A cold cathode closed drift ion source is provided with segregated gas flow. A first gas may be caused to flow through or along a path around a peripheral portion of an anode so as to pass through the electric gap between the anode and cathode. A second gas (different from the first gas) may be caused to flow toward the ion emitting slit, without much of the second gas having to pass through the electric gap(s). If it is desired to utilize a gas which produces insulative material (e.g., an organosilicon gas), this gas may be used as the second gas. Accordingly, insulative material buildup in the electric gap between the anode and cathode may be reduced, and changes in beam chemistry can be achieved without unduly altering ion beam characteristics.
|
16. An ion beam source capable of emitting an ion beam toward a substrate, the ion beam source comprising:
an anode and a cathode, with an electrical gap defined between said anode and said cathode; at least one first gas flow aperture or channel for enabling a first gas to flow through said electrical gap toward an aperture in said cathode; and at least one second gas flow channel or aperture for enabling a second gas to flow through said second gas flow channel or aperture toward said aperture in said cathode without much of the second gas having to flow through said electrical gap.
13. A method of emitting an ion beam toward a substrate, the method comprising the steps of:
providing an ion beam source including an anode and a cathode, so that an electrical gap is provided between the anode and cathode; causing a first gas to flow through a first flow area around a periphery of the anode and through the electrical gap toward an aperture defined in the cathode; causing a second gas to flow through a second gas flow channel or aperture defined in a body of the anode and toward the aperture in the cathode; and ionizing at least a portion of at least one of the first and second gases proximate the aperture in the cathode and causing an ion beam to be directed from the aperture in the cathode toward the substrate.
0. 20. A method of ion beam depositing a layer on a substrate, the method comprising:
providing an ion source including a cathode, an anode located proximate an aperture defined in the cathode, and at least one magnet for generating a magnetic field proximate the aperture defined in the cathode, wherein an ion beam is emitted toward the substrate from an area in or proximate the aperture defined in the cathode; causing a maintenance gas to flow by the anode and thereafter into the magnetic field proximate the aperture defined in the cathode so that ions resulting from the maintenance gas flow through the aperture defined in the cathode before reaching the substrate in the ion beam; and causing a depositing gas, different from the maintenance gas, to approach the aperture defined in the cathode from an opposite side thereof, so that the maintenance gas and the depositing gas approach the aperture defined in the cathode from opposite sides of the cathode.
11. An ion beam source capable of emitting an ion beam toward a substrate, the ion beam source comprising:
a cathode; an anode located at least partially between respective portions of said cathode, said anode including an inner periphery and an outer periphery; an electrical gap defined between said anode and said cathode; at least one magnet for generating a magnetic field proximate an ion emitting aperture defined in said cathode, wherein an ion beam is emitted toward a the substrate from an area in or proximate said ion emitting aperture; at least one first gas flow aperture or channel for enabling a first gas to flow around a periphery of the anode and through said electrical gap toward said ion emitting aperture; and at least one second gas flow channel or aperture located within a body of said anode between inner and outer peripheries of said anode, said second gas flow channel or aperture for enabling a second gas to flow through said second gas flow channel or aperture toward said ion emitting aperture.
0. 21. A method of ion beam depositing a layer on a substrate, the method comprising:
providing an ion source including a first electrode, a second electrode located proximate an aperture defined in the first electrode, and at least one magnet for generating a magnetic field proximate the aperture defined in the first electrode, wherein an ion beam is emitted toward the substrate from an area in or proximate the aperture defined in the first electrode; causing a maintenance gas to flow by the second electrode and thereafter into the magnetic field proximate the aperture defined in the first electrode so that ions resulting from the maintenance gas flow through the aperture defined in the first electrode before reaching the substrate in the ion beam; and causing a depositing gas, different from the maintenance gas, to approach the aperture defined in the first electrode from an opposite side thereof, so that the maintenance gas and the depositing gas approach the aperture defined in the first electrode from opposite sides thereof.
0. 17. An ion beam source capable of emitting an ion beam toward a substrate, the ion beam source comprising:
a cathode; an anode located proximate an aperture defined in the cathode; at least one magnet for generating a magnetic field proximate the aperture defined in the cathode, wherein an ion beam is emitted toward the substrate from an area in or proximate the aperture defined in the cathode; a first gas flow aperture or channel for enabling a maintenance gas to flow by the anode and thereafter into the magnetic field proximate the aperture defined in the cathode so that ions resulting from the maintenance gas flow through the aperture defined in the cathode before reaching the substrate; and a second gas flow aperture or channel for enabling a depositing gas, different from the maintenance gas, to flow through the second gas flow aperture or channel and approach the aperture defined in the cathode from a side thereof opposite the first gas flow aperture or channel, so that the maintenance gas and the depositing gas approach the aperture defined in the cathode from opposite sides of the cathode.
1. An ion beam source with a closed loop ion emitting slit capable of emitting an ion beam toward a substrate, the ion beam source comprising:
a hollow cathode; an anode located at least partially in a portion of said hollow cathode and spaced from said cathode in a manner so as to form an electrical gap between said anode and said cathode through which electrons flow, said anode including an inner periphery and an outer periphery; at least one magnet for generating a magnetic field proximate a closed loop slit formed in said cathode, wherein an ion beam is emitted toward a the substrate from an area in or proximate said slit; a first gas flow aperture or channel located adjacent a periphery of said anode for enabling a first gas to flow around the periphery of the anode and through said electrical gap toward said slit; and at least one second gas flow channel or aperture located within a body of said anode between said inner and outer peripheries of said anode, said at least one second gas flow channel or aperture for enabling a second gas to flow through said second gas flow channel or aperture toward said slit such that at least a portion of the second gas flowing through said second gas flow channel or aperture reaches said closed loop slit without having to pass through said electrical gap between said anode and said cathode.
2. The ion beam source of
3. The ion beam source of
4. The ion beam source of
5. The ion beam source of
6. The ion beam source of
7. The ion beam source of
9. The ion beam source of
wherein another gas source is provided for directing a depositing gas toward a magnetic field (MF) proximate said slit via at least one gas flow aperture or channel located at a position such that said top wall of said cathode is at least partially located between said at least one gas flow aperture or channel and a portion of said anode, so that the first gas and said depositing gas from said another source are directed toward the magnetic field (MF) proximate said slit from opposite sides of said top wall of said cathode.
10. The ion beam source of
12. The ion beam source of
14. The method of
15. The method of
causing an inert gas toflow through the first flow area around a periphery of the anode and through the electrical gap toward the aperture defined in the cathode; causing a depositing gas, including more insulative element material than the first gas, to flow through the second gas flow channel or aperture defined in the body of the anode and toward the aperture in the cathode; and ionizing at least a portion of the depositing gas proximate the aperture in the cathode and causing an ion beam to be directed from the aperture in the cathode toward the substrate.
0. 18. The ion beam source of
0. 19. The ion beam source of
|
This invention relates to a cold cathode ion beam deposition apparatus with segregated gas flow, and corresponding method. More particularly, this invention relates to a cold cathode ion beam deposition apparatus wherein different gases are caused to flow through different flow channels toward an area of energetic electrons in order to provide a more efficient ion beam deposition apparatus and corresponding method.
An ion source is a device that causes gas molecules to be ionized and then focuses, accelerates, and emits the ionized gas molecules and/or atoms in a beam toward a substrate. Such an ion beam may be used for various technical and technological purposes, including but not limited to, cleaning, activation, polishing, etching, and/or deposition of thin film coatings. Exemplary ion sources are disclosed, for example, in U.S. Pat. Nos. 6,037,717; 6,002,208; and 5,656,819, the disclosures of which are all hereby incorporated herein by reference.
Referring to
Working gas supply aperture or hole 21 is formed in bottom wall 9. Flat top wall 11 functions as an accelerating electrode. A magnetic system in the form of a cylindrical permanent magnet 23 with poles N and S of opposite polarity is placed inside housing 3 between bottom wall 9 and top wall 11. The N-pole faces flat top wall 11, while the S-pole faces bottom wall 9 of the ion source. The purpose of the magnetic system, including magnet 23 with a closed magnetic circuit formed by the magnet 23, cathode 5, side wall(s) 7, and bottom wall 9, is to induce a substantially transverse magnetic field (MF) in an area proximate ion emitting slit 15.
A circular or oval shaped anode 25, electrically connected to positive pole 27 of electric power source 29, is arranged in the interior of housing 3 so as to at least partially surround magnet 23 and be approximately concentric therewith. Anode 25 may be fixed inside the housing by way of ring 31 (e.g., of ceramic). Anode 25 defines a central opening 33 therein in which magnet 23 is located. Negative pole 35 of electric power source 29 is connected to housing 3 (and thus to cathode 5) generally at 37, so that the cathode and housing are grounded (GR).
Located above housing 3 (and thus above cathode 5) of the ion source of
The conventional ion beam source of
The ion beam source of
For purposes of example, consider the situation where a silane gas 57 is utilized by the ion source of
Moreover, electrical performance of the ion source is sensitive to parameters of gases within gap 63 (i.e., the electrical gap between the anode 25 and cathode 5). For example, electrical performance of the source is sensitive to characteristics such as the density of the gas within gap 63, the residence time of the gas within gap 63, and/or the molecular weight of the gas within gap 63. Changes in gas chemistry at gap 63 (intentional or unintentional) can alter the characteristics of ion beam 53 (e.g., with regard to energy and/or current density). This problem is particularly troublesome at high total flow conditions where the beam 53 can undergo a significant discontinuous transition between two operational modes (e.g., high energy/low current and low energy/high current).
U.S. Pat. Nos. 5,508,368; 5,888,593: and 5,973,447 relate to ion sources, each of these patents being hereby incorporated herein by reference. Unfortunately, the sources of the '368, '593 and '447 patents primarily relate to thermionic emissive (hot) electron cathodes. This is undesirable, as cold-cathode sources such as that of the instant invention typically operate at higher voltages and/or lower gas flows. These advantages of cold-cathode sources translate into the ability to deposit much harder materials more efficiently (e.g., ta-C versus conventional DLC), and/or the need for fewer or less powerful pump(s). Additional problems with conventional ion sources are discussed in U.S. Pat. No. 6,002,208, in the context of the known Kaufman-type source (e.g., see col. 1 of the '208 patent where it is indicated that such sources are disadvantageous in that they are not suitable for treating large surfaces and/or have low intensity).
In view of the above, it will be apparent to those skilled in the an that there exists a need for an ion source including a more efficient gas flow design.
An object of this invention is to provide a cold cathode closed drift ion source including a segregated gas flow system.
Another object of this invention is to provide a cold cathode ion source in which a one gas is caused to flow through the electrical gap between the anode and cathode toward an ion emitting slit, and another gas is caused to flow toward the slit but without much of said another gas passing through the electrical gap between the anode and cathode (i.e., preferably less than 50% of said another gas passes through this electrical gap, more preferably less than about 30%, and most preferably less than about 20%).
Another object of this invention is to provide a segregated gas flow arrangement in the context of a cold cathode ion source in order to reduce the likelihood of undesired insulative material buildups in the electrical gap between the anode and cathode.
Yet another object of this invention is to provide an ion source including a first gas flow path and a second gas flow path; wherein the first gas flow path accommodates the flow of a first gas toward the ion emitting slit and the second path accommodates the flow of a second gas (different from the first gas) toward the ion emitting slit.
Another object of this invention is to fulfill any and/or all of the aforesaid objects and/or needs.
Generally speaking, this invention fulfills any one or more of the aforesaid needs and/or objects by providing an ion beam source capable of emitting an ion beam toward a substrate, the ion beam source comprising:
a cathode;
an anode located at least partially between respective portions of said cathode, said anode including an inner periphery and an outer periphery;
an electrical gap defined between said anode and said cathode;
a magnet for generating a magnetic field proximate an ion emitting aperture defined in said cathode, wherein an ion beam is emitted toward a substrate from an area in or proximate said ion emitting aperture;
at least one first gas flow aperture or channel for enabling a first gas to flow around a periphery of the anode and through said electrical gap toward said ion emitting aperture; and
al least one second gas flow channel or aperture located within a body of said anode between inner and outer peripheries of said anode; said second gas flow channel or aperture for enabling a second gas to flow through said second gas flow channel or aperture toward said ion emitting aperture.
This invention further fulfills any one or more of the aforesaid needs and/or objects by providing An ion beam source capable of emitting an ion beam toward a substrate, the ion beam source comprising:
an anode and a cathode, with an electrical gap defined between said anode and said cathode;
at least one first gas flow aperture or channel for enabling a first gas to flow through said electrical gap toward an aperture or slit in said cathode; and
at least one second gas flow channel or aperture for enabling a second gas to flow through said second gas flow channel or aperture toward said aperture or slit without much of the second gas having to flow through said electrical gap.
Certain embodiments of this invention still further fulfill one or more of the aforesaid needs and/or objects by providing a method of emitting an ion beam toward a substrate, the method comprising the steps of:
providing an ion beam source including an anode and a cathode, so that an electrical gap is provided between the anode and cathode;
causing a first gas to flow through a first flow area around a periphery of the anode and through the electrical gap toward an aperture or slit defined in the cathode;
causing a second gas to flow through a second gas flow channel or aperture defined in a body of the anode and toward the aperture or slit in the cathode: and
ionizing at least a portion of at least one of the fast and second gases proximate the aperture or slit in the cathode and causing an ion beam to be directed from the aperture or slit in the cathode toward the substrate.
In the following description, for purposes of explanation and not limitation, specific details are set forth in order to provide an understanding of certain embodiments of the present invention. However, it will apparent to those skilled in the art that the present invention may be practiced in other embodiments that depart from these specific details. In other instances, detailed descriptions of well known devices, gases, fasteners, and other components/systems are omitted so as to not obscure the description of the present invention with unnecessary detail. Referring now more particularly to the accompanying drawings, in which like reference numerals indicate like parts/elements/components/areas throughout the several views.
The terms "aperture", "channel" and "slit" are used herein for purposes of convenience are not intended to be limited as to shape or size. For example, an aperture herein may be of any shape or size (e.g., circular, rectangular, triangular, semi-circular, trapezoidal, channel-shaped, slit-shaped, or the like). Thus, a "slit"may be both a slit as well as an aperture herein, as may a channel. Likewise, the term "aperture" as used herein includes simple holes as well as apertures in the form of slit, channels, and the like.
The cold cathode closed drift ion source of
Anode 25 includes a body or main body defining an inner periphery 15a and an outer periphery 15b. Thus, within the main body of the anode 25 is an aperture in which magnet 23 is located. The body of anode 25 includes gas inlet aperture 71 defined therein. The inner and outer peripheries of the anode 25 may be circular, oval, elliptical, triangular, rectangular, or otherwise shaped in different embodiments of this invention. The inner and outer peripheries of the anode 25 may be concentric in certain embodiments, and non-concentric in other embodiments of this invention.
Referring to
The particular magnetic circuit illustrated in the drawings is for purposes of example only, and clearly is not intended to be limiting. The magnet may be positioned as illustrated within the circumference of anode 25, or instead it may be provided at other locations in order to produce the transverse magnetic field in slit 15. In other words, there are many different ways of producing the transverse field in slit 15. For example, as an alternative to the illustrated embodiments, cylindrical magnets could be embedded in the outer cylindrical housing with all or most of the cylindrical magnets having polarities oriented in approximately the same direction and aligned along the axis of the ion source. Then, the central magnet could be replaced with magneto-conductive material, and a closed circuit (with no or minimal gaps) that connects to both surfaces defining slit 25 is till obtained.
In accordance with different embodiments of this invention, different gases are caused to flow toward slit 15 by way of different flow paths. This is done in order to reduce the likelihood of insulative material buildup in electric gap 63 and/or to render the ion source more efficient in nature.
Referring to
In general, depositing gas (e.g., silane, siloxane, acetylene, etc.) is utilized whenever it is desired to deposit a thin film coating or layer(s) on surface 46 of substrate 45 where the coating is to include material from the depositing gas. In such a case, molecules of the depositing gas are ionized proximate slit 15 by the active electrons which are contained throughout much of the magnetic field (MF). These ions from the depositing gas are then accelerated outwardly as at least part of beam 53 toward the substrate and are deposited on surface 46 thereof. In such a manner, thin films may be deposited on substrate 45, such as diamond-like carbon (DLC) thin films, and the like. Exemplary depositing gases (e.g., C2H2 and/or TMS) which may be used to deposit DLC and other materials on a substrate are disclosed along with the resulting thin film coatings in U.S. Ser. Nos. 09/303,548, filed May 3, 1999, and 09/442,805, filed Nov. 18, 1999, the disclosures of which are both hereby incorporated herein by reference.
As illustrated in
Once the molecules of the depositing gas have flowed through flow channel or aperture 71 in anode 25 and reached the MF area proximate slit 15, they are bombarded by active electrons located in the MF proximate the slit and ionized so that they are expelled as at least pact of ion beam 53 toward substrate 45 (e.g., so that a thin film coating(s) can be deposited on the substrate; where the chemical make-up of such a coating(s) depends on the type of gas(es) used).
Maintenance gas (e.g., argon, krypton or xenon) may be utilized in combination with depositing gas in certain embodiments of this invention. However, as illustrated in
Accordingly, it can be seen that in many embodiments it may be desirable to utilize a first gas as a depositing gas(es) (e.g., silane, siloxane, silazane, cyclohexane, acetylene, etc.) which produces substantial insulative deposits (e.g., SiC); and a second gas(es) (e.g., argon, xenon, krypton, etc.) as a maintenance gas which will not typically cause much material buildup on the anode or cathode in gap(s) 63. Thus, the non-insulative maintenance gas passed through one or more of channels or paths 73, 75 may be utilized to control and/or determine the electrical characteristics of ion beam 53, while the depositing gas injected through flow path or aperture 71 within the anode itself may be utilized to determine which ions are to be expelled in beam 53 for deposition on the surface of substrate 45 (it is noted that in certain embodiments of this invention all maintenance gas flows through channels 73 and/or 75 and none through channel 71; while in other embodiments of this invention dome maintenance gas may flow through 71 and/or a portion of depositing gas may flow through channel(s) 73, 75 in addition to channel 71). Thus, in certain embodiments of this invention the depositing gas may be changed and/or adjusted with relative frequency, without having to worry about adversely affecting or undesirably changing the electrical characteristics (e.g., ion energy) of the beam 53.
In short, by injecting the depositing gas through a central portion the body of anode 25 (i.e., between the inner and outer peripheries 15a and 156, respectively, of the anode) beneath slit 15 so that much of the depositing gas does not have to pass through the direct electrical gap(s) 63 between the anode and cathode, less insulative material deposition on the anode and/or cathode occurs in gap(s) 63. Moreover, when it is desired to change the material for a coating and/or layer being deposited on substrate 45, the depositing gas can be changed without unduly altering the electrical characteristics of the ion beam 53 (because the maintenance gas need not be changed). Thus, changes in beam 53 chemistry can be achieved without unduly altering the characteristics of the beam itself.
The reduction of insulative material buildup in gaps 63 is of particular importance when producing insulating coatings, such as silicon inclusive diamond-like carbon layers/coatings which are highly electrically insulating. Such insulative deposits on the anode and/or cathode in gap(s) 63 can disrupt and/or terminate the inter-electrode plasma (the plasma which generates the beam ions) between the anode and cathode.
As discussed above, the ion source of
In exemplary etching embodiments of this invention, a chemically reactive gas may be utilized and injected through flow path 71 instead of the aforesaid depositing gas. For example, if it is desired to use the ion source to etch a substrate 45 of plastic material, a maintenance gas of argon may be used in combination with a reactive gas of oxygen. The oxygen would be passed through flow channel 71 in the body of the anode (surrounding the magnet), while the argon would be injected through one or both of flow paths 73, 75 around the inner and outer peripheries of the anode 25. Thus, the oxygen and argon ions mix in the area of slit 15, but many of the oxygen ions which were injected through aperture 71 would not have passed through electric gap(s) 63. The mixture of oxygen and argon are ionized by electrons in the MF, and these ions are expelled toward the plastic substrate in beam 53. The oxygen ions of the beam react with the plastic surface of the substrate in order to etch the same. In other embodiments where it is desired to etch the surface of a substrate 45 of glass, argon maintenance gas may be utilized in combination with CF4 and/or O2reactive gases. In other words, either a depositing gas or a non-depositing reactive gas may be injected through aperture 71 directly into slit 15 (in combination with maintenance gases) in different embodiments of this invention.
As shown in
When using source(s) 82, the depositing gas introduced at 81 is directed toward MF where active electrons are present. These reactive electrons ionize the depositing gas so that the ions thereof may be expelled from the vicinity of slit 15 as at least part of beam 53 toward substrate 45 so that they can be deposited on surface 46.
The embodiment of
For example, refer to the embodiment of
Once given the above disclosure, many other features, modifications, and improvements will become apparent to the skilled artisan. Such other features, modifications, and improvements are therefore considered to be a part of this invention, the scope of which is to be determined by the following claims and equivalents thereof.
Patent | Priority | Assignee | Title |
10145005, | Aug 19 2015 | GUARDIAN GLASS, LLC | Techniques for low temperature direct graphene growth on glass |
10164135, | Aug 07 2009 | GUARDIAN GLASS, LLC | Electronic device including graphene-based layer(s), and/or method or making the same |
10167572, | Aug 07 2009 | GUARDIAN GLASS, LLC | Large area deposition of graphene via hetero-epitaxial growth, and products including the same |
10431354, | Mar 15 2013 | GUARDIAN GLASS, LLC | Methods for direct production of graphene on dielectric substrates, and associated articles/devices |
6960262, | Jun 17 2002 | Sony Corporation | Thin film-forming apparatus |
6987364, | Sep 03 2003 | GUARDIAN GLASS, LLC | Floating mode ion source |
6988463, | Oct 18 2002 | GUARDIAN GLASS, LLC | Ion beam source with gas introduced directly into deposition/vacuum chamber |
7030390, | Sep 09 2003 | GUARDIAN GLASS, LLC | Ion source with electrode kept at potential(s) other than ground by zener diode(s), thyristor(s) and/or the like |
7183559, | Nov 12 2004 | GUARDIAN GLASS, LLC | Ion source with substantially planar design |
7405411, | May 06 2005 | GUARDIAN GLASS, LLC | Ion source with multi-piece outer cathode |
7445273, | Dec 15 2003 | GUARDIAN GLASS, LLC | Scratch resistant coated glass article resistant fluoride-based etchant(s) |
7883776, | Jan 25 2002 | CARDINAL CG COMPANY | Protective layers for optical coatings |
8236118, | Aug 07 2009 | GUARDIAN GLASS, LLC | Debonding and transfer techniques for hetero-epitaxially grown graphene, and products including the same |
8460747, | Mar 04 2010 | GUARDIAN GLASS, LLC | Large-area transparent conductive coatings including alloyed carbon nanotubes and nanowire composites, and methods of making the same |
8497155, | Jun 05 2012 | GUARDIAN GLASS, LLC | Planarized TCO-based anode for OLED devices, and/or methods of making the same |
8507797, | Aug 07 2009 | GUARDIAN GLASS, LLC | Large area deposition and doping of graphene, and products including the same |
8518472, | Mar 04 2010 | GUARDIAN GLASS, LLC | Large-area transparent conductive coatings including doped carbon nanotubes and nanowire composites, and methods of making the same |
8575565, | Oct 10 2011 | GUARDIAN GLASS, LLC | Ion source apparatus and methods of using the same |
8591680, | Aug 07 2009 | GUARDIAN GLASS, LLC | Debonding and transfer techniques for hetero-epitaxially grown graphene, and products including the same |
8604332, | Mar 04 2010 | GUARDIAN GLASS, LLC | Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same |
8609975, | Mar 04 2010 | GUARDIAN GLASS, LLC | Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same |
8697180, | Mar 04 2010 | GUARDIAN GLASS, LLC | Large-area transparent conductive coatings including alloyed carbon nanotubes and nanowire composites, and methods of making the same |
8808810, | Dec 15 2009 | GUARDIAN GLASS, LLC | Large area deposition of graphene on substrates, and products including the same |
8877548, | Jun 05 2012 | GUARDIAN GLASS, LLC | Planarized TCO-based anode for OLED devices, and/or methods of making the same |
9136086, | Dec 08 2008 | GENERAL PLASMA, INC | Closed drift magnetic field ion source apparatus containing self-cleaning anode and a process for substrate modification therewith |
9418770, | Aug 07 2009 | GUARDIAN GLASS, LLC | Large area deposition and doping of graphene, and products including the same |
9593019, | Mar 15 2013 | GUARDIAN GLASS, LLC | Methods for low-temperature graphene precipitation onto glass, and associated articles/devices |
Patent | Priority | Assignee | Title |
2672560, | |||
3984692, | Jan 04 1972 | IONIZATION APPARATUS AND METHOD FOR MASS SPECTROMETRY | |
4122347, | Mar 21 1977 | Ion source | |
4303865, | Aug 25 1978 | COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANIZATION, A BODY CORPORATE, LIMESTONE AVE , CAMPBELL, AUSTRALIA | Cold cathode ion source |
4401539, | Jan 30 1981 | Hitachi, Ltd. | Sputtering cathode structure for sputtering apparatuses, method of controlling magnetic flux generated by said sputtering cathode structure, and method of forming films by use of said sputtering cathode structure |
4434038, | Sep 15 1980 | Hauzer Industries bv | Sputtering method and apparatus utilizing improved ion source |
4569746, | May 17 1984 | Novellus Systems, Inc | Magnetron sputter device using the same pole piece for coupling separate confining magnetic fields to separate targets subject to separate discharges |
4572776, | Dec 05 1983 | Balzers Und Leybold Deutschland Holding AG | Magnetron cathode for sputtering ferromagnetic targets |
4595482, | May 17 1984 | Varian Semiconductor Equipment Associates, Inc | Apparatus for and the method of controlling magnetron sputter device having separate confining magnetic fields to separate targets subject to separate discharges |
4606806, | May 17 1984 | Varian Semiconductor Equipment Associates, Inc | Magnetron sputter device having planar and curved targets |
4652795, | Mar 14 1985 | DENTON VACUUM INC , A CORP OF NJ | External plasma gun |
4657654, | May 17 1984 | Varian Semiconductor Equipment Associates, Inc | Targets for magnetron sputter device having separate confining magnetic fields to separate targets subject to separate discharges |
4661228, | May 17 1984 | Varian Associates, Inc.; VARIAN ASSOCIATES, INC , A CORP OF DE | Apparatus and method for manufacturing planarized aluminum films |
4677904, | May 20 1985 | Matsushita Electric Industrial Co., Ltd. | Fluid flow control assembly |
4710283, | Jan 30 1984 | DENTON VACUUM, INC | Cold cathode ion beam source |
4865710, | Mar 31 1988 | Wisconsin Alumni Research Foundation | Magnetron with flux switching cathode and method of operation |
4865712, | May 17 1984 | Novellus Systems, Inc | Apparatus for manufacturing planarized aluminum films |
4957605, | Apr 17 1989 | Tokyo Electron Limited | Method and apparatus for sputter coating stepped wafers |
5106470, | Mar 15 1989 | Nihon Shinku Gijutsu Kabushiki Kaisha | Method and device for controlling an electromagnet for a magnetron sputtering source |
5130607, | Jan 24 1989 | Braink AG | Cold-cathode, ion-generating and ion-accelerating universal device |
5407551, | Jul 13 1993 | Von Ardenne Anlagentechnik GmbH; Applied Films Corporation | Planar magnetron sputtering apparatus |
5415754, | Oct 22 1993 | MANLEY, KELLEY | Method and apparatus for sputtering magnetic target materials |
5508368, | Mar 03 1994 | MORGAN CHEMICAL PRODUCTS, INC | Ion beam process for deposition of highly abrasion-resistant coatings |
5656819, | Nov 16 1994 | Sandia Corporation | Pulsed ion beam source |
5736019, | Mar 07 1996 | ANGSTROM SCIENCES, INC | Sputtering cathode |
5851365, | Nov 13 1991 | Corning OCA Corporation | Low pressure reactive magnetron sputtering apparatus and method |
5865961, | Dec 26 1994 | Matsushita Electric Industrial Co., Ltd. | Magnetron sputtering apparatus and method |
5888593, | Mar 03 1994 | MORGAN ADVANCED CERAMICS, INC | Ion beam process for deposition of highly wear-resistant optical coatings |
5889371, | May 10 1996 | Denton Vacuum Inc.; Denton Vacuum Inc | Ion source with pole rings having differing inner diameters |
5973447, | Jul 25 1997 | MORGAN ADVANCED CERAMICS, INC | Gridless ion source for the vacuum processing of materials |
6002208, | Jul 02 1998 | Advanced Ion Technology, Inc. | Universal cold-cathode type ion source with closed-loop electron drifting and adjustable ion-emitting slit |
6037717, | Jan 04 1999 | Advanced Ion Technology, Inc. | Cold-cathode ion source with a controlled position of ion beam |
6139964, | Apr 22 1991 | Ionbond, LLC | Plasma enhancement apparatus and method for physical vapor deposition |
6147354, | Jul 02 1998 | Universal cold-cathode type ion source with closed-loop electron drifting and adjustable ionization gap | |
6153067, | Dec 30 1998 | Advanced Ion Technology, Inc.; Advanced Ion Technology, Inc | Method for combined treatment of an object with an ion beam and a magnetron plasma with a combined magnetron-plasma and ion-beam source |
6238526, | Feb 14 1999 | Advanced Ion Technology, Inc. | Ion-beam source with channeling sputterable targets and a method for channeled sputtering |
6246059, | Mar 06 1999 | Advanced Ion Technology, Inc. | Ion-beam source with virtual anode |
6261424, | May 30 1997 | Patinor AS | Method of forming diamond-like carbon coating in vacuum |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 10 2002 | Guardian Industries Corp. | (assignment on the face of the patent) | / | |||
Aug 01 2017 | Guardian Industries Corp | GUARDIAN GLASS, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044053 | /0318 |
Date | Maintenance Fee Events |
Feb 12 2004 | ASPN: Payor Number Assigned. |
Oct 27 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 27 2005 | M1554: Surcharge for Late Payment, Large Entity. |
Nov 01 2005 | ASPN: Payor Number Assigned. |
Nov 01 2005 | RMPN: Payer Number De-assigned. |
Sep 21 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 19 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 23 2006 | 4 years fee payment window open |
Jun 23 2007 | 6 months grace period start (w surcharge) |
Dec 23 2007 | patent expiry (for year 4) |
Dec 23 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 23 2010 | 8 years fee payment window open |
Jun 23 2011 | 6 months grace period start (w surcharge) |
Dec 23 2011 | patent expiry (for year 8) |
Dec 23 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 23 2014 | 12 years fee payment window open |
Jun 23 2015 | 6 months grace period start (w surcharge) |
Dec 23 2015 | patent expiry (for year 12) |
Dec 23 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |