An opthalmic spectacle or contact sharp cut-on orange lens that improves visual acuity and substantially reduces eye damage in a bright sunlit environment. The lenses substantially eliminate ultraviolet radiation and blue light shorter than 515 520 nm. The ultraviolet radiation has been implicated as a cause of cateractogenisis. The blue light is implicated in senile macular degenerations, night blindness and snow blindness. The lens is substantially transparent to wavelengths greater than 636 600 nm which are most useful for high visual acuity in bright sunlit environment.

Patent
   RE38402
Priority
Feb 26 1982
Filed
Nov 16 1999
Issued
Jan 27 2004
Expiry
Feb 26 2002
Assg.orig
Entity
unknown
24
20
EXPIRED
1. A lens worn in front of the eyes by humans, in an outdoor sunlit environment, where said lens is a filter barrier to photons deleterious to the eyes and that is also a transmitter of visible light most useful for high visual acuity, where said lens comprises:
(a) a transparent, organic plastic matrix material, and
(b) a sharp cut-on orange dye incorporated into said material that allows the lens to transmit at least 90% of the visible sunlight with wavelengths longer than 636 600 nm and block more than 99% of all sunlight with wavelengths shorter than 515 520 nm.
2. The lens as specified in claim 1 wherein said sharp cut-on orange dye is from the group of commercially available dyes known as Color Index Dispersed Orange Dye 3 also known as Color Index 11005.
3. The lens as specified in claim 2 wherein said sharp cut-on orange dye is Ciba-Geigy Cebacet Orange 2R.
4. The lens as specified in claim 1 wherein said sharp cut-on orange dye is from the group of commercially available dyes known as Color Index Solvent Orange Dye.
5. The lens as specified in claim 4 wherein said sharp cut-on orange dye is Ciba-Geigy Orasol Orange G.
6. The lens as specified in claim 1 wherein said lens is designed to eliminate the ultraviolet-radiation hazard which in turn, reduces incidents of cateractogenisis.
7. The lens as specified in claim 1 wherein said lens is designed to reduce the blue-light hazard which in turn, reduces incidents of senile macular degeneration.
8. The lens as specified in claim 1 wherein said lens is designed to achieve the visual acuity.
9. The lens as specified in claim 1 wherein said lens is designed for use as a spectacle lens.
10. The lens as specified in claim 1 wherein said lens is designed for use as a contact lens.
CROSS REFERENCE TO RELATED APPLICATION

The best mode for carrying out the inventive lens is presented in terms of a preferred embodiment that uses a plastic lens. In the disclosure that follows, various optical terms are used to describe the lens. To facilitate the understanding of the invention, these terms are initially defined.

LENS

an opthalmic lens that provides refractive correction or a lens that provides no refractive correction also known as a "plano lens".

SUNLIGHT

light having the spectral characteristics of midday sunlight that has penetrated the earth's atmosphere to an elevation between sea level and 10,000 feet above sea level.

VISIBLE SUNLIGHT

sunlight with wavelengths between 400 nm and 780 nm.

PHOTONS DELETERIOUS TO THE EYES

violet and blue light photons which are the principal cause of senile macular degeneration (also known as "Blue Light Hazard⇄), and the ultraviolet radiation photons which are the principal cause of cateractogenisis.

HIGH VISUAL ACUITY

an improved visual acuity achieved by blocking the following:

violet and blue light that is preferentially scattered by atmospheric particles;

violet and blue light that is preferentially scattered by particles within the vitreous humor of the eye;

violet and blue light that is focused in front of the retina by the simple lens of the eye;

violet and blue light during the day that preferentially bleaches the Rhodopson in the rod structure of the retina thus reducing night vision;

ultraviolet radiation that causes the lens and vitreous humor of the eye to fluores and reduce the scene contrast that is projected onto the retina.

SHARP CUT-ON DYE

a dye or filter, having a cut-on slope that rises more than seven-tenths of one percent (0.7%) change in transmission for every one nonometer of increasing Wavelength change. The cut-on slope is that portion of the transmission spectral of a cut-on dye that represents the transition between substantially blocking region and the substantially transmissive region. This could be interpreted as the average slope of a line drawn between the two points referred to in the instant invention.

ELECTROMAGNETIC SPECTRUM

a spectrum having a lower limit of 300 nonometers nanometers and an upper limit of 780 nonometers nanometers. The visible portion of the spectrum is further defined as falling between 400 and 780 nonometers nanometers.

TRANSMISSION

the percentage of light that is passed a sharp cut-on dye allows to pass through a lens.

BLOCKING

the opposite of transmission and is a measure of the percentage of light that is either reflected by the surface or surface coatings or absorbed by the dye or plastic of the lens.

SUBSTANTIALLY BLOCKING

when used with reference to wavelengths, it is defined as blocking over 99 percent of the incident radiation or transmitting less than one-percent (1.0%) of the incident radiation at each and every wavelength.

The inventive lens is designed to be specifically worn in an outdoor sunlit environment. In this environment the eyes are especially susceptible to receiving photons that are deleterious to the eyes. These photons have been known to cause cateractogenisis, commonly referred to as cateracts; and senile macular degeneration. The lens substantially blocks the ultraviolet-radiation hazard which can cause cateracts and reduces the blue-light hazard which, in turn, reduces incidents of the senile macular degeneration.

Historically, humans evolved in dim forest environments and seldom ventured out into direct midday sunlight, preferring to hunt and gather food in the twilight of early morning or late evening. The inventive lens is therefore specifically designed to provide a margin of safety when humans must view objects in an unnatural bright sunlit environment.

As further proof of the need for protecting the eyes from bright sunlight, which includes blue light, is the known fact that day animals all have a blue blocking filtering means incorporated in their eyes.

Additionally, birds and reptiles that are descendants of dinosaurs, have orange oil droplets incorporated into their retinas; and mammals that have been forced to survive in bright sunlit environments have evolved other means for improving their visual acuity. For example, day ground squirrels have evolved yellow lenses in their eyes.

The inventive lens is made of a transparent, organic plastic matrix material and is suitable for making both opthalmic quality spectacle lenses and soft contact lenses. When making the spectacle lenses, a plastic made of allyl diglycol carbonate, also referred to as CR 39, is used; when making contact lenses, a class of oxygen permeable, water containing plastic matrix is generally used. The method dyeing lenses is well known in the art. Therefore, it is not described or claimed.

In all cases, the lens provide a filter barrier to the photons that are deletious to the eyes and are also transmitters of the visible light that is most useful for high visual acuity. As shown in FIG. 1, a sharp cut-on orange dye is incorporated into the lens material. The dye allows the lens to transmit at least 90% of the visible sunlight with wavelengths longer than 636 600 nm and block more than 99% of all sunlight with wavelengths shorter than 515 520 nm.

The transmission spectra curves of sharp cut-on orange dye, as shown in FIG. 1, are actual transmission spectra of the dispersed orange dye 3, also known as Color Index 11005, purchased from Ciba-Geigy in the form of their product known as Cebacet Orange 2R. A solvent orange dye may also be used that provides very similar sharp cut-on orange spectra. The Color Index orange solvent dye that is most commonly applied is the Ciba-Geigy Orasol Orange G.

The limitation of the invention resides within the 35 nm wide range. The curve crossing the 1% line at 515 520 nm represents the short wavelength boundary while the curve crossing the 1% line at 550 nm represents the long wavelength boundary. The short wavelength boundary is determined by the point shown on the 1% line and the 515 520 nm line. This short wavelength boundary is required because lenses having shorter wavelength origins i.e., less than 515 520 nm, have been shown to allow unnecessarily large amounts of blue light transmission.

Larger amounts of blue light being to increase the blue-light hazard and reduce the visual acuity advantages inherent in the inventive lens when used in a bright sunlight environment. A further reason for the short wavelength boundary is the fact that the dispersed orange 3 dye begins to have an unacceptable ultraviolet transmission at about 385 nm.

The long wavelength boundary is determined by the requirement for adequate color verity sufficient to differentiate traffic stop signal light colors. Additionally, it has been experimentally demonstrated that the visual acuity advantage is lost to the user because of the reduction in the transmission of total light.

The short wavelength point, shown at the 1%, 515 520 nm location, represents a minimum point that constraints the short wavelength boundary of the transmission spectra characteristics. The long wavelength point, shown at the 90%, 636 600 nm location represents a maximum wavelength point that constraints the long wavelength boundary of the transmission spectra characteristics. Only high quality commercially available sharp cut-on orange dyes can meet these two required limits.

While the invention has been described in complete detail and pictorially shown in the accompanying drawing, it is not to be limited to such details, since many changes and modifications may be in the invention without departing from the spirit and scope thereof. Hence, it is described to cover any and all modifications and forms which may come within the language and scope of the appended claims.

Stephens, James B., Miller, Charles G.

Patent Priority Assignee Title
10073282, Nov 13 2014 Oakley, Inc Eyewear with variable optical characteristics
10191305, Dec 30 2015 ESSILOR LABORATORIES OF AMERICA, INC Ophthalmic lens
10345623, Apr 15 2010 Oakley, Inc. Eyewear with chroma enhancement
10401652, Apr 15 2010 Oakley, Inc. Eyewear with chroma enhancement
10463766, May 05 2005 Key Medical Technologies, Inc. Ultra violet, violet, and blue light filtering polymers for ophthalmic applications
10502980, Apr 15 2010 Oakley, Inc. Eyewear with chroma enhancement
10871661, May 23 2014 Oakley, Inc Eyewear and lenses with multiple molded lens components
10976574, Apr 15 2010 Oakley, Inc. Eyewear with chroma enhancement
11035990, Dec 21 2012 UNIVERSIDAD COMPLUTENSE DE MADRID Blocking element of short wavelengths in LED-type light sources
11048103, Nov 13 2014 Oakley, Inc. Eyewear with variable optical characteristics
11099408, Jan 10 2014 Oakley, Inc. Eyewear with chroma enhancement
11112622, Feb 01 2018 LUXOTTICA S.R.L. Eyewear and lenses with multiple molded lens components
11397337, Apr 15 2010 Oakley, Inc. Eyewear with chroma enhancement
11474382, Apr 15 2010 Oakley, Inc. Eyewear with chroma enhancement
11579470, May 10 2012 Government of the United States as Represented by the Secretary of the Air Force Lens with anti-fog element
11762221, Jan 10 2014 Oakley, Inc. Eyewear with chroma enhancement
7630128, Feb 02 2007 SPERIAN EYE & FACE PROTECTION, INC Optical filter panel having a narrow-width selective-wavelength attenuation and high visible light transmission
7842367, May 05 2005 KEY MEDICAL TECHNOLOGIES, INC Ultra violet, violet, and blue light filtering polymers for ophthalmic applications
8770749, Apr 15 2010 Oakley, Inc Eyewear with chroma enhancement
9134547, Oct 20 2011 Oakley, Inc Eyewear with chroma enhancement
9383594, Apr 15 2010 Oakley, Inc. Eyewear with chroma enhancement
9575335, Jan 10 2014 Oakley, Inc Eyewear with chroma enhancement for specific activities
9905022, Jan 16 2015 Oakley, Inc. Electronic display for demonstrating eyewear functionality
9910297, Jan 10 2014 Oakley, Inc. Eyewear with chroma enhancement
Patent Priority Assignee Title
2370697,
2444976,
2631499,
2643982,
3269267,
3382183,
3460960,
3571649,
3588216,
3591263,
3711417,
3745032,
3754816,
4043637, Jul 03 1972 AMERICAN OPTICAL CORPORATION, A CORP OF Photochromic light valve
4134644, Jan 10 1977 3D Color pictures with multichrome filters
4240836, Nov 19 1979 SERENGETI EYEWEAR, INC F K A SOLAR-MATES, INC ; SERENGETI EYEWEAR, INC Colored photochromic glasses and method
4330177, Sep 27 1978 GOLDSTEIN, ALLEN M , AS TRUSTEE Curtain for shrouding welding operations
4740070, Jun 05 1984 PPG Industries, Inc. Optical filter
DE2307602,
WO8100769,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 16 1999Suntiger, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Jan 27 20074 years fee payment window open
Jul 27 20076 months grace period start (w surcharge)
Jan 27 2008patent expiry (for year 4)
Jan 27 20102 years to revive unintentionally abandoned end. (for year 4)
Jan 27 20118 years fee payment window open
Jul 27 20116 months grace period start (w surcharge)
Jan 27 2012patent expiry (for year 8)
Jan 27 20142 years to revive unintentionally abandoned end. (for year 8)
Jan 27 201512 years fee payment window open
Jul 27 20156 months grace period start (w surcharge)
Jan 27 2016patent expiry (for year 12)
Jan 27 20182 years to revive unintentionally abandoned end. (for year 12)