A bottom connector for the tendon of a tension leg platform uses a latch ring with an outer profile to engage a mating profile in a receptacle on the sea floor. The latch ring moves radially within a housing, relative to the receptacle, between an engaged position and a retracted position. The latch ring engages the receptacle by lowering the connector into the receptacle below the mating profile and then lifting it until the latch ring locks into the receptacle. The latch ring disengages the receptacle by lowering the connector beyond a recess located below the mating profile and then lifting the connector out of the receptacle. As the connector is lifted above the recess, a retaining ring is actuated by the recess to retain the latch ring in its retracted position.
|
0. 50. A method for securing and releasing a connector comprising:
(a) providing a receptacle on the sea floor with a bore having an inner profile and a recess located below the inner profile; (b) providing a body having a retainer mounted thereto and an outwardly-biased latch with an outer profile for engaging the inner profile of the receptacle, the retainer being in a released position relative to the latch which allows the latch to move to an engaged position; (c) lowering the body into the receptacle and engaging the latch with the inner profile of the receptacle to limit upward movement of the body, and then to disengage the connector; (d) lowering the body until the retainer is located in the recess in the receptacle; and then (e) lifting the body out of the receptacle, causing the retainer to move to a locked position which holds the latch in a retracted position out of engagement with the inner profile.
0. 37. A connector comprising:
a receptacle having a bore with an inner profile and a recess located below the inner profile; a body adapted to be lowered into the receptacle; an outwardly-biased latch carried by the body and having an outer profile which engages the inner profile of the receptacle in an engaged position to limit upward movement of the body, and a retracted position wherein the latch is retracted out of engagement with the inner profile; a retainer slidably mounted to the body and having a released position relative to the latch which allows the latch to move to the engaged position, and a locked position which holds the latch in the retracted position; and wherein lowering the body until the retainer engages the recess and then lifting the body causes the retainer to assume the locked position, thereby allowing the body to be withdrawn from the receptacle with the latch being held in the retracted position.
0. 41. A connector comprising:
a receptacle having a bore with an inner profile and a recess located below the inner profile; a body adapted to be lowered into the receptacle; an outwardly-biased latch carried by the body and having an outer profile which engages the inner profile of the receptacle in an engaged position to limit upward movement of the body, and a retracted position wherein the latch is retracted out of engagement with the inner profile; a retainer sleeve mounted to the body which is axially movable relative to the sleeve, the sleeve having a released position relative to the latch which allows the latch to move to the engaged position, and a locked position which holds the latch in the retracted position, the latch moving upward relative to the sleeve as the sleeve moves from the released position to the locked position; and wherein lowering the body until the sleeve engages the recess and then lifting the body causes the sleeve to assume the locked position.
32. A method for securing and releasing a bottom connector on a tension leg platform tendon, comprising:
(a) providing a receptacle on the sea floor with a bore having an inner profile and a recess located below the inner profile; (b) securing a body to a lower end of the tendon, the body having a retainer mounted thereto and an outwardly-biased latch with an outer profile for engaging the inner profile of the receptacle, the retainer being in a released position relative to the latch which allows the latch to move to an engaged position; (c) lowering the body into the receptacle and engaging the latch with the inner profile of the receptacle to limit upward movement of the body; and then to disengage the bottom connector, (d) lowering the body until the retainer is located in the recess in the receptacle; and then (e) lifting the body out of the receptacle, causing the retainer to move to a locked position which holds the latch in a retracted position out of engagement with the inner profile.
1. A bottom connector for a tension leg platform tendon, comprising:
a receptacle adapted to be mounted on the sea floor, the receptacle having a bore with an inner profile and a recess located below the inner profile; a body adapted to be secured to the lower end of the tendon and lowered into the receptacle; an outwardly-biased latch carried by the body and having an outer profile which engages the inner profile of the receptacle in an engaged position to limit upward movement of the body, and a retracted position wherein the latch is retracted out of engagement with the inner profile; a retainer slidably mounted to the body and having a released position relative to the latch which allows the latch to move to the engaged position, and a locked position which holds the latch in the retracted position; and wherein lowering the body until the retainer engages the recess and then lifting the body causes the retainer to assume the locked position, thereby allowing the body to be withdrawn from the receptacle with the latch being held in the retracted position.
35. A method for securing and releasing a bottom connector on a tension leg platform tendon, comprising:
(a) providing a receptacle on the sea floor with a bore having an inner profile and a recess located below the inner profile; (b) securing a body to a lower end of the tendon, the body having a retainer and an outwardly-biased latch with an outer profile for engaging the inner profile of the receptacle, the retainer being in a released position relative to the latch which allows the latch to move to an engaged position; (c) lowering the body into the receptacle and engaging the latch with the inner profile of the receptacle to limit upward movement of the body; and then to disengage the bottom connector. (d) lowering the body until the retainer is located in the recess in the receptacle; and then (e) lifting the body out of the receptacle, causing the retainer to move to a locked position which holds the latch in a retracted position out of engagement with the inner profile; and wherein step (e) comprises moving the body and the latch upward relative to the retainer while the retainer is in the recess.
17. A bottom connector for a tension leg platform tendon, comprising:
a receptacle adapted to be mounted on the sea floor, the receptacle having a bore with an inner profile and a recess located below the inner profile; a body adapted to be secured to the lower end of the tendon and lowered into the receptacle; an outwardly-biased latch carried by the body and having an outer profile which engages the inner profile of the receptacle in an engaged position to limit upward movement of the body, and a retracted position wherein the latch is retracted out of engagement with the inner profile; a retainer sleeve mounted to the body which is axially movable relative to the sleeve, the sleeve having a released position relative to the latch which allows the latch to move to the engaged position, and a locked position which holds the latch in the retracted position, the latch moving upward relative to the sleeve as the sleeve moves from the released position to the locked position; and wherein lowering the body until the sleeve engages the recess and then lifting the body causes the sleeve to assume the locked position.
13. A bottom connector for a tension leg platform tendon, comprising:
a receptacle adapted to be mounted on the sea floor, the receptacle having a bore with an inner profile and a recess located below the inner profile; a body adapted to be secured to the lower end of the tendon and lowered into the receptacle; an outwardly-biased latch carried by the body and having an outer profile which engages the inner profile of the receptacle in an engaged position to limit upward movement of the body, and a retracted position wherein the latch is retracted out of engagement with the inner profile; a retainer mounted to the body and having a released position relative to the latch which allows the latch to move to the engaged position, and a locked position which holds the latch in the retracted position; and wherein lowering the body until the retainer engages the recess and then lifting the body causes the retainer to assume the locked position, thereby allowing the body to be withdrawn from the receptacle with the latch being held in the retracted position; and wherein the body has a downward-inclined shoulder and the latch is slidably movable along the inclined shoulder.
5. A bottom connector for a tension leg platform tendon, comprising:
a receptacle adapted to be mounted on the sea floor, the receptacle having a bore with an inner profile and a recess located below the inner profile; a body adapted to be secured to the lower end of the tendon and lowered into the receptacle; an outwardly-biased latch carried by the body and having an outer profile which engages the inner profile of the receptacle in an engaged position to limit upward movement of the body, and a retracted position wherein the latch is retracted out of engagement with the inner profile; a retainer mounted to the body and having a released position relative to the latch which allows the latch to move to the engaged position, and a locked position which holds the latch in the retracted position; and wherein lowering the body until the retainer engages the recess and then lifting the body causes the retainer to assume the locked position, thereby allowing the body to be withdrawn from the receptacle with the latch being held in the retracted position; and wherein the latch is axially movable relative to the retainer while the retainer engages the recess, causing the retainer to assume the locked position.
15. A bottom connector for a tension leg platform tendon, comprising:
a receptacle adapted to be mounted on the sea floor, the receptacle having a bore with an inner profile and a recess located below the inner profile; a body adapted to be secured to the lower end of the tendon and lowered into the receptacle; an outwardly-biased latch carried by the body and having an outer profile which engages the inner profile of the receptacle in an engaged position to limit upward movement of the body, and a retracted position wherein the latch is retracted out of engagement with the inner profile; a retainer mounted to the body and having a released position relative to the latch which allows the latch to move to the engaged position, and a locked position which holds the latch in the retracted position; and wherein lowering the body until the retainer engages the recess and then lifting the body causes the retainer to assume the locked position, thereby allowing the body to be withdrawn from the receptacle with the latch being held in the retracted position; and wherein the retainer is a split ring located above the latch, the split ring having a lower portion which extends downward over the latch when in the locked position.
26. A bottom connector for a tension leg platform tendon, comprising:
a receptacle adapted to be mounted on the sea floor, the receptacle having a bore with an inner profile and a recess located below the inner profile; a body adapted to be secured to the lower end of the tendon and lowered with the tendon into the receptacle; a plurality of latch segments, each of which is outwardly pivotal about a pivot point on a lower end, the latch segments being carried by the body and having an outer profile which engages the inner profile of the receptacle in an outward engaged position to limit upward movement of the body, and an inward retracted position wherein the latch segments are retracted out of engagement with the inner profile; a split ring mounted to the body for biasing the latch segments in an outward direction; an axially movable retainer sleeve mounted to the body and having a released position relative to the latch segments which allows the latch segments to move outward to the engaged position, and a locked position wherein an upper portion holds the latch segments in the retracted position; and wherein lowering the body until the sleeve engages the recess and then lifting upward causes the latch segments to move upward relative to the sleeve, placing the sleeve in the locked position.
11. A bottom connector for a tension leg platform tendon, comprising:
a receptacle adapted to be mounted on the sea floor, the receptacle having a bore with an inner profile and a recess located below the inner profile; a body adapted to be secured to the lower end of the tendon and lowered into the receptacle; an outwardly-biased latch carried by the body and having an outer profile which engages the inner profile of the receptacle in an engaged position to limit upward movement of the body, and a retracted position wherein the latch is retracted out of engagement with the inner profile; a retainer mounted to the body and having a released position relative to the latch which allows the latch to move to the engaged position, and a locked position which holds the latch in the retracted position; and wherein lowering the body until the retainer engages the recess and then lifting the body causes the retainer to assume the locked position, thereby allowing the body to be withdrawn from the receptacle with the latch being held in the retracted position; and wherein the retainer is mounted to the body for limited axial movement relative to the body; and wherein the recess has a downward-facing shoulder which contacts the retainer as the body is lifted, moving the body upward relative to the retainer.
12. A bottom connector for a tension leg platform tendon, comprising:
a receptacle adapted to be mounted on the sea floor, the receptacle having a bore with an inner profile and a recess located below the inner profile; a body adapted to be secured to the lower end of the tendon and lowered into the receptacle; an outwardly-biased latch carried by the body and having an outer profile which engages the inner profile of the receptacle in an engaged position to limit upward movement of the body, and a retracted position wherein the latch is retracted out of engagement with the inner profile; a retainer mounted to the body and having a released position relative to the latch which allows the latch to move to the engaged position, and a locked position which holds the latch in the retracted position; and wherein lowering the body until the retainer engages the recess and then lifting the body causes the retainer to assume the locked position, thereby allowing the body to be withdrawn from the receptacle with the latch being held in the retracted position; an intermediate groove in the receptacle between the inner profile and the recess; and a lock member on a lower part of the retainer, the lock member engaging the intermediate groove in the receptacle when the latch engages the inner profile to releasably prevent downward movement of the body in the receptacle.
30. A bottom connector for a tension leg platform tendon, comprising:
a receptacle adapted to be mounted on the sea floor, the receptacle having a bore with an inner profile and a recess located below the inner profile; a body adapted to be secured to the lower end of the tendon and having a slot and a downward-inclined shoulder; an outwardly-biased, split ring latch carried by the body on the shoulder and having an outer profile which engages the inner profile of the receptacle in an engaged position to limit upward movement of the body, and a retracted position wherein the latch is retracted out of engagement with the inner profile; a split ring retainer mounted to the body above the latch for axial movement relative to the body and the latch, the retainer having a released position relative to the latch which allows the latch to move to the engaged position, and a locked position wherein a lower portion of the split ring extends downward over the latch to hold the latch in the retracted position; a rib on an inner portion of the retainer which extends into the slot in the body for holding the split ring in the locked position, the rib being in disengagement with the slot and above the slot while the retainer is in the released position; and wherein lowering the body until the retainer engages the recess and then lifting the body upward causes the retainer to assume the locked position.
10. A bottom connector for a tension leg platform tendon, comprising:
a receptacle adapted to be mounted on the sea floor, the receptacle having a bore with an inner profile and a recess located below the inner profile; a body adapted to be secured to the lower end of the tendon and lowered into the receptacle; an outwardly-biased latch carried by the body and having an outer profile which engages the inner profile of the receptacle in an engaged position to limit upward movement of the body, and a retracted position wherein the latch is retracted out of engagement with the inner profile; a retainer mounted to the body and having a released position relative to the latch which allows the latch to move to the engaged position, and a locked position which holds the latch in the retracted position; and wherein lowering the body until the retainer engages the recess and then lifting the body causes the retainer to assume the locked position, thereby allowing the body to be withdrawn from the receptacle with the latch being held in the retracted position; and wherein the body comprises: an inner body portion which is adapted to be secured to the lower end of the tendon; an annular outer body portion surrounding the inner body portion; and a flexible element located between the inner body portion and the outer body portion for accommodating a limited amount of pivotal movement between the inner and the outer bodies. 2. The bottom connector of
3. The bottom connector of
the latch has a rib which engages the internal groove in the retainer when the retainer is in the released position, and is disengaged from the groove in the retainer when the retainer is in the locked position.
6. The bottom connector of
7. The bottom connector of
8. The bottom connector of
the latch comprises a plurality of segments, each of which is outwardly pivotal about a pivot point on a lower end.
9. The bottom connector of
the latch comprises a plurality of segments, each of which is outwardly pivotal about a pivot point on a lower end.
14. The bottom connector of
16. The bottom connector of
18. The bottom connector of
19. The bottom connector of
the latch comprises a plurality of segments, each of which is outwardly pivotal about a pivot point on a lower end.
20. The bottom connector of
the latch has a rib which engages the internal groove in the sleeve when the sleeve is in the released position, and is disengaged from the groove in the sleeve when the sleeve is in the locked position.
21. The bottom connector of
the recess has a downward-facing shoulder which is contacted by the lock member portion of the sleeve to cause the body to move upward relative to the sleeve while the body is lifted.
22. The bottom connector of
an intermediate groove in the receptacle between the inner profile and the recess; and a lock member on a lower part of the sleeve, the lock member engaging the intermediate groove in the receptacle when the latch engages the inner profile to releasably prevent downward movement of the body in the receptacle.
23. The bottom connector of
24. The bottom connector of
25. The bottom connector of
27. The bottom connector of
an internal groove in the sleeve; and wherein each of the latch segments has a rib which engages the internal groove in the sleeve when the sleeve is in the released position, and is disengaged from the internal groove in the sleeve when the sleeve is in the locked position.
28. The bottom connector of
the recess has a downward-facing shoulder which contacts the lock member portion of the sleeve as the body is lifted for moving the body upward relative to the lock member and the sleeve.
29. The bottom connector of
a split ring lock member on a lower part of the sleeve, the lock member engaging the intermediate groove in the receptacle when the latch segments engage the inner profile to releasably prevent downward movement of the body in the receptacle.
31. The bottom connector of
33. The method of
34. The method of
36. The method of
retaining the body against downward movement up to a selected downward force after step (c) and before step (d); and wherein step (d) comprises applying a downward force on the body which is greater than said selected downward force.
0. 38. The connector of
0. 39. The connector of
the latch has a rib which engages the internal groove in the retainer when the retainer is in the released position, and is disengaged from the groove in the retainer when the retainer is in the locked position.
0. 40. The connector of
0. 42. The connector of
0. 43. The connector of
the latch comprises a plurality of segments, each of which is outwardly pivotal about a pivot point on a lower end.
0. 44. The connector of
an internal groove in the sleeve; and wherein the latch has a rib which engages the internal groove in the sleeve when the sleeve is in the released position, and is disengaged from the groove in the sleeve when the sleeve is in the locked position.
0. 45. The connector of
the recess has a downward-facing shoulder which is contacted by the lock member portion of the sleeve to cause the body to move upward relative to the sleeve while the body is lifted.
0. 46. The connector of
an intermediate groove in the receptacle between the inner profile and the recess; and a lock member on a lower part of the sleeve, the lock member engaging the intermediate groove in the receptacle when the latch engages the inner profile to releasably prevent downward movement of the body in the receptacle.
0. 47. The connector of
0. 48. The connector of
0. 49. The connector of
0. 51. The method of
0. 52. The method of
|
This application claims benefit of provisional application 60/027,490, filed Sep. 27, 1996.
This invention relates in general to remotely operable connectors and in particular to an improved vertical entry bottom connector for the tendon of a tension leg platform.
The bottom connector of a tension leg platform (TLP) tendon connects the lower end of the tendon to an anchor template or pile on the sea floor in order to transfer tendon loads into the anchor structure.
There are two primary types of bottom connectors. Side entry bottom connectors are installed into a tendon bottom receptacle by inserting the connector through a slot in the side of the receptacle. Vertical entry bottom connectors are inserted downward through the top of the receptacle.
Typically, vertical entry bottom connectors are large and expensive to manufacture. Some prior art versions require rotation to engage and disengage the receptacle. Other versions require landing on a shoulder within the receptacle to release the connector. These latter devices have the additional, potential disadvantage of subjecting the tendons of the TLP to compressive forces.
In this invention, the receptacle on the sea floor has a bore with an inner profile and a recess located below the inner profile. A connector body is secured to the lower end of a tendon and lowered into the receptacle. An outwardly-biased latch is carried by the body and has an outer profile which engages the inner profile of the receptacle in an engaged position to limit upward movement of the body. The latch also has a retracted position wherein the latch is retracted out of engagement with the inner profile.
A retainer is mounted to the body and has a released position relative to the latch which allows the latch to move to the engaged position. The retainer has a locked position which holds the latch in the retracted position. Lowering the body until the retainer engages the recess causes the retainer to assume the locked position, thereby allowing the body to be withdrawn from the receptacle with the latch being held in the retracted position.
Referring to
Connector 11 has three substructures: a lower portion which is used to facilitate entry into a bore 18 in receptacle 15, an intermediate portion which accommodates for extraneous movement of tendon 13, and an upper portion which interfaces with bore 18 of receptacle 15.
The lower portion of connector 11 comprises an end plate 23 which is welded to the lower end of inner body 14 over bore 21 perpendicular to axis 16. End plate 23 has a coaxial, concave recess 24 on a lower side which receives a convex upper end 26 of a pivot member 25. Pivot member 25 extends upward into engagement with end plate 23 from a bottom plate or brace 27. End plate 23 is pivotal relative to pivot member 25 as shown in
The intermediate portion of connector 11 comprises a flexible element 41 which is landed on shoulder 19 of flange 17. Flexible element 41 extends upward from shoulder 19 and is fastened to tendon 13 with an annular clip 43. A spacer ring 45 is fastened to an upper end of flexible element 41 with bolts 47.
Referring to
A latch 71 is located within recess 57 and groove 63. In the embodiment shown in
Latch 71 is retained within bottom connector 11 by an annular blocking sleeve or retainer 85. Retainer 85 is a solid ring and is axially movable relative to body 51. Retainer 85 has an inner profile which generally mates with the outer surface of latch 71, including a lip 87 which lies between lower groove 73 and rib 83, and an internal groove 89 which engages rib 83. Retainer 85 also has an upward facing shoulder 91 which mates with a downward facing shoulder 93 on body 51 located just below recess 57. Retainer 85 is sliclably movable along body 51 from the upper released position shown in
In operation, connector 11 is secured to tension leg platform tendon 13 and receptacle 15 is anchored to the sea floor. As shown in
During its descent, the upward inclined flanks of grooves 73 prevent latch 71 from engaging inner profile 75. Retainer 85 slides over inner profile 75 and does not engage it since retainer 85 has an axial dimension which is longer than the axial dimension of inner profile 75. As shown in
Referring to
To disengage connector 11, it is once again lowered (FIG. 6). As described above, the inclined flanks of grooves 73 do not impede the downward motion of connector 11. The resistance to downward movement by retainer 85 and lock member 95 is overcome with a selected weight applied in a downward direction. The downward motion of connector 11 is stopped when retainer 85 is located in or below recess 99 of receptacle 15 (FIG. 6). Connector 11 is then lifted upward. When lock member 95 engages recess 99 (
A second embodiment of the invention is shown in
The lower and intermediate portions of connector 111 are very similar to those of connector 11. A rigid guide funnel 131 has an outer diameter which is slightly less than the inner diameter of receptacle 115. The upper end of funnel 131 is fastened to an annular outer body 145 with bolts 147. Connector 111 also has an inner body (not shown) which attaches to a tendon and preferably mounts to outer body 145 with flex elements.
The upper outside portion of outer body 145 is a generally concave recess 149 with a downward sloping lower surface. An uppermost portion 145a of outer body 145 extends vertically and is threaded on an outer surface. A generally L-shaped housing 151 is threadingly fastened along its lower, inner surface to uppermost portion 145a. A retainer cap 159 is fastened to the upper end of housing 151 with bolts 161. Cap 159 has a generally downward facing U-shape with a lower outer edge 159a.
A latch 171 is located in recess 149 below an inclined, lower side 151a of housing 151. Side 151a is generally parallel to the lower surface of recess 149. In the embodiment shown in
Latch 171 may be retained within recess 149 in a retracted position by a split ring retainer 185. Retainer 185 is axially and radially movable relative to housing 151 and latch 171. Retainer 185 has an outer profile which generally mates with an upper profile 115a located above inner profile 175 in receptacle 115. Retainer 185 also has a lip 187 which extends downward toward latch 171, and an internal rib 189 which extends diagonally downward and inward and engages a slot 186 in housing 151. Retainer 185 also has an upper vertical portion 191 which engages edge 159a on cap 159.
A release spring or lock member 195 is located along an outer edge of outer body 145 below latch 171 for accommodating its movement relative to outer body 145, housing 151 and retainer 185. A spring 194 extends between a lower portion of lock member 195 and outer body 145 for biasing lock member 195 in an upward direction. A positioner pin 197 extends between lock member 195 and outer body 145 for maintaining the position of lock member 195. The head of pin 197 locates in an elongated slot in lock member 195 to allow limited axial movement of lock member 195 relative to outer body 145. Lock member 195 has an upper surface 195a which is designed to engage the lower surface 171a of latch 171 and is flush with the lower surface 149a of recess 149 while in the upper position of
Connector 111 operates very similarly to connector 11. As shown in
During its descent, the outer profile of latch 171 prevents it from locking into inner profile 175. Retainer 185 slides over inner profile 175 (
To disengage connector 111, it is once again lowered (FIG. 16). Latch 171 and retainer 185 do not impede the downward motion of connector 111. The resistance to downward movement by these components is overcome with a selected downward weight on the tendon. After being compressed upward and radially inward during the descent, retainer 185 springs downward and outward into recess 199 at the bottom of receptacle 115. The diagonal portion of retainer 185 located below vertical portion 191 slides along edge 159a to assist in this propagation. The downward motion of connector 111 is stopped when retainer 185 is located in or below recess 199 of receptacle 115 (FIG. 17). Latch 171 is axially and radially slidable relative to retainer 185 while retainer 185 engages recess 199. Connector 111 is then lifted upward. When retainer 185 engages recess 199 (FIG. 17), it springs outward relative to housing 151 and latch 171. Recess 199 has a downward-facing shoulder 199a which contacts retainer 185 as housing 151 is lifted. With this motion, lip 187 of retainer 185 is moved onto a radially outer surface of shoulder 173 on latch 171, thereby shifting retainer 185 from the released position to a locked position which holds latch 171 in the retracted position (FIG. 18). Rib 189 is simultaneously placed within slot 186 to prevent further axial movement of retainer 185. Lip 187 does not engage shoulder 173 when retainer 185 is in the released position (FIGS. 10-17), and engages shoulder 173 when retainer 185 is in the locked position (FIGS. 18-20). Lowering housing 151 until retainer 185 engages recess 199 causes retainer 185 to assume the locked position, thereby allowing connector 111 and the tendon to be withdrawn from receptacle 115 with latch 171 being held in the retracted position (FIGS. 19-21). Like connector 11, connector 111 is similarly capable of accommodating up to ten degrees of deflection by the tendon relative to its vertical axis.
The invention has several advantages. This vertical entry bottom connector does not require rotation or bottoming-out on a shoulder within the receptacle to disengage it. The invention employs a compact design, has very few moving parts and has a pivotal lower end which allows limited deflection of the connector inner body relative to the receptacle.
While the invention has been shown or described in only two of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes without departing from the scope of the invention.
Pallini, Jr., Joseph W., Rhodes, Jerry K., Jackson, Jason R.
Patent | Priority | Assignee | Title |
7465127, | Feb 13 2006 | Sea Engineering, Inc. | Method for positive locking of tendon bottom connectors |
7621698, | Oct 03 2007 | Vetco Gray, LLC | Rotating lock ring bottom tendon connector |
7914234, | May 21 2008 | SINGLE BUOY MOORINGS, INC | Method and apparatus for restraining a tendon top connector in reverse loading conditions |
Patent | Priority | Assignee | Title |
4451056, | Jul 18 1980 | KVAERNER NATIONAL, INC | Remotely operated underwater tension connector |
4459931, | Sep 04 1979 | FMC Corporation | Method and apparatus for tension setting and compression releasing tubular connectors |
4610468, | Aug 14 1984 | United Technologies Automotive, Inc. | Quick connect/disconnect coupling |
4611953, | Nov 01 1985 | VETCO GRAY INC , | TLP tendon bottom connector |
4869615, | Mar 23 1988 | Cooper Cameron Corporation | Tension leg joint |
5048874, | Nov 21 1985 | Quick coupling for interconnection of two high-pressure fluid conduits | |
6536527, | May 16 2000 | ABB Vetco Gray Inc.; ABB VETCO GRAY, INC | Connection system for catenary riser |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 25 2001 | ABB Vetco Gray Inc. | (assignment on the face of the patent) | / | |||
Jul 12 2004 | ABB VETCO GRAY INC | J P MORGAN EUROPE LIMITED, AS SECURITY AGENT | SECURITY AGREEMENT | 015215 | /0851 |
Date | Maintenance Fee Events |
May 16 2007 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 16 2011 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 09 2007 | 4 years fee payment window open |
Sep 09 2007 | 6 months grace period start (w surcharge) |
Mar 09 2008 | patent expiry (for year 4) |
Mar 09 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 09 2011 | 8 years fee payment window open |
Sep 09 2011 | 6 months grace period start (w surcharge) |
Mar 09 2012 | patent expiry (for year 8) |
Mar 09 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 09 2015 | 12 years fee payment window open |
Sep 09 2015 | 6 months grace period start (w surcharge) |
Mar 09 2016 | patent expiry (for year 12) |
Mar 09 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |