A multi-phase DC/DC converter having an output voltage and including a plurality of converter channels. Each converter channel includes a converter channel input and a converter channel output. Each converter channel is configured for generating a converter channel current and for adjusting said converter channel current in response to a control signal electrically connected to each converter channel input. A control circuit generates an error signal representative of a comparison of the converter output voltage to a reference voltage. The control circuit includes a plurality of control circuit channels, each of which correspond to a converter channel. Each control circuit channel generates a channel current signal representative of a corresponding converter channel current, and generates a differential channel current signal representative of a comparison of the channel current signal to an average current signal. The average current signal is representative of an overall average current for the converter channels. Each control circuit channel generates a differential error signal representative of a comparison of the error signal to the differential channel current signal. Each control circuit channel includes a pulse width modulator having a ramp input and a control input. The control input is electrically connected to the differential error signal. The pulse width modulator generates the control signal based upon the differential error signal. The control signal is electrically coupled to a corresponding converter channel input. The control circuit generates the average current signal.
|
0. 1. A multi-phase DC/DC converter having an output voltage, said converter comprising:
a plurality of converter channels, each of said plurality of converter channels including a converter channel input and a converter channel output, each of said plurality of converter channels being configured for generating a converter channel current and for adjusting said converter channel current in response to a control signal electrically connected to each said converter channel input; a control circuit, comprising: means for generating an error signal, said error signal being representative of a comparison of said output voltage to a reference voltage; a plurality of control circuit channels, each of said plurality of control circuit channels corresponding to one of said plurality of converter channels, each of said plurality of control circuit channels comprising: means for generating a channel current signal, said channel current signal being representative of a corresponding converter channel current; means for generating a differential channel current signal, said differential channel current signal being representative of a comparison of said channel current signal to an average current signal, said average current signal being representative of an overall average current for said plurality of converter channels; and means for generating a differential error signal, said differential error signal being representative of a comparison of said error signal to said differential channel current signal; and a pulse width modulator having a ramp input and a control input, said control input being electrically connected to said differential error signal, said pulse width modulator configured for generating said control signal, said control signal being based at least in part upon said differential error signal, said control signal being electrically coupled to a corresponding said converter channel input; and means for generating said average current signal.
0. 17. A multi-phase DC/DC converter, comprising:
a converter output; a plurality of converter channels, each of said plurality of converter channels having a respective converter channel input and a respective converter channel output, each said converter channel output being electrically connected to said converter output, each of said plurality of converter channels being configured for sourcing a respective channel current, each of said plurality of converter channels being configured to adjust a corresponding said channel current in response to a control signal electrically connected to a corresponding said converter channel input; and a control circuit, comprising: a summing circuit having a plurality of summing circuit inputs and a summing circuit output; a plurality of current feedback paths, each of said plurality of current feedback paths electrically connecting a respective said converter channel output to a corresponding one of said plurality of summing circuit inputs; a scaling circuit having a scaling input and a scaling output, said scaling input being electrically connected to said sing circuit output; a plurality of first subtraction circuits each having a first input, a second input and a first subtraction circuit output, each said second input being electrically connected to said scaling output, each said first input being electrically connected to a corresponding one of said plurality of current feedback paths; an error amplifier having a reference input, an error input, and an error output, said reference input being electrically connected to a reference voltage; a voltage feedback path connecting said converter output to said error input of said error amplifier; a plurality of second subtraction circuits each having a first input, a second input and a second subtraction circuit output, each said first input being electrically connected to said error output, each said second input being electrically connected to a corresponding said first subtraction circuit output; and a plurality of pulse width modulators each having a ramp input, a control input, and a pulse width modulator output, each said control input being electrically connected to a corresponding said second subtraction circuit output, each said ramp input being connected to a ramp voltage sensor, each said pulse width modulator output being electrically connected to a corresponding said converter channel input.
0. 24. A method of balancing a current from a plurality of channels in a multi-phase DC/DC converter having an output signal, the method comprising:
combining a plurality of signals representative of channel currents to create a sum signal; scaling the sum signal to create one or more scaled signals; generating a common error signal based on the output signal and a first reference signal; and generating a control signal at each of a plurality of pulse width modulators, each control signal based on a second reference signal, an associated channel current signal, the one or more scaled signals, and the common error signal.
0. 26. A method of balancing current from a plurality of channels in a multi-phase DC/DC converter having an output signal, the method comprising:
generating an error signal based on the output signal and a first reference signal; generating individual modification signals for modifying an effect of the error signal for each of the plurality of channels, each individual modification signal based at least in part on a signal representative of a channel current for the channel and one or more signals representative of a scaled sum of the channel currents for the plurality of channels; and applying the error signal and individual modification signals to a plurality of pulse width modulators for controlling the channel currents of the plurality of channels.
0. 22. A method of balancing a plurality of channel currents of a plurality of channels in a multi-phase DC/DC converter having an output voltage, the method comprising:
receiving a plurality of channel current signals, each of the plurality of channel current signals representative of a channel current from one of the plurality of channels; adding the plurality of channel current signals together to obtain a cumulative current signal; scaling the cumulative current signal to obtain one or more scaled channel current signals; comparing the output voltage with a first reference signal to produce a common error signal; and controlling each of the channel currents based at least in part on the one or more scaled channel current signals, one of the plurality of channel current signals, a second reference signal and the common error signal.
0. 27. A method of balancing a plurality of channel currents of a plurality of channels in a multi-phase DC/DC converter having an output voltage, the method comprising:
receiving a plurality of channel current signals, each of the plurality of channel current signals representative of a channel current from one of the plurality of channels; adding the plurality of channel current signals together to obtain a cumulative current signal; producing one or more signals that are a function of the cumulative current signal; comparing the output voltage with a first reference signal to produce a common error signal; and controlling each of the channel currents based at least in part on the one or more signals that are a function of the cumulative current signal, one of the plurality of channel current signals, a second reference signal and the common error signal.
0. 19. A method of balancing a plurality of channel currents, each of the plurality of channel currents flowing in a corresponding one of a plurality of channels in a multi-phase DC/DC converter, the DC/DC converter having an output voltage, the method comprising:
receiving a plurality of channel current signals, each of the plurality of channel current signals representative of a channel current for one of the plurality of channel currents; averaging together the plurality of channel current signals to thereby determine one or more average channel current signals; comparing a signal representative of the output voltage to a first reference signal to thereby determine a common error signal; and controlling each of the channel currents based at least in part on the one or more average channel current signals, one of the plurality of channel current signals, a second reference signal and the common error signal.
9. A method of balancing a plurality of channel currents, each of said plurality of channel currents flowing in a corresponding one of a plurality of channels in a multi-phase DC/DC converter, said DC/DC converter having an output voltage, said method comprising the steps of: sensing each of said plurality of channel currents to thereby determine a plurality of channel current signals;
averaging together said plurality of channel current signals to thereby determine an average channel current signal; comparing each of said plurality of channel current signals to said average channel current signal to thereby determine a respective differential channel current signal for each of said plurality of channels; further comparing said output voltage to a reference voltage to thereby determine an error signal; furthermore comparing each said differential channel current signal to said error signal to thereby determine a respective differential error signal for each of said plurality of channels; and adjusting each of said plurality of channel currents based at least in part upon a corresponding said differential error signal to thereby make each of said plurality of channel currents substantially equal to each other.
0. 2. The multi-phase DC/DC converter of
0. 3. The multi-phase DC/DC converter of
0. 4. The multi-phase DC/DC converter of
0. 5. The multi-phase DC/DC converter of
0. 6. The multi-phase DC/DC converter of
0. 7. The multi-phase DC/DC converter of
0. 8. The multi-phase DC/DC converter of
10. The method of
11. The method of
12. The method of
adding with a summing circuit each of said plurality of channel current signals to thereby produce a summing signal; and scaling said summing signal with a scaling circuit to thereby produce said average channel current signal.
13. The method of
14. The method of
15. The method of
16. The method of
0. 18. The DC/DC converter of
0. 20. The method of
generating a plurality of pulse width modulated signals for the plurality of channels to control the channel currents, each of the plurality of pulse width modulated signals based at least in part on the one or more average channel current signals, one of the plurality of channel current signals, the second reference signal and the common error signal.
0. 21. The method of
0. 23. The method of
combining at least three of the, one or more scaled channel current signals, one of the plurality of channel current signals, one of the reference signals and the error signal; applying the combination to a first input of a pulse width modulator; and applying the remaining signal to a second input of the pulse width modulator.
0. 25. The method of
combining three of the second reference signal, the associated channel current signal, the scaled signal and the error signal to a first input of a pulse width modulator; and coupling the remaining signal to a second input of the pulse width modulator.
0. 28. The method of
combining at least three of the, one or more signals that are a function of the cumulative current signal, one of the plurality of channel current signals, one of the reference signals and the error signal; applying the combination to a first input of a pulse width modulator; and applying the remaining signal to a second input of the pulse width modulator.
|
This application claims the benefit of U.S. Provisional Application No. 60/151,982, filed Sep. 1, 1999.
Generally, the multi-phase converter of the present invention has multiple converter channels to source the load current. Each converter channel can be considered as an independent converter, and is controlled by a pulse-width modulated (PWM) signal. For this discussion, each converter channel is a buck converter or synchronous-rectified buck converter. The converters may share a common output capacitance.
Referring now to the drawings, and particularly to
As will be described more particularly hereinafter, the output currents of converter channels 18a, 18b, 18c, 18d, are separately and individually fed back to control circuit 14. The individual PWM signals PWM1, PWM2, PWM3, PWM4 at each control circuit outputs 14a, 14b, 14c, 14d, respectively, are modified based at least in part upon the fed-back converter channel current. The modified or adjusted individual PWM signals PWM1, PWM2, PWM3, PWM4 are provided to each converter channel input 22a, 22b, 22c, 22d. More particularly, control circuit 14 includes current feedback lines 28a, 28b, 28c, 28d which electrically connect a respective one of converter channel outputs 24a, 24b, 24c, 24d to a respective one of control circuit inputs 32a, 32b, 32c, 32d. Thus, each of current feedback lines 28a, 28b, 28c, 28d provide a current feedback path for each of the converter channel currents flowing through converter channels 18a, 18b, 18c, and 18d, respectively. Each of feedback lines 28a, 28b, 28c, 28d, are considered as forming a part of four separate control circuit channels.
It is preferred to use a feedback method that provides a separate feedback signal from each of converter channels 18a, 18b, 18c, 18d to each control circuit channel. The separate feedback signals are each proportional to the converter channel current being sourced by a corresponding converter channel. The operation of each channel 18a, 18b, 18c, 18d is then individually and separately adjusted on the basis of the fed-back converter channel current to balance the converter channel currents relative to each other. Providing to each control circuit channel a feedback signal that is proportional to the current being sourced by a corresponding converter channel eliminates issues with component mismatch between the converter channels. Generally, and as will be described with more particularity hereinafter, converter 10 subtracts from an error amplifier's output a signal that is proportional to the converter current imbalance existing between the converter channels to thereby correct for any imbalance between the converter currents.
Feed back path 34 electrically connects output 36 of converter 10 to feedback input 32f of control circuit 14. Control circuit 14 thus receives via feed back path 34 the voltage being supplied to load 12.
Referring now to
Error amplifier (E/A) 42 has a first input 32f electrically connected via feedback path 34 to output 36 of converter 10. E/A 42 compares the voltage at converter output 36, or the load voltage, to a reference voltage REF electrically connected to input 42a of error amplifier 42. The output voltage VE/A appearing on output 42b of E/A 42 increases when the voltage at output 36 of converter 10 is below the reference voltage applied to input 42a of E/A 42. Conversely, the output voltage VE/A appearing on output 42b of E/A 42 decreases when the voltage at output 36 of converter 10 is above the reference voltage applied to input 42a of E/A 42. The current flowing from each converter channel output 24a, 24b, 24c, 24d flows through a series resistor (not shown) in each of current feedback paths 28a, 28b, 28c, 28d to thereby create VISENSE1, VISENSE2, VISENSE3, and VISENSE4, respectively. Each of VISENSE1, VISENSE2, VISENSE3, and VISENSE4, is proportional to the individual converter channel current flowing through converter channel outputs 24a, 24b, 24c, 24d, respectively. Each of VISENSE1, VISENSE2, VISENSE3, and VISENSE4, is electrically connected to control circuit 14 via feedback paths 28a, 28b, 28c, 28d, respectively. However, it is to be understood that the series resistor may be integrated within control circuit 14, in which case feedback paths 28a, 28b, 28c, 28d would deliver the converter channel currents flowing through converter channel outputs 24a, 24b, 24c, 24d, respectively, and in which case VISENSE1, VISENSE2, VISENSE3, and VISENSE4 would be created internally of control circuit 14.
Summing circuit 44 includes inputs 44a, 44b, 44c, 44d, each of which are electrically connected to control circuit inputs 32a, 32b, 32c, 32d, thereby connecting inputs 44a, 44b, 44c, 44d of summing circuit 44 to VISENSE1, VISENSE2, VISENSE3, VISENSE4, respectively. Summing circuit 44 adds together each of VISENSE1, VISENSE2, VISENSE3, and VISENSE4, and produces a signal proportional to the sum of VISENSE1, VISENSE2, VISENSE3, and VISENSE4 at output 44f. Output 44f of summing circuit 44 is electrically connected to input 46a of scaling circuit 46. Scaling circuit 46 scales (i.e., divides by 4) the sum of VISENSE1, VISENSE2, VISENSE3, and VISENSE4 to thereby produce signal Vaverage, which is proportional to the average of VISENSE1, VISENSE2, VISENSE3, and VISENSE4, at output 46b.
Each control circuit channel includes a respective subtraction circuit 48, 50, 52, 54. Each of subtraction circuits 48, 50, 52, 54 include inputs 48a and 48b, 50a and 50b, 52a and 52b, and 54a and 54b, respectively. Input 48a of subtraction circuit 48 is electrically connected to input 32a of control circuit 14, thereby connecting input 48a of subtraction circuit 48 to VISENSE1. Input 50a of subtraction circuit 50 is electrically connected to input 32b of control circuit 14, thereby connecting input 50a of subtraction circuit 48 to VISENSE2. Input 52a of subtraction circuit 52 is electrically connected to input 32c of control circuit 14, thereby connecting input 52a of subtraction circuit 48 to VISENSE2. Likewise, input 54a of subtraction circuit 54 is electrically connected to input 32d of control circuit 14, thereby connecting input 54a of subtraction circuit 48 to VISENSE4. Each input 48b, 50b, 52b, and 54b of subtraction circuits 48, 50, 52, 54, respectively, is electrically connected to output 46b of scaling circuit 46, thereby connecting each input 48b, 50b, 52b, 54b to Vaverage. Each of the subtraction circuits 48, 50, 52, 54, subtracts Vaverage from each of VISENSE1, VISENSE2, VISENSE3, and VISENSE4. More particularly, subtraction circuit 48 subtracts Vaverage from VISENSE1, subtraction circuit 50 subtracts Vaverage from VISENSE2, subtraction circuit 52 subtracts Vaverage from VISENSE3, and subtraction circuit 54 subtracts Vaverage from VISENSE4. The results of the subtraction performed by each of subtraction amplifiers 48, 50, 52, 54 represent the difference between the current flowing through a respective one of converter channels 18a, 18b, 18c, 18d and the average of the converter channel currents being sourced conjuctively by converter channels 18a, 18b, 18c, 18d (i.e., the value represented by Vaverage). Outputs 48c, 50c, 52c, and 54c of subtraction circuits 48, 50, 52, 54, respectively, are electrically connected to a respective one of compensation circuits G.
Each control circuit channel also includes a compensation circuit G1, G2, G3, G4. Each compensation circuit G1, G2, G3, G4 performs current loop compensation functions, such as, for example, gain or filter functions to shape the current feedback wave, to achieve adequate current balancing, or to prevent current loop instability. Each compensation circuit G1, G2, G3, G4 may include at least one pole and zero. The output of each compensation circuit G1, G2, G3, G4 represents the difference between the current flowing through a respective one of converter channels 18a, 18b, 18c, 18d and the overall average of the converter channel currents being sourced conjunctively by converter channels 18a, 18b, 18c, 18d (i.e., the value represented by Vaverage), and is represented by signals ΔI1, ΔI2, ΔI3, ΔI4, respectively. Thus, signals ΔI1, ΔI2, ΔI3, ΔI4 represent the difference between the overall average of the converter channel currents being sourced conjunctively by converter channels 18a, 18b, 18c, 18d (i.e., the value represented by Vaverage) and the actual value of the current flowing within converter channels 18a, 18b, 18c, and 18d, respectively. More particularly, and for example, ΔI1 represents the difference between the overall average of the converter channel currents being sourced conjunctively by channels 18a, 18b, 18c, 18d, and the actual value of the converter channel current flowing within converter channel 18a. Likewise, and as a further example, ΔI2 represents the difference between the overall average of the converter channel currents being sourced conjunctively by converter channels 18a, 18b, 18c, 18d, and the actual value of the current flowing within converter channel 18b. Ideally, each of the ΔI1, ΔI2, ΔI3, and ΔI4 signals will be zero, thus indicating equal converter channel currents are flowing through each of converter channels 18a, 18b, 18c, 18d. Signals ΔI1, ΔI2, ΔI3, ΔI4 are input into subtraction circuits 58, 60, 62, 64, respectively.
Each control circuit channel includes a subtraction circuit 58, 60, 62, 64. Each of subtraction circuits 58, 60, 62, 64 include respective inputs 58a, and 58b, 60a and 60b, 62a and 62b, and 64a and 64b. Inputs 58a, 60a, 62a, and 64a are electrically connected to G1, G2, G3, and G4, respectively, thereby connecting each of subtraction circuits 58, 60, 62, and 64 to signals ΔI1, ΔI2, ΔI3, ΔI4, respectively. Each of inputs 5b, 60b, 62b, and 64b, are electrically connected to output 42b of E/A 42, thereby connecting each subtraction circuit 58, 60, 62, and 64 to VE/A. As described hereinabove, VE/A increases when the voltage at output 36 of converter 10 is below the reference voltage REF applied to input 42a of E/A 42. Conversely, the output voltage VE/A of output 42b decreases when the voltage at output 36 of converter 10 is above the reference voltage REF applied to input 42a of E/A 42. Difference or subtraction circuits 58, 60, 62, and 64 compare a respective one of ΔI1, ΔI2, ΔI3, and ΔI4 to signal VE/A. Outputs 58c, 60c, 62c, and 64c of subtraction circuits 58, 60, 62, 64, respectively, are electrically connected to a respective one of PWM amplifiers 68, 70, 72, 74.
Each control circuit channel includes a PWM amplifier 68, 70, 72, 74. Each of PWM amplifiers 68, 70, 72, 74 include inputs 68a and 68b, 70a and 70b, 72a and 72b, and 74a and 74b, respectively. Inputs 68a, 70a, 72a, 74a are electrically connected to outputs 58c, 60c, 62c, 64c, respectively, of subtraction circuits 58, 60, 62, 64, respectively. Each input 68b, 70b, 72b, 74b is connected to a reference PWM waveform. PWM amplifiers 68, 70, 72, 74 modify the reference PWM waveform dependent at least in part upon inputs 68a, 70a, 72a, 74a, respectively. More particularly, the pulse width of the reference PWM will be individually and separately modified by each PWM amplifier 68, 70, 72, 74 dependent at least in part upon a respective one of inputs 68a, 70a, 72a, 74a. The individually and separately modified reference PWM waveforms appear at control circuit outputs 14a, 14b, 14c, 14d of PWM amplifiers 68, 70, 72, 74, respectively, as signal PWM1, PWM2, PWM3, and PWM4, respectively. The modification of the reference PWM waveform by each PWM amplifier 68, 70, 72, and 74 is in such a direction as to bring the converter channel current of each converter channel 18a, 18b, 18c, 18d closer to the average output current, Vaverage. More particularly, the pulse width of each of signals PWM1, PWM2, PWM3, PWM4, will be modified (i.e. shortened or lengthened) in such a direction as to bring the converter channel current of each converter channel 18a, 18b, 18c, 18d closer to the average output current, Vaverage. Each signal PWM1, PWM2, PWM3, and PWM4 of PWM amplifiers 68, 70, 72, 74, respectively, is electrically connected to a respective one of converter channel inputs 22a, 22b, 22c, and 22d, respectively, as described hereinabove.
In use, when converter 10 is operating under, for example, the condition that converter channel 18a is carrying a converter channel current that is higher than the average of all converter channel currents, as represented by Vaverage, subtraction circuit 48 will generate a positive ΔI1 signal. This positive ΔI1 is input into subtraction circuit 58. Subtraction circuit 58 subtracts the positive ΔI1 signal from VE/A, i.e. the output of error amplifier 42, thereby reducing output 58c, which is electrically connected to input 68a of PWM 68. In response, PWM 68 reduces the pulse width of PWM1 at output 14a. The reduction in pulse width of PWM1 reduces the converter channel current flowing through converter channel 18a to a value closer to the average of all converter channel currents, as represented by Vaverage. Conversely, when converter 10 is operating under, for example, the condition that converter channel 18b is carrying a converter channel current that is lower than the average of all converter channel currents, as represented by Vaverage, a negative ΔI2 signal is generated by subtraction circuit 50. This negativeΔI2 signal is input into subtraction circuit 60. Subtraction circuit 60 subtracts the negative ΔI2 signal from VE/A, i.e. the output of error amplifier 42, and the output 60c, which is electrically connected to input 70a of PWM 70, is increased. In response, PWM 70 increases the pulse width of PWM2 at output 14b. The increase in pulse width of PWM2 increases the current flowing through channel 18b to a value closer to the average of all converter channel currents, as represented by Vaverage.
In the embodiment shown, converter 10 includes four converter channels 18a, 18b, 18c, 18d, and control circuit 14 includes four control circuit channels, each including a respective subtraction circuit 48, 50, 52, 54, another respective subtraction circuit 58, 60, 62, 64, a respective compensation circuit G1, G2, G3, G4, a respective PWM amplifier 68, 70, 72, 74, and a respective feedback path 28a, 28b, 28c, 28d. However, it is to be understood that converter 10 can be configured to include any number of channels with control circuit 14 be configured with a corresponding number of control circuit channels.
In the embodiment shown, compensation circuits G1, G2, G3, G4 each perform current loop compensation functions, such as, for example, gain or filter functions to shape the current feedback wave, or to prevent current loop instability. However, it is to be understood that it is not always necessary to incorporate compensation circuits into the present invention.
In the embodiment shown, signals VISENSE1, VISENSE2, VISENSE3, and VISENSE4 are proportional to the current in each of feedback loops 28a, 28b, 28c, 28d, respectively. However, it is to be understood that the VISENSE signals may be alternately configured such as being based upon or based partly upon the current carried by the feedback loops, rather than being strictly proportional thereto.
In the embodiment shown, circuits 48, 50, 52, 54, and circuits 58, 60, 62, 64 are configured as subtraction circuits. However, it is to be understood that each of circuits 48, 50, 52, 54 and circuits 58, 60, 62, 64 could be alternatively configured, such as, for example, difference amplifiers, to produce an output signal representative of the difference between signals input into the circuits.
While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the present invention using the general principles described herein. Further, this application is intended to cover such departures from the present disclosure as come within the known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Isham, Robert H., Hawkes, Charles E., Walters, Michael M.
Patent | Priority | Assignee | Title |
10038318, | Jun 27 2011 | EATON INTELLIGENT POWER LIMITED | Power supply |
10205445, | Sep 25 2017 | Synopsys, Inc | Clock duty cycle correction circuit |
6977489, | Jan 10 2003 | INTERSIL AMERICAS LLC | Multiphase converter controller using single gain resistor |
7009370, | Jun 13 2002 | DRS Network & Imaging Systems, LLC | Pulse forming converter |
7078965, | Apr 26 2004 | BIOURJA ENERGY SYSTEMS, LLC | Servo balancing among driver devices |
7138789, | Jan 21 2004 | INTERSIL AMERICAS LLC | Multiphase converter with zero voltage switching |
7253680, | May 21 2003 | BIOURJA ENERGY SYSTEMS, LLC | Amplifier system with current-mode servo feedback |
7298197, | Aug 18 2003 | III Holdings 6, LLC | Multi-phase DC-DC converter with shared control |
8378650, | Jun 16 2009 | INTERSIL AMERICAS LLC | Way out of balance (WOB) current correction for use with a multi-phase DC-DC converter |
8385030, | Jun 16 2009 | INTERSIL AMERICAS LLC | Component fault detection for use with a multi-phase DC-DC converter |
8415938, | Apr 02 2008 | Asahi Kasei Microdevices Corporation | Switching regulator |
8878501, | Sep 01 2011 | Microchip Technology Incorporated | Multi-phase power block for a switching regulator for use with a single-phase PWM controller |
9857812, | Aug 01 2014 | ABB Schweiz AG | Systems and methods for advanced diagnostic in modular power converters |
RE40593, | Sep 01 1999 | INTERSIL AMERICAS LLC | Multi-phase converter with balanced currents |
RE42063, | Sep 01 1999 | INTERSIL AMERICAS LLC | Multi-phase converter with balanced currents |
Patent | Priority | Assignee | Title |
4924170, | Jan 03 1989 | Unisys Corporation | Current sharing modular power supply |
5477132, | Jan 10 1992 | SPACE SYSTEMS LORAL, LLC | Multi-sectioned power converter having current-sharing controller |
5513094, | Nov 30 1993 | MKS Instruments, Inc | Switch-mode power supply for bridged linear amplifier |
5724237, | Jun 11 1996 | UNIPOWER, LLC | Apparatus and method for sharing a load current among frequency-controlled D.C.-to-D.C. converters |
5793191, | Aug 03 1995 | C&D CHARTER HOLDINGS, INC | Zero voltage switching supplies connected in parallel |
5808453, | Aug 21 1996 | Siliconix Incorporated | Synchronous current sharing pulse width modulator |
5834925, | May 08 1997 | Cisco Technology, Inc | Current sharing power supplies with redundant operation |
5847548, | Sep 26 1997 | Lineage Power Corporation | Current-sharing passive snubber for parallel-connected switches and high power boost converter employing the same |
5861738, | Nov 13 1997 | Hughes Electronics Corporation | DC to DC converter with a single-fault tolerant clamp |
5909108, | Feb 23 1998 | Lucent Technologies Inc. | Current-sharing circuit for parallel-coupled switches and switch-mode power converter employing the same |
5945815, | Jun 12 1998 | Illinois Tool Works Inc | Current sharing apparatus and method for controlling parallel power devices |
6137274, | Feb 02 2000 | National Semiconductor Corporation | Switching DC-to-DC converter and conversion method with current sharing between paralleled channels |
6144194, | Jul 13 1998 | Analog Devices International Unlimited Company | Polyphase synchronous switching voltage regulators |
6215290, | Nov 15 1999 | JPMORGAN CHASE BANK, N A , AS SUCCESSOR AGENT | Multi-phase and multi-module power supplies with balanced current between phases and modules |
6246222, | Aug 30 2000 | National Semiconductor Corporation | Switching DC-to-DC converter and conversion method with rotation of control signal channels relative to paralleled power channels |
6281666, | Mar 14 2000 | GLOBALFOUNDRIES Inc | Efficiency of a multiphase switching power supply during low power mode |
EP419993, | |||
EP809347, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 26 2000 | HAWKES, CHARLES E | Intersil Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027788 | /0672 | |
May 26 2000 | WALTERS, MICHAEL M | Intersil Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027788 | /0672 | |
Jun 06 2000 | ISHAM, ROBERT H | Intersil Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027788 | /0672 | |
May 23 2001 | Intersil Corporation | INTERSIL COMMUNICATIONS, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 027793 | /0321 | |
Jan 11 2002 | Intersil Communications, Inc. | (assignment on the face of the patent) | / | |||
Aug 01 2006 | INTERSIL COMMUNICATIONS, INC | Intersil Americas Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027788 | /0831 | |
Apr 27 2010 | QUELLAN, INC | MORGAN STANLEY & CO INCORPORATED | SECURITY AGREEMENT | 024320 | /0001 | |
Apr 27 2010 | Intersil Corporation | MORGAN STANLEY & CO INCORPORATED | SECURITY AGREEMENT | 024320 | /0001 | |
Apr 27 2010 | Techwell, INC | MORGAN STANLEY & CO INCORPORATED | SECURITY AGREEMENT | 024320 | /0001 | |
Apr 27 2010 | PLANET ATE, INC | MORGAN STANLEY & CO INCORPORATED | SECURITY AGREEMENT | 024320 | /0001 | |
Apr 27 2010 | D2Audio Corporation | MORGAN STANLEY & CO INCORPORATED | SECURITY AGREEMENT | 024320 | /0001 | |
Apr 27 2010 | Elantec Semiconductor, Inc | MORGAN STANLEY & CO INCORPORATED | SECURITY AGREEMENT | 024320 | /0001 | |
Apr 27 2010 | INTERSIL COMMUNICATIONS, INC | MORGAN STANLEY & CO INCORPORATED | SECURITY AGREEMENT | 024320 | /0001 | |
Apr 27 2010 | KENET, INC | MORGAN STANLEY & CO INCORPORATED | SECURITY AGREEMENT | 024320 | /0001 | |
Apr 27 2010 | ZILKER LABS, INC | MORGAN STANLEY & CO INCORPORATED | SECURITY AGREEMENT | 024320 | /0001 | |
Apr 27 2010 | Intersil Americas Inc | MORGAN STANLEY & CO INCORPORATED | SECURITY AGREEMENT | 024320 | /0001 | |
Dec 23 2011 | Intersil Americas Inc | INTERSIL AMERICAS LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 033119 | /0484 |
Date | Maintenance Fee Events |
Feb 22 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 09 2007 | 4 years fee payment window open |
Sep 09 2007 | 6 months grace period start (w surcharge) |
Mar 09 2008 | patent expiry (for year 4) |
Mar 09 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 09 2011 | 8 years fee payment window open |
Sep 09 2011 | 6 months grace period start (w surcharge) |
Mar 09 2012 | patent expiry (for year 8) |
Mar 09 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 09 2015 | 12 years fee payment window open |
Sep 09 2015 | 6 months grace period start (w surcharge) |
Mar 09 2016 | patent expiry (for year 12) |
Mar 09 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |