FIG. 1 is a perspective view conceptually showing the structure of a camera as one embodiment of the present invention. In a camera body 11, angular velocity sensors Sx and Sy for detecting angular velocities in a longitudinal shake direction and a lateral shake direction, respectively, are provided in a plane (the x-y plane in the figure) vertical to an optical axis (the z axis in the figure) of a taking lens 12.
FIG. 2 is a block circuit diagram showing portions related to control of the camera shown in FIG. 1. Referring to FIG. 2, the camera according to the present invention includes a microcomputer μC administrating sequence control of the entire camera, exposure calculation and exposure control. To the microcomputer μC, peripheral circuits CT1 and CT2 which will be described in detail later, some switches for controlling operation of the camera, and a power source for supplying power to the microcomputer and the peripheral circuits CT1 and CT2 are connected.
Peripheral circuit CT1 includes a light measuring circuit LM for measuring brightness of an object, converting the same into a digital signal and transmitting the same to the microcomputer μC, a distance measuring circuit MD for converting an analogue signal indicating the distance supplied from a distance detecting circuit into a digital signal and supplying the same to the microcomputer μC, a lens driving circuit LD for driving a lens for focus adjustment on the basis of the distance obtained according to the data of the distance measuring circuit MD, an exposure control circuit AE having a shutter also used for an aperture for controlling the shutter on the basis of the shutter speed determined on the basis of output of the light measuring circuit LM and also automatically controlling the aperture, and a film sensitivity reading circuit ISO for reading film sensitivity Sv recorded on a film chamber and transmitting the same to the microcomputer μC.
Peripheral circuit CT2 includes angular velocity sensors Sx and Sy for detecting angular velocities in a longitudinal shake direction and a lateral shake direction of the camera and transmitting the camera-shake amount to the microcomputer μC, and a blurring correcting lens control circuit Cxy for driving a lens LC in a plane vertical to the optical axis for correcting blurring which is caused by the camera shake. The shake of the camera is corrected by the blurring correcting lens control circuit Cxy supplying as an output a correction signal to the correcting lens driving circuits Cx and Cy.
The microcomputer μC further includes a display circuit DISP for warning blurring, a zoom encoder ZEN for transmitting a focal length of taking lens 12 which is a zoom lens to the micro computer μC, a flash circuit FL for emitting a flash light and an aperture encoder AVEN for transmitting an aperture value to the microcomputer μC.
Next, switches will be described. Switches connected to the microcomputer μC include a main switch SM which has an ON state for driving a camera and an OFF state for keeping a camera standing still, a preparatory switch S1 which is turned on upon a first stroke of a release button (not shown), a release switch S2 which is turned on upon a second stroke of the release button, and an exposure starting switch SST which is turned on when the shutter starts operating to start exposure. When preparatory switch S1 is turned on, preparatory operation such as the light measuring operation, distance measuring are performed. When the release switch S2 is turned on, exposure control is performed.
next, portions related to a power source will be described. A direct output voltage Vo of power source battery E is supplied to peripheral circuits CT1 and CT2 through a flash circuit FL and first and second feeding transistors Tr1 and Tr2, respectively. A capacitor C1 for back-up is charged by the power source battery E through a diode D1 for reverse current prevention. A charging voltage VDD of capacitor C1 for back-up is supplied to the microcomputer μC, the display circuit DISP and the zoom encoder ZEN, the aperture encoder AVEN. The above-described peripheral circuits CT1, CT2 include circuits of large power consumption, so that the voltage of power source battery E may temporarily decrease when it is being driven. Even in the voltage decrease time, the microcomputer μC is supplied with power from capacitor C1 for back-up, so that it operates properly.
Now, the description about a hardware configuration of the embodiment is completed. Next, the soft wear configuration of the present embodiment will be described.
FIG. 3 is a flow chart showing contents of an interruption SMINT carried out when the main switch SM is operated to be switched from OFF to ON or from ON to OFF. If this interruption SMINT is produced, it is determined first as to whether the main switch SM is ON or not (#5). If the main switch SM is OFF, it is determined that the main switch SM is operated from ON to OFF. As a result, boosting of flash circuit FL is stopped, the first feeding transistor Tr1 is turned off, and power supply to the first peripheral circuit CT1 including light measuring circuit LM and so forth is stopped. Next, the second feeding transistor Tr2 is turned off, and power supplying to the second peripheral circuit CT2 including angular velocity sensors Sx and Sy is stopped. The display is eliminated and the microcomputer μC attains a half state (#65-#75). If the main switch SM is ON in step #5, all the flags are reset and boosting of the flash circuit is started to start charging a capacitor (not shown) of flash circuit FL. Next, the feeding transistor Tr2 is turned on to start supplying power to the second peripheral circuit CT2 including angular velocity sensors Sx and Sy, and a timer T1 is reset and started (#10-#20). The timer T1 is a holding timer for holding power supplying to peripheral circuits CT1 and CT2. Next, a determination is made as to whether preparatory switch S1 is ON or not in the step #25, and if it is ON, the subroutine of S1 ON is carried out in step #30 and the program returns to step #25.
FIG. 4 is a flow chart showing the subroutine of the above-described S1 ON. When the preparatory switch S1 is turned on, boosting of flash circuit FL is stopped (#100). Switch S1 is turned off and a determination is made as to whether a flag S1 OFF F indicating that a hold time (10s) has passed is set or not (#105), and if it is set, it is reset, transistor Tr2 is turned on, and power supply holding timer T1 is reset-started and the program advances to step #125 (#110-#120).
If the flag S1 OFF F is not set in step #105, the program immediately advances to step #125, transistor Tr1 is turned on to supply power to peripheral circuit CT1 and light measuring data and distance measuring data are inputted (#125-#135).
Next, referring to FIG. 5, a subroutine of the light measuring shown in step #130 of FIG. 4 will be described. A brightness value Bv is read from light measuring circuit LM, and the film sensitivity Sv is read from film sensitivity reading circuit ISO. An exposure time TEV is found from the exposure value Ev obtained as exposure value Ev=Bv+Sv, and the program returns (#205-#220).
Referring to FIG. 4 again, next, a focal length F is read from zoom encoder ZEN (#140), a flag FLF indicating flash light emission is reset (#150), and it is detected whether a flash circuit FL has been charged or not (#160). If charging of the flash circuit FL is not completed (when the potential of a terminal CHC shown in FIG. 2 is H, "H" corresponds to high level whereas "L" corresponds to low level hereinafter), the program advances to step #165, and boosting of flash circuit FL is started. Specifically, the potential of a terminal STA is made H (#165). Next, if warning of blurring is made in step #170, a warning display of camera-shake is eliminated and the program returns to step #160 (#170, #175). Here, the warning display is eliminated when flash circuit FL is boosted because the blurring amount is not calculated in boosting in which the voltage of the battery is very likely to fluctuate and the data indicating the blur amount is not precise. When charging of flash circuit FL is completed in step #160 (when the potential of a terminal CHC is L), boosting of flash circuit FL is stopped (the potential of the terminal FTA is made L) and a determination is made as to whether release switch S2 is turned on or not (#180, #185). If release switch S2 is ON, exposure is controlled, and the program returns (#185, #190). If switch S2 is not ON in step #185, a determination is made as to whether switch S1 is ON or not, and if switch S1 is OFF, the program returns (#195). When switch S1 is ON in step #195, the blurring amount is calculated and displayed, and program returns to step #160 (#195-#205).
Referring to FIG. 6, a subroutine of blurring amount calculation shown in step #200 of FIG. 4 will be described. First, angular velocities (shake data) ΔVx and ΔVy are supplied from angular velocity sensors Sx and Sy, respectively (#250). Assuming that the preceding angular velocity Bx is LBx, finding an angular velocity ΔBx in the x direction on the image surface according to the focal length f, a flag BLx flag indicating that the angular velocity (blurring amount) in the x direction is large is reset (#255-#265).
The angular velocity (blurring data) is found according to the focal length because the blurring amount changes with the focal length, which increases as the focal length increases.
Next, details of the blur amount calculation will be described. An angular velocity obtained from outputs from angular velocity sensors Sx and Sy (wherein the electric charge amount is converted into a voltage) is regarded as θ. Here, the camera-shake amount B detected by the angular velocity sensors Sx and Sy can be expressed as follows,
B={dot over (θ)}
A blurring amount Δu in a surface equivalent to that of a film is a function of focal length f of a taking lens 12 at that time and a function of tangent of the blur angular θ. Accordingly,
Δu=ƒ·tanθ (1)
Also, Δu=ƒ·tan (f{dot over (θ)}dt). (2)
Here, when an image velocity on film is FB, then
The speed UB for moving a correcting lens for blurring correction has a constant relationship with blurring velocity, u, and then if a constant is a, the following expression holds.
This Du/dt has a limitation for movement, which is expressed as UBK. Then, the speed UBx at which the correcting lens is to be moved calculated from the obtained angular velocity can be expressed as follows,
In the expression, an index x indicates a value about the x direction. In step #285 of FIG. 6, determination is made as to whether the obtained speed Ubx at which a correcting lens is to be moved for blurring correction is within UBK which is a movable limitation speed or not, in other words, whether the obtained speed to be corrected is within a correctable range or not.
The speed UB at which a correcting lens is to be moved is, UB=a·FB and the following relationships hold,
Ubx=α·FBx
UBy=α·FBy
UBK=α·FBK
That is, the determination in step #285 means the same as the determination about whether |Fbx|≧FBK or not.
Since a blurring amount can be obtained by a product of blurring speed and blurring. It is assumed that exposure time TEV is generally necessary for photographing. In view of this, time usable for correction TK is examined. The time usable for correction TK is found out on the basis that the correcting lens is moved at the correctable maximum speed UBK in one direction.
Returning to step #285 of FIG. 6, when it is determined that the speed Ubx at which a correcting lens is to be moved in an x direction is a correctable speed UBK or more, the program advances to step #290, where it is determined whether the exposure time TEV is longer than the time usable for correction TK or not.
Next, a description will be given to the uncorrectable blurring amount Blx. For the correcting lens limitation speed UBK and the speed at which it is to be moved Ubx, the blurring speed on the film surface is expressed as FBK and Fbx. In this case, if exposure time TEV≧time usable for correction TK, uncorrectable blurring amount Blx=(|Fbx|-FBK)·TK+|Ubx|·(TEV-TK), and,
TEV<TK, then,
Blx=(|Fbx|-FBK)·TEV
then, the program advances to step #330.
FIG. 7 is a diagram showing a lens optical system of a camera with blurring correction according to the present invention. Referring to FIG. 7, the optical system according to the present invention will be described. The optical system of a camera with blurring correcting according to the present invention includes an AF lens AFL driven by an AF motor for focusing, and a group of lenses including a correcting lens LC moving vertically to an optical axis for blurring correction. With an output B of an angular velocity sensor Sx (only x direction is considered here), the correcting lens LC is moved at a speed of UB in the direction designated by the arrow in the figure. When the correcting lens LC is moved at a speed UB in the direction designated by the arrow in the figure, the image on the surface of the film FP moves at a speed of FB. The motor for AF is located in the vicinity of the camera body 11 where an angular velocity sensor Sx is located rather than in the vicinity of the lens optical system.
FIG. 8 is a flow chart schematically showing the method of blurring correction according to the present invention. First, a blurring amount is calculated (#900), and a moving velocity Ubx to be corrected by the correcting lens shown in FIG. 7, exposure time TEV and time usable for correction TK are calculated (#905). Next, on the basis of the above-described calculated results, it is determined whether the correcting lens LC is a lens movable at a speed necessary for correction or not (#910). Specifically, a determination is made as to whether the speed UB at which the correcting lens is to be moved is smaller than the limitation speed UBK of the correcting lens. If a determination is made in step #910 that the speed Ubx at which the correcting lens LC is to be moved is smaller than the limitation speed UBK, the program goes to step #915, and it is determined whether the exposure time TEV exceeds the permittable exposure time TK or not (#915). If it is determined that the exposure time TEV does not exceed the exposure permittable time TK in step #915, tracking for blurring correction is possible since there is no problem in connection to the moving speed for correction of correcting lens LC and exposure time (#925). On the other hand, if the exposure time TEV exceeds the permittable exposure time TK in step #915, tracking for blurring correction is impossible because of a problem concerning exposure time. The case corresponds to the case III described later concerning FIG. 9C.
In the case where the speed Ubx at which the correcting lens LC moves exceeds the limitation speed UBK of the correcting lens in step #910, a determination is made as to whether the exposure time TEV exceeds the permittable exposure time TK or not as well as in step #915 (#920). If it is determined that the exposure time TEV exceeds the permittable exposure time TK in step #920, it corresponds to the case II described concerning FIG. 9B, and if the exposure time TEV does not exceed the permittable exposure time TK, it corresponds to the case I described concerning FIG. 9A. Anyway, in these cases, blurring correction tracking is impossible (#930).
Next, the cases where blurring correction tracking expressed in the case I-case III described above is impossible will be described.
FIGS. 9A-9C are diagrams for showing blurring correction tracking impossible regions in the case corresponding to the cases I-III in which blurring correction tracking is impossible described in step #830 of FIG. 8, respectively. In each figure, an axis of abscissa indicates time and the axis of ordinate indicates the image velocity on the film surface. Accordingly, the area shown in the XY plane shows a distance, or blurring amount and so fourth.
In FIG. 9A, as described in step #930 of FIG. 8, Ubx≧UBK, TEV<TK. In FIGS. 9A-9C, the blurring correction limitation speed is expressed using the image speed Fbx on the film surface and so forth but not using a moving speed Ubx of a correcting lens LC and so forth as in FIG. 8. However, since a proportional relationship exists between them as known from the relationship shown in FIG. 7, it is described using the image speed FBx on the film surface in FIGS. 9A-9C.
In FIG. 9A, as described above, the image speed Fbx on the film surface exceeds the correctable image speed |FBX| on the film surface, so that |Fbx|-FBK corresponds to a blurring amount for a unit time. By multiplying the same by the exposure time TEV, that is, by the portion shown by the oblique lines in FIG. 9A, the blurring amount is expressed. Here, the camera-shake amount detected by the angular velocity sensor |Bx| is assumed to be constant.
FIG. 9B shows a case in which the image speed Fbx on the film surface exceeds the correctable speed FBK of the image on the film surface, and also the exposure time TEV exceeds the time usable for correction TK. As in the case of FIG. 9A, the portion designated by oblique lines indicates the blurring amount which cannot be corrected. Accordingly, the blurring amount in this case can be obtained by adding (|Fbx|-FBK)·TK and a value obtained by multiplying time which become unusable for correction (TEV-TK) and a blurring amount for a unit time Fbx, that is, |Fbx|·(TEV-TK).
FIG. 9C shows a case where the image speed Fbx on the film surface is smaller than the correctable limit speed FBK, so that blurring tracking is possible concerning the image speed on the film surface, but the exposure time TEV exceeds the time usable for correction TK. In this case, the margin amount in the image speed on the film surface, or the margin amount for blurring expressed as (FBK-|Fbx|)·TK compensates for a part of the blurring amount on the exposure time side.
As described above, a blurring amount impossible to be corrected is calculated. The blurring amount is obtained as Blx in steps #295, #305, #315 and #320 of FIG. 6. In FIG. 6, the steps #285 through #320 are the same as the steps #910 through #930 of FIG. 8, so that the description thereof is not repeated. After those values are found out, the program advances to step #330, and a determination is made as to whether the above obtained uncorrectable blurring amount Blx exceeds the permittable blurring amount BLK (blurring, but of an amount permittable on a picture) or not. If the uncorrectable blurring amount Blx exceeds the permittable blurring amount BLK, a flag BLxF is set and the program advances to step #345. On the other hand, if the value is the permittable blurring amount PLK or less, the program directly advances to step #345 (#330-#340).
In the following steps #345-#415, the blurring amount in the y direction BLy is obtained in the same manner as that in the x directions Blx as described above, so that the description thereof is not repeated.
Next, in step #420, absolute values of shake amount detected by angular velocity sensors in the x direction and the y direction are compared in magnitude. Such a comparison is made because it is sufficient to take larger one in x or y direction as a blurring amount. Accordingly, in steps #440-#450, determining that the blurring amount in the y direction is larger than the blurring amount in the x direction, the blurring amount BLy in the y direction is inserted as the blurring amount BL. On the other hand, in steps #425-#435, determining that the blurring amount Bx in the x direction is larger than the blurring amount By in the y direction, the blurring amount Blx in the x direction is inserted as the blurring amount BL, and the program returns.
FIG. 10 shows a subroutine of display shown in step #205 of FIG. 4. Referring to FIG. 10, if either one of flags Blxf, BLyF showing that a blurring amount in the x or y direction is larger, blurring warning is made, and if non of them is set, without making blurring warning, the program returns (#430-#445).
Next, referring to FIG. 8 again, process in the cases I-III shown in FIGS. 9A-9C where blurring correction tracking is impossible will be described. Also, in such cases, some approach must be applied to reduce blurring amounts. In this invention, exposure time is reduced in order to reduce blurring amount in such cases (#945). That is to say, as shown in FIG. 9A, for example, the area designated by the oblique line portion corresponds to a blurring amount. In order to reduce the blurring amount, the area of the oblique line portion must be reduced. The blurring amount cannot be corrected, however, by reducing the magnitude of Fbx-FBK by increasing the image speed FBK on the film surface. This is because FBK is a limitation image speed on the film surface.
Accordingly, in order to reduce the area of the oblique line portion, the exposure time TEV should be moved toward the left side. That is, reducing an exposure time reduces a blurring amount.
Just reducing exposure time, however, cannot implement sufficient exposure amount. Accordingly, in the present invention, flash light emission is used to compensate for the reduced portion of exposure time when reducing exposure time (#950). After that, photographing is performed according to a normal routine (#935).
Next, a flow of exposure control according to the idea of reducing exposure time in order to reduce blurring amount as described above will be described referring to FIGS. 11A-11C. First, in exposure control, AF control is applied (#500). After completion of the AF control, blurring amount calculation is performed (#505, #510). Blurring amount calculation (input of shake data ΔVx, ΔVy) is performed after completion of AF because of the following reasons. That is, when a lens is being driven, vibration of a motor and vibration by driving mechanism is produced. It becomes camera-shake amount (angular velocity). If blurring correction is performed based on data which is not caused by camera-shake actually produced by operation of a photographer, wrong correction is performed in exposure.
Next, a determination is made as to whether flags showing that the respective blurring amounts are large in the x and y directions are set or not, and when none of them is set, the program proceeds to step #570 (#515, #520). If either one of flags Blxf and Blyf is set, the program proceeds to step #525, to calculate exposure time TA. The exposure time TA corresponds to the exposure time reduced to reduce a blurring amount as described above, which is obtained by dividing the blurring amount exceeding the permittable amount PLK by the angular velocity at that time (a blurring amount for a unit time).
Next, a flow chart for calculating exposure time TA for reducing the blurring amount will be described referring to FIG. 12. First, it is determined whether the image speed |FB| on the film surface is not less than the predetermined limit speed FBK on the film surface or not (#526). If |FB|<FBK in step #526, the exposure time TA is found by subtracting permittable value BLK from an absolute value of the blurring amount (at this time exposure time TEV>time usable for correction TK, and |FB|·(TEV-TK) is blurring amount BL) and dividing the same by an image blurring amount |FB| (#535).
When the image speed |FB| on the film surface is not less than the limit speed FBK on the film surface in step #526, a determination is made about TEV≧TK. If, TEV<TK, an exposure time TA for reducing a blurring amount is found out by dividing (|BL|-BLK) obtained by subtracting a permittable value BLK from a blurring amount |BL|, by a value (|FB|-FBK) obtained by subtracting a correctable speed FBK from an image blurring amount |FB| (#527, #537). If TEV≧TK in step #527, a determination is made as to whether the blurring amount on the image surface {|BL|-|FB|·(TEV-TK)} has already exceeded the permittable value BLK or not until exposure time TK (#530). If it is determined that it exceeds the permittable value BLK in step #530, the exposure should be finished before the exposure time TK, and the exposure time TA is obtained by adding the time at which the blurring time until the exposure time TK {|BL|-BLK-|FB|·(TEV-TK)} attains the permittable value and the time TK-TEV together. On the other hand, if {|BL|-|FB|·(TEV-TK)}≦BLK in step #530, a part of the blur amount between TK-TEV should be cut, the exposure time TA is obtained by TA=(|BL|-BLK)/|FB| from |BL|-|FB|·TA=BLK, and the program returns after processing of step #538 or #532.
Returning to FIG. 11A, after calculating TA in step #525, as stated above, in order to reduce a blurring amount as much as possible, the exposure is set rather under a flash light is emitted to compensate for the insufficient exposure amount. Flag FLF showing this is set in step #540. An exposure correction amount ΔEv is obtained from exposure time TEV and TA. this is because if an exposure time TEV (Ev is obtained) is obtained, if the exposure time TA is found out from the relative relationship between the values, an exposure correction amount ΔEV is automatically found (#540, #545). A determination is made as to if the exposure correction amount ΔEV is 2EV or more or not in step #550. If ΔEV is 2EV or more, in consideration of a latitude of film, ΔEV is equal to 2, and if ΔEV is less than 2EV in step #550, it advances to step #560. The exposure value EV is determined to be EV=EV+ΔEV, and an aperture value AVD when emitting flash light for obtaining a corrected exposure amount is calculated on the basis of the correction value and the program advances to step #570 (#560-#565). Although there is provided a limit of 2 in a value of ΔEV, it is desired to make a determination in step #550 with a latitude instead of 2 if the latitude can be read from a film container.
Next, the program advances to an aperture value calculating subroutine (#565), which contents will be described referring to FIG. 13. In the aperture value calculating subroutine, an aperture value AVD is first obtained with IV (emission amount)+SV (film sensitivity)-DV (distance)-ΔEV (#805). Then, from the obtained exposure amount EV, an aperture value at that time (since a camera to which the present invention is applied is of a shutter and aperture in one system, an aperture value can be obtained in a one-to-one manner from an exposure value as well as a shutter speed) is obtained. The aperture value AV and the aperture value AVD at flash light emission obtained as described are compared in magnitude (#810, #815). If AV>AVD in step #815, the control aperture value AVC is AV, and if AV≦AVD, the control aperture value AVC is AVD. Thus, the aperture values are made small respectively and the program returns (#815-#825). Referring to FIG. 11B, the flow after step #570 will be described. Correction data Bx and By are supplied to a correction circuit Cxy, and an exposure time TEV is obtained again from the obtained exposure value EV (#570, #575). In the repeated flow from exposure starting, a variable LTE showing an exposure elapsed time until the previous time is reset, a variable ΔBL1 of the blurring amount in the previous time is made 0, an exposure time TEV is supplied as an output to an exposure control circuit AE, and next an exposure starting signal is supplied as an output to the exposure control circuit AE (#570-#590). Thus, the exposure control mechanism operates and a shutter is driven. next, a blurring amount is calculated again, correction data Bx and By are supplied as outputs, and blurring amount correction is performed even in a release time lag period. (#595, #600). Then, starting of exposure on a film surface is detected by switching on of a switch SST, when it attains ON, timer TE showing exposure elapsed time is started, blurring amount is calculated for blurring correction again, and the correction data Bx and By are supplied as outputs (#615, #620). From step #615, depending on the exposure time TEV, when the TEV is long, blurring amount is calculated a plurality of times. To obtain time ΔTE for performing the flow once from the previous time to this time, ΔTE is found by TE-LTE. An exposure time TE at this time is regarded as LTE (#625, #630). The uncorrected blur amount ΔBL produced in the time ΔTE due to change in the blurring speed is obtained as ΔTE×(FB-FLB)·½. Adding the blurring amount until the previous time and the blurring amount ΔBL at the present time together, a new value ΔBL1 is obtained (#650, #655). It is multiplied by ½ as ΔBL=ΔTE×(FB-FLB)·½ because, assuming that the change in speed gradually occurs, the blurring amount produced at that time is calculated. Next, obtaining a remaining time until completion of exposure T2 by TEV-TE, a blurring amount produced in the time (uncorrectable amount) is predicted (#660). First, a determination is made as to whether the blurring speed FB on the film surface is the correctable maximum speed FBK or more or not, and if FB≧FBK, a determination is made as to whether the exposure time TEV is the time usable for correction TK or more or not (#665, #670). If it is not TEV≧TK in step #670, it is determined that a blurring prediction amount ΔBL2=(FB-FBK)×T2 (#675). If TEV≧TK in step #670, a blurring prediction amount ΔBL2=(FB-FBK)·T2+FB·(TEV-TK) and the program proceeds to step #700. If FB<FBK in step #665, TK1 is obtained from (FBK-|FB|)·TK/FB+TK, it is determined whether TEV≧TK1 or not (#667, #685). If TEV≧TK1 in step #685, the blurring prediction amount ΔBL2=FB·(TEV-TK), and if TEV<TK1, the blurring amount ΔBL2=0, and the program proceeds to step #700 (#685-#695).
Next, an uncorrectable blurring region till that point |ΔBL1| and a predicted blurring amount ΔBL2 are added together to obtain ΔBL3, and it is determined whether this is a permittable predetermined value BLK or more or not (#700, #705). ΔBL3 is obtained in this way in order to amend exposure correction when the predicted blurring amount and an actual blurring amount are different from each other, with exposure correction performed when the blurring amount is large. Then, if ΔBL3≧BLK in step #705, the program proceeds to step #710, and if ΔBL3<ΔBLK, the program proceeds to step #795.
The flow after step #710 will be described referring to FIG. 11C. If ΔBL3≧BLK in step #705, although control to reduce exposure time should be further performed, when the correction amount ΔEV exceeds 2 in step #710, no more correction is performed and the program proceeds to step #770. If ΔEV<2 in step #710, a permittable predetermined amount BLK is subtracted from an actual blurring amount ΔBL3 to find out the difference ΔB'L, which is divided by the blurring speed FB at that time to obtain TA (#715, #720). Then, an exposure correction amount ΔEV2 is obtained from an exposure time TEV and TA, and a determination is made as to whether the amount obtained by adding an exposure correction amount ΔEV till then and the above ΔEV2 is 2 or more or not (#730) If it is 2 or more in step #730, determining ΔEV2=2-ΔEV (#735), if it is less than 2, the program skips step #735 and the program proceeds to step #740, respectively (#735).
In step #740, EV=EV+ΔEV2, an exposure time TEV is re-obtained from this, and then TEV=TEV-T2, and TEV is outputted (#740-#755). A flag FLF indicating flush light emission is set, an aperture value AVD is calculated, and the program proceeds to step #770. In step #770, a determination is made as to whether a shutter closing signal is supplied as an output from exposure control circuit AE (shutter closing operation has already been performed) or not, if a shutter closing signal is not supplied, the program returns to step #615, and the flow after that point is performed. If a closing signal is supplied as an input, the program proceeds to step #775 to determine if a flag FLF is set or not (#775). If flag FLF is set in step #775, an absolute aperture value AV is supplied, AV≧AVC or not is determined, and if AV<AVC, the program returns to step #780 (#780-#785). On the other hand, when AV≧AVC in step #785, a flush light emission signal (terminal EMI) is outputted to flush circuit FL to apply flush light emission and the program returns (#785, #790). When the flag FLF is not set in step #775, the program immediately returns.
If ΔBL3<BLK in step #705, the program proceeds to step #795 (FIG. 11C), a determination is first made as to whether the correction exposure amount ΔEV is 0 or not, and if it is 0, the program proceeds to step #770 (#795). If ΔEV is not 0 in step #795, a permittable correction amount BLK is subtracted from the blurring amount ΔBL3, dividing the same by the blurring speed FB at that time to obtain an exposure time TA (#775-#805). Next, an exposure correction amount ΔEV2 (>0) is obtained from exposure times TEV, TA (#810). Next, comparing the exposure correction amount ΔEV until the previous time and the above ΔEV2, if ΔEV≧ΔEV2, the program proceeds to step #830. If ΔEV<ΔEV2 in step #815, to make an exposure correction amount 0, it is determined ΔEV→ΔEV2, the flush light emission flag FLF is reset, and the program proceeds to step #830 (#815-#825). And then, with ΔEV=-ΔEV2, the program proceeds to step #740 (#830).
FIGS. 14A and 14B are diagrams showing the relationship between opening/closing of a shutter and time. FIG. 14A is a diagram showing a case of normal blurring correction, and FIG. 14B is a diagram showing the conditions which the present invention is applied to. In each figure, the area in the portion designated by a trapezoid shows an appropriate exposure amount in the case where normal light is employed. Referring to FIG. 14A, when a normal blurring correction is applied, in time from the point M at which the blurring correction is detected to be impossible and to the point of shutter closing, or in the region designated by OVB, the blurring correction could not finnish. As a result, blurring is produced.
Referring to FIG. 14B, when blurring correction according to the present invention is performed, an exposure amount is re-calculated at the point M at which it is detected that blurring correction is impossible, an exposure time TA is obtained, and it shifts to the control for emitting flush light if needed. Here, the control is performed flushmatically. As shown in the figure, the aperture is started to be closed, flush is emitted at the point denoted with N to reduce a blurring amount.
By the control, as compared to the case where flush is emitted from the first point, according to the present invention, a normal light is utilized as much as possible, so that solid and excellent pictures could be taken.
Returning to FIG. 3, if a preparatory switch S1 is OFF in step #25, a determination is made as to whether charging is completed or not, and when the charging is completed, boosting is stopped. In step #40, a determination is made as to whether a power source holding timer T1 has counted 10 seconds or not. If the timer T1 has not counted 10 seconds, the program shifts to step #30 to carry out a determination of S1 ON. If the timer T1 has counted 10 seconds in step #40, a feeding transistor Tr1 is turned off in step #45 to stop supplying power to the first peripheral circuit CT1 including light measuring circuit LM and so forth. In step #50, feeding transistor Tr2 is turned off, power supply to the second peripheral circuit CT2 including angular velocity sensors Sx, Sy is stopped, and the display by the display circuit DISP is totally eliminated in step #55. Then, a flag S1 OFF indicating that the preparatory switch S1 is OFF is set in step #60, and the program performs the flow from #10.
Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.
Hamada, Masataka, Masumoto, Hisayuki, Ootsuka, Hiroshi, Teramoto, Tougo
Patent |
Priority |
Assignee |
Title |
7720376, |
Feb 01 2005 |
Analog Devices, Inc |
Camera with acceleration sensor |
7982772, |
Mar 30 2004 |
FUJIFILM Corporation |
Image correction apparatus and image correction method for correcting image blur using a mobile vector |
8068639, |
Jul 13 2006 |
Sony Corporation |
Image pickup apparatus, control method therefor, and computer program for detecting image blur according to movement speed and change in size of face area |
Patent |
Priority |
Assignee |
Title |
4448510, |
Oct 23 1981 |
FUJIFILM Corporation |
Camera shake detection apparatus |
4709138, |
Feb 09 1984 |
Canon Kabushiki Kaisha |
Apparatus for detecting shake of image of object |
5084724, |
Oct 27 1988 |
Canon Kabushiki Kaisha |
Camera |
JP1130125, |
|
|
|
JP1130126, |
|
|
|
JP2116835, |
|
|
|
JP5411634, |
|
|
|
JP63204227, |
|
|
|
JP63231324, |
|
|
|
JP65053524, |
|
|
|
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 14 1997 | | Minolta Co., Ltd. | (assignment on the face of the patent) | | / |
Date |
Maintenance Fee Events |
Oct 13 2004 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date |
Maintenance Schedule |
Dec 23 2006 | 4 years fee payment window open |
Jun 23 2007 | 6 months grace period start (w surcharge) |
Dec 23 2007 | patent expiry (for year 4) |
Dec 23 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 23 2010 | 8 years fee payment window open |
Jun 23 2011 | 6 months grace period start (w surcharge) |
Dec 23 2011 | patent expiry (for year 8) |
Dec 23 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 23 2014 | 12 years fee payment window open |
Jun 23 2015 | 6 months grace period start (w surcharge) |
Dec 23 2015 | patent expiry (for year 12) |
Dec 23 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |