An opthalmic spectacle or contact sharp cut-on orange lens that improves visual acuity and substantially reduces eye damage in a bright sunlit environment. The lenses substantially eliminate ultraviolet radiation and blue light shorter than 515 520 nm. The ultraviolet radiation has been implicated as a cause of cateractogenisis. The blue light is implicated in senile macular degenerations, night blindness and snow blindness. The lens is substantially transparent to wavelengths greater than 636 600 nm which are most useful for high visual acuity in bright sunlit environment.
|
1. A lens worn in front of the eyes by humans, in an outdoor sunlit environment, where said lens is a filter barrier to photons deleterious to the eyes and that is also a transmitter of visible light most useful for high visual acuity, where said lens comprises:
(a) a transparent, organic plastic matrix material, and (b) a sharp cut-on orange dye incorporated into said material that allows the lens to transmit at least 90% of the visible sunlight with wavelengths longer than 636 600 nm and block more than 99% of all sunlight with wavelengths shorter than 515 520 nm.
2. The lens as specified in
3. The lens as specified in
4. The lens as specified in
5. The lens as specified in
6. The lens as specified in
7. The lens as specified in
|
The best mode for carrying out the inventive lens is presented in terms of a preferred embodiment that uses a plastic lens. In the disclosure that follows, various optical terms are used to describe the lens. To facilitate the understanding of the invention, these terms are initially defined.
LENS
an opthalmic lens that provides refractive correction or a lens that provides no refractive correction also known as a "plano lens".
SUNLIGHT
light having the spectral characteristics of midday sunlight that has penetrated the earth's atmosphere to an elevation between sea level and 10,000 feet above sea level.
VISIBLE SUNLIGHT
sunlight with wavelengths between 400 nm and 780 nm.
PHOTONS DELETERIOUS TO THE EYES
violet and blue light photons which are the principal cause of senile macular degeneration (also known as "Blue Light Hazard⇄), and the ultraviolet radiation photons which are the principal cause of cateractogenisis.
HIGH VISUAL ACUITY
an improved visual acuity achieved by blocking the following:
violet and blue light that is preferentially scattered by atmospheric particles;
violet and blue light that is preferentially scattered by particles within the vitreous humor of the eye;
violet and blue light that is focused in front of the retina by the simple lens of the eye;
violet and blue light during the day that preferentially bleaches the Rhodopson in the rod structure of the retina thus reducing night vision;
ultraviolet radiation that causes the lens and vitreous humor of the eye to fluores and reduce the scene contrast that is projected onto the retina.
SHARP CUT-ON DYE
a dye or filter, having a cut-on slope that rises more than seven-tenths of one percent (0.7%) change in transmission for every one nonometer of increasing Wavelength change. The cut-on slope is that portion of the transmission spectral of a cut-on dye that represents the transition between substantially blocking region and the substantially transmissive region. This could be interpreted as the average slope of a line drawn between the two points referred to in the instant invention.
ELECTROMAGNETIC SPECTRUM
a spectrum having a lower limit of 300 nonometers nanometers and an upper limit of 780 nonometers nanometers. The visible portion of the spectrum is further defined as falling between 400 and 780 nonometers nanometers.
TRANSMISSION
the percentage of light that is passed a sharp cut-on dye allows to pass through a lens.
BLOCKING
the opposite of transmission and is a measure of the percentage of light that is either reflected by the surface or surface coatings or absorbed by the dye or plastic of the lens.
SUBSTANTIALLY BLOCKING
when used with reference to wavelengths, it is defined as blocking over 99 percent of the incident radiation or transmitting less than one-percent (1.0%) of the incident radiation at each and every wavelength.
The inventive lens is designed to be specifically worn in an outdoor sunlit environment. In this environment the eyes are especially susceptible to receiving photons that are deleterious to the eyes. These photons have been known to cause cateractogenisis, commonly referred to as cateracts; and senile macular degeneration. The lens substantially blocks the ultraviolet-radiation hazard which can cause cateracts and reduces the blue-light hazard which, in turn, reduces incidents of the senile macular degeneration.
Historically, humans evolved in dim forest environments and seldom ventured out into direct midday sunlight, preferring to hunt and gather food in the twilight of early morning or late evening. The inventive lens is therefore specifically designed to provide a margin of safety when humans must view objects in an unnatural bright sunlit environment.
As further proof of the need for protecting the eyes from bright sunlight, which includes blue light, is the known fact that day animals all have a blue blocking filtering means incorporated in their eyes.
Additionally, birds and reptiles that are descendants of dinosaurs, have orange oil droplets incorporated into their retinas; and mammals that have been forced to survive in bright sunlit environments have evolved other means for improving their visual acuity. For example, day ground squirrels have evolved yellow lenses in their eyes.
The inventive lens is made of a transparent, organic plastic matrix material and is suitable for making both opthalmic quality spectacle lenses and soft contact lenses. When making the spectacle lenses, a plastic made of allyl diglycol carbonate, also referred to as CR 39, is used; when making contact lenses, a class of oxygen permeable, water containing plastic matrix is generally used. The method dyeing lenses is well known in the art. Therefore, it is not described or claimed.
In all cases, the lens provide a filter barrier to the photons that are deletious to the eyes and are also transmitters of the visible light that is most useful for high visual acuity. As shown in
The transmission spectra curves of sharp cut-on orange dye, as shown in
The limitation of the invention resides within the 35 nm wide range. The curve crossing the 1% line at 515 520 nm represents the short wavelength boundary while the curve crossing the 1% line at 550 nm represents the long wavelength boundary. The short wavelength boundary is determined by the point shown on the 1% line and the 515 520 nm line. This short wavelength boundary is required because lenses having shorter wavelength origins i.e., less than 515 520 nm, have been shown to allow unnecessarily large amounts of blue light transmission.
Larger amounts of blue light being to increase the blue-light hazard and reduce the visual acuity advantages inherent in the inventive lens when used in a bright sunlight environment. A further reason for the short wavelength boundary is the fact that the dispersed orange 3 dye begins to have an unacceptable ultraviolet transmission at about 385 nm.
The long wavelength boundary is determined by the requirement for adequate color verity sufficient to differentiate traffic stop signal light colors. Additionally, it has been experimentally demonstrated that the visual acuity advantage is lost to the user because of the reduction in the transmission of total light.
The short wavelength point, shown at the 1%, 515 520 nm location, represents a minimum point that constraints the short wavelength boundary of the transmission spectra characteristics. The long wavelength point, shown at the 90%, 636 600 nm location represents a maximum wavelength point that constraints the long wavelength boundary of the transmission spectra characteristics. Only high quality commercially available sharp cut-on orange dyes can meet these two required limits.
While the invention has been described in complete detail and pictorially shown in the accompanying drawing, it is not to be limited to such details, since many changes and modifications may be in the invention without departing from the spirit and scope thereof. Hence, it is described to cover any and all modifications and forms which may come within the language and scope of the appended claims.
Stephens, James B., Miller, Charles G.
Patent | Priority | Assignee | Title |
10073282, | Nov 13 2014 | Oakley, Inc | Eyewear with variable optical characteristics |
10191305, | Dec 30 2015 | ESSILOR LABORATORIES OF AMERICA, INC | Ophthalmic lens |
10345623, | Apr 15 2010 | Oakley, Inc. | Eyewear with chroma enhancement |
10401652, | Apr 15 2010 | Oakley, Inc. | Eyewear with chroma enhancement |
10463766, | May 05 2005 | Key Medical Technologies, Inc. | Ultra violet, violet, and blue light filtering polymers for ophthalmic applications |
10502980, | Apr 15 2010 | Oakley, Inc. | Eyewear with chroma enhancement |
10871661, | May 23 2014 | Oakley, Inc | Eyewear and lenses with multiple molded lens components |
10976574, | Apr 15 2010 | Oakley, Inc. | Eyewear with chroma enhancement |
11035990, | Dec 21 2012 | UNIVERSIDAD COMPLUTENSE DE MADRID | Blocking element of short wavelengths in LED-type light sources |
11048103, | Nov 13 2014 | Oakley, Inc. | Eyewear with variable optical characteristics |
11099408, | Jan 10 2014 | Oakley, Inc. | Eyewear with chroma enhancement |
11112622, | Feb 01 2018 | LUXOTTICA S.R.L. | Eyewear and lenses with multiple molded lens components |
11397337, | Apr 15 2010 | Oakley, Inc. | Eyewear with chroma enhancement |
11474382, | Apr 15 2010 | Oakley, Inc. | Eyewear with chroma enhancement |
11579470, | May 10 2012 | Government of the United States as Represented by the Secretary of the Air Force | Lens with anti-fog element |
11762221, | Jan 10 2014 | Oakley, Inc. | Eyewear with chroma enhancement |
7630128, | Feb 02 2007 | SPERIAN EYE & FACE PROTECTION, INC | Optical filter panel having a narrow-width selective-wavelength attenuation and high visible light transmission |
7842367, | May 05 2005 | KEY MEDICAL TECHNOLOGIES, INC | Ultra violet, violet, and blue light filtering polymers for ophthalmic applications |
8770749, | Apr 15 2010 | Oakley, Inc | Eyewear with chroma enhancement |
9134547, | Oct 20 2011 | Oakley, Inc | Eyewear with chroma enhancement |
9383594, | Apr 15 2010 | Oakley, Inc. | Eyewear with chroma enhancement |
9575335, | Jan 10 2014 | Oakley, Inc | Eyewear with chroma enhancement for specific activities |
9905022, | Jan 16 2015 | Oakley, Inc. | Electronic display for demonstrating eyewear functionality |
9910297, | Jan 10 2014 | Oakley, Inc. | Eyewear with chroma enhancement |
Patent | Priority | Assignee | Title |
2370697, | |||
2444976, | |||
2631499, | |||
2643982, | |||
3269267, | |||
3382183, | |||
3460960, | |||
3571649, | |||
3588216, | |||
3591263, | |||
3711417, | |||
3745032, | |||
3754816, | |||
4043637, | Jul 03 1972 | AMERICAN OPTICAL CORPORATION, A CORP OF | Photochromic light valve |
4134644, | Jan 10 1977 | 3D Color pictures with multichrome filters | |
4240836, | Nov 19 1979 | SERENGETI EYEWEAR, INC F K A SOLAR-MATES, INC ; SERENGETI EYEWEAR, INC | Colored photochromic glasses and method |
4330177, | Sep 27 1978 | GOLDSTEIN, ALLEN M , AS TRUSTEE | Curtain for shrouding welding operations |
4740070, | Jun 05 1984 | PPG Industries, Inc. | Optical filter |
DE2307602, | |||
WO8100769, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 16 1999 | Suntiger, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Jan 27 2007 | 4 years fee payment window open |
Jul 27 2007 | 6 months grace period start (w surcharge) |
Jan 27 2008 | patent expiry (for year 4) |
Jan 27 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 27 2011 | 8 years fee payment window open |
Jul 27 2011 | 6 months grace period start (w surcharge) |
Jan 27 2012 | patent expiry (for year 8) |
Jan 27 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 27 2015 | 12 years fee payment window open |
Jul 27 2015 | 6 months grace period start (w surcharge) |
Jan 27 2016 | patent expiry (for year 12) |
Jan 27 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |