, | Apr 07 1993 | MEDICAL IONOSONIC TECHNOLOGIES, LLP | Ionosonic drug delivery apparatus |
5668170, | Jul 13 1994 | ALZA Corporation | Composition and method enhancing transdermal electrotransport agent delivery |
5676648, | May 08 1996 | HG MEDICAL TECHNOLOGIES LLC | Iontophoretic drug delivery apparatus and method for use |
5688233, | Aug 17 1992 | Genetronics, Inc. | Electronincorporation enhanced transdermal delivery of molecules |
5697896, | Dec 08 1994 | ALZA Corporation | Electrotransport delivery device |
5700457, | Jan 21 1994 | CYGNUS, INC | Processed product for skin and hair treatment |
5711761, | Oct 29 1984 | ALZA Corporation | Iontophoretic drug delivery |
5713846, | Sep 27 1996 | VYTERIS, INC | Iontophoretic drug delivery system, including method for activating same for attachment to patient |
5722397, | Nov 15 1993 | Nitto Denko Corporation | Enhancement of transdermal monitoring applications with ultrasound and chemical enhancers |
5725817, | Nov 12 1992 | BRIDGE BLOOD TECHNOLOGIES LLC, NEW YORK LIMITED LIABILITY COMPANY | Iontophoretic structure for medical devices |
5733255, | Oct 15 1996 | Novartis Finance Corporation | Thermopile powered transdermal drug delivery device |
5755750, | Nov 08 1996 | FLORIDA, UNIVERSITY OF | Method and apparatus for selectively inhibiting activity in nerve fibers |
5788666, | Jun 15 1995 | Encore Medical Corporation; Encore Medical Asset Corporation | Iontophoresis electrode |
5795321, | Sep 30 1994 | VYTERIS, INC | Iontophoretic drug delivery system, including removable controller |
5797867, | Sep 27 1996 | VYTERIS, INC | Iontophoretic drug delivery system, including method for activating same for attachment to patient |
5830175, | Sep 28 1995 | VYTERIS, INC | Iontophoretic drug delivery system, including disposable patch |
5840057, | Jan 27 1995 | Device for iontophoretic physiotherapy with frozen medicament crystals | |
5846217, | Jul 29 1997 | ENCORE MEDICAL ASSET CORORATION | Iontophoretic bioelectrode and method of using same |
5879323, | May 08 1996 | HG MEDICAL TECHNOLOGIES LLC | Method for iontophoretic delivery of antiviral agents |
5882676, | May 26 1995 | ALZA Corporation | Skin permeation enhancer compositions using acyl lactylates |
5908401, | May 08 1996 | HG MEDICAL TECHNOLOGIES LLC | Method for iontophoretic delivery of antiviral agents |
5919155, | Dec 31 1992 | ALZA Corporation | Electrotransport system having flexible connector means |
5931859, | Sep 30 1998 | Facial toning system | |
5935598, | Jun 30 1996 | VYTERIS, INC | Iontophoretic delivery of cell adhesion inhibitors |
5961482, | Jul 25 1986 | Rutgers, The State University of New Jersey | Iontotherapeutic device and process and iontotherapeutic unit dose |
5961483, | Sep 30 1996 | VYTERIS, INC | Iontophoretic delivery of cell adhesion inhibitors |
5968005, | Jan 07 1998 | IRVINE BIOMEDICAL, INC | Devices and means for treating canker sores |
5968006, | Nov 04 1997 | Genetronics, Inc. | Method and apparatus for a combination of electroporation and iontophoresis for the delivery of drugs and genes |
5983130, | Jun 07 1995 | ALZA Corporation | Electrotransport agent delivery method and apparatus |
600290, | |||
6004309, | Mar 30 1990 | ALZA CORPORAITON | Method and apparatus for controlled environment electrotransport |
6004547, | Sep 29 1997 | AGRICULTURE, THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF | Apparatus and method for local application of polymeric material to tissue |
6006130, | Jun 17 1994 | Hisamitsu Pharmaceutical Co. | Iontophoresis electrode and iontophoresis device using the electrode |
6018679, | Jan 29 1997 | Novartis AG | Iontophoretic transdermal delivery and control of adverse side-effects |
6023639, | May 01 1998 | Non-invasive bodily fluid withdrawal and monitoring system | |
6032073, | Apr 07 1995 | Novartis AG | Iontophoretic transdermal system for the administration of at least two substances |
6038485, | Jun 12 1997 | Axelgaard Manufacturing Co., Ltd. | Current-controlling electrode |
6041252, | Jun 07 1995 | ICHOR MEDICAL SYSTEMS, INC | Drug delivery system and method |
6041253, | Dec 18 1995 | MASSACHUSETTS INSTITUTE OF TECHNOLOGY A CORPORATION OF COMMONWEALTH OF MASSACHUSETTS | Effect of electric field and ultrasound for transdermal drug delivery |
6048545, | Jun 24 1994 | EQUACHEM, LLC | Liposomal delivery by iontophoresis |
6057374, | Nov 14 1994 | ALZA Corporation | Composition, device, and method for electrotransport agent delivery |
6101411, | Sep 24 1998 | Dilation enhancer | |
6167302, | Apr 16 1996 | IOMED, LLC; ENCORE MEDICAL ASSET CORORATION | Device for transcutaneous administration of medications using iontophoresis |
AT232642, | |||
EP617979, | |||
FR1445703, | |||
GB299553, | |||
WO9006153, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 27 1999 | Biophoretic Therapeutic Systems, LLC | (assignment on the face of the patent) | / | |||
Sep 29 2005 | Biophoretic Therapeutic Systems, LLC | TRANSPORT PHARMACEUTICALS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016621 | /0042 | |
Apr 10 2009 | TRANSPORT PHARMACEUTICALS, INC | General Electric Capital Corporation | SECURITY AGREEMENT | 022529 | /0922 | |
Oct 30 2009 | TRANSPORT PHARMACEUTICALS, INC | NITRIC BIOTHERAPEUTICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023456 | /0269 | |
Oct 30 2009 | General Electric Capital Corporation | TRANSPORT PHARMACEUTICALS, INC | TERMINATION AND RELEASE OF SECURITY INTEREST RECORDED AT REEL 022529, FRAME 0922 | 023456 | /0389 | |
Oct 30 2009 | NITRIC BIOTHERAPEUTICS, INC | TRANSPORT PHARMACEUTICALS, INC | SECURITY AGREEMENT | 023456 | /0433 | |
Oct 30 2009 | TRANSPORT PHARMACEUTICALS, INC | General Electric Capital Corporation | ASSIGNMENT OF SECURITY INTEREST IN INTELLECTUAL PROPERTY | 023456 | /0493 | |
Apr 04 2011 | General Electric Capital Corporation | NITRIC BIOTHERAPEUTICS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026097 | /0089 |
Date | Maintenance Fee Events |
Aug 14 2006 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Sep 09 2010 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Dec 09 2006 | 4 years fee payment window open |
Jun 09 2007 | 6 months grace period start (w surcharge) |
Dec 09 2007 | patent expiry (for year 4) |
Dec 09 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 09 2010 | 8 years fee payment window open |
Jun 09 2011 | 6 months grace period start (w surcharge) |
Dec 09 2011 | patent expiry (for year 8) |
Dec 09 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 09 2014 | 12 years fee payment window open |
Jun 09 2015 | 6 months grace period start (w surcharge) |
Dec 09 2015 | patent expiry (for year 12) |
Dec 09 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |