An apparatus and method for ordering supplemental information about programs playing at a broadcast receiver. The method includes reproducing programs from one of a plurality of stations, recording an identification of a station and a time of a program, entering this information into one of a plurality of terminals, coupling the terminal to a depository and identifying a correspondence between the entered station identification and time and a program in a station log to obtain the desired supplemental information.
|
|
The various embodiments of this invention can all be used to provide auxiliary information concerning a program being played on a station to a user. In one embodiment shown in
In all the embodiments the auxiliary information can be obtained from an AIM, a central computer server, or a distributed data base accessed over a network. In another embodiment shown in
In yet another embodiment a smart card with memory only, can be coupled to a radio, television, or remote controller, which contains a clock and a station controller for providing SDT to the smart card when the user presses a button on the radio, television, or remote controller to obtain auxiliary information about a program. The SDT is read from the smart card at a ATM or POS terminal to obtain the auxiliary information for the user.
The foregoing is a brief summary of some of the embodiments and in all the embodiments the broadcast stations are part of the system. The following is a detailed description of the embodiments.
With reference to
Central station 20, which serves as a remote program information retrieval system (PIRS), is shown in FIG. 2. Auxiliary information about the broadcast programs is stored in storage device 22 such as a random access memory or a optical disk. The auxiliary information is organized in storage device 22 so it can be accessed according to the broadcast schedule, i.e., time, day, and station. In other words, the SDT data is mapped in storage device 22 to the auxiliary information for the program uniquely identified by the SDT data. The auxiliary information could take various forms depending upon the nature of the broadcast program. For example, if the program comprises musical selections, the auxiliary information could be the name, artist, and label of the musical piece; if the program comprises a drama, the auxiliary information could be a summary of the dramatic piece; if the program comprises a public interest discussion, the auxiliary information could be a written transcript of the program; and if the program is a commercial, the auxiliary information could be the name and address of a retail or mail order business where the advertised product or service can be acquired or an infomercial about the product or service. Similarly, the auxiliary information could be in textual, graphic, and/or video form. A central processing unit (CPU) 24 controls the storing and retrieving of auxiliary information in storage device 22. If the SDT data is transmitted to central station 20 by a plug in memory chip, the chip is inserted in a compatible memory receiving socket 26 which is connected to CPU 24. If the SDT data is transmitted to central station 20 by modem, the telephone line is connected to a modem receiver 28, which is connected to CPU 24. In any case, the SDT data uniquely identifies the individual programs being broadcast and serves as addresses to access the auxiliary information in storage device 22 relating to the individual programs. The auxiliary information can be transmitted to the listener or viewer in a number of ways. For example, a hard copy of the auxiliary information could be made on a printer 30 under the control of CPU 24 and delivered to the home by mail or messenger; the auxiliary information could be stored in electronic form, i.e. floppy disk computer tape, audio tape, or video tape, which is delivered to the home or picked up by the user at a service center, the auxiliary information could be sent back to the listener or viewer by a modem transmitter 32; or the auxiliary information could be sent back to the listener by a cable or broadcast television link. The user identification tags can be matched with demographic data about the users stored at central station 20 to provide a demographic profile of the users who responded to each program with a request for auxiliary information.
Like many of today's units, unit 100 has a circuit for providing a time-of-day clock in hour, minute and second. Preferably, the clock further measures day, as well as month and year. The time measure of the clock is displayed on a display 101.
Like many conventional units, the unit 100 is equipped with a plurality of station presets. The station presets allow a user to selectively store certain stations into a memory so that the unit 100 can be tuned to any one of the preset stations by simply touching a Station/Publication Preset Key 102.
The unit 100 has a circuit for generating dual tone multiple frequency (DTMF) signals so that it can send messages through a telephone. A jack 103 for receiving a telephone plug is provided.
As will be described in reference to
The display 101 is preferably one with low power consumption such as a liquid crystal display (LCD). It is normally used to display the frequency of the tuned station and/or the time of day.
The unit 100 also has a conventional magnetic tape recorder PLAYER. As in many standard recorders, a set of keys, including the EJECT 104. STOP 105. FF (fast forward) 106, REW (rewind) 107. PLAY 108 and REC (record) 109 keys are provided. And as in many conventional units, the unit 100 also has a radio-recorder key 110 to allow a user to select either the radio or the recorder, as well as a VOL control 111 to allow a user to change the volume output.
The unit 100 has a set of telephone keys 88-1 through 88-12 to provide a twelve-button key pad similar to that of a conventional telephone. In particular, the telephone keys 88-1 through 88-12 are the number keys "1" through "0", the star "*" key and the pound sign "#" key respectively. The letters of the alphabet are assigned to the telephone keys "2" through "9" as they are for a conventional telephone. For example, the letters ABC are assigned to the telephone key "2". However, unlike the conventional telephone key pad, the letters Q and Z are assigned to the telephone keys "1" with "0" respectively.
Alphabet characters are entered by a double key entry which is well-known to those skilled in the art. Each character is represented by two numbers. For example, the telephone key "2" corresponds to the letters ABC. However, pressing the key "2" once does not uniquely select one of the three letters. By pressing the "1" key, after pressing the "2" key, the first character or "A" is entered. Similarly, if "B" is being selected, the user presses the telephone key "2" and then again presses the telephone key "2" to select the second character "B". Other characters are similarly entered.
Alternatively, a standard keyboard such as used for typewriters or computers may be used.
A set of cursor keys 90 is provided to let a user moves a cursor on the display 101. The cursor keys 90 include a left arrow key for moving the cursor to the left, an up arrow key for moving the cursor upward, a down arrow key for moving the cursor downward and a right arrow key for moving the cursor to the right.
Beside the above described keys, the unit 100 also has a set of keys, including a BROADCAST INFO KEY 112, a DIAL key 114, a REVIEW key 113, a CANCEL key 118, a HANG UP key 119, a PRINT INFO key 115, a SELECT key 116 and a SETUP key 117. The functions of these keys will be described below along with the reference to the flow charts of
The CPU 201 is connected to a random access memory (RAM) 203. The RAM 203 is used for storing the station presets and program identifications. It is also used for providing a scratch pad for the CPU 201 in performing other functions such as in operating the display 101 and for temporary storage of SDT data until it is sent to central station 20. Since it is contemplated that the unit 100 is portable, at least a portion of the RAM 203 is therefore implemented with non-volatile memory, such as a electrically erasable programmable read only memory (EEPROM) or a volatile memory with a battery backup, so that reusable data can be stored.
The CPU 20 is coupled to display control circuit 204 which controls the display 101 and a clock circuit 206 which controls the clock. Clock circuit 206 generates the signals representative of time and date. The digital tuner of the unit 100 is controlled by the CPU 201 through a digital tuner circuit 207, and the tape recorder of the unit 100 is controlled by the CPU 201 through a tape recorder control circuit 210. Digital tuner circuit 207 stores the frequency to which the receiver is tuned and thus generates the signal representative of the station to be stored. Designs for these circuits are known to a person skilled in the art, therefore, detail explanation thereof is deemed unnecessary.
Optionally, CPU 201 is also connected to a radio frequency section and audio amplifier, to which a head phone or a speaker can be connected.
The unit 100 has a microphone which is controlled by the CPU 201 through a conventional microphone interface 205. The CPU 201 also has control of a telephone and acoustic coupler circuit 208, and a DTMF generator and decoder through a DTMF circuit 209. The circuit 208 can be connected directly to telephone jack 103, or optionally to an acoustic coupler located on the rear surface of the unit 100. These devices are used to connect the unit to central station 20 and to receive from central station 20 auxiliary information on a broadcast program. Each of the circuits 208 and 209 can use one of the designs available in the art. Although all three devices are shown in
As represented by block 220, the CPU 201 controls and receives the plurality of input keys shown in
When BROADCAST INFO key 112 (
In addition to its function as a regular radio or recorder PLAYER, unit 100 also operates to provide instantaneous identification and registration of broadcast programs of interest to a user as described above and in more detail below with reference to the flow charts of
When powered up, preferably by batteries (not shown), the unit 100 operates as a standard radio or a standard recorder, depending on the setting of the radio-tape key 110. An identification of the tuned station and the time-of-day clock may be shown on the display 101.
When any one of the enhancement keys is actuated, the CPU 201 is interrupted and a corresponding interrupt subroutine is executed.
When the SERUP key 117 is activated, step 401 is performed in which a setup menu similar to that illustrated in
If the user selects the "BROADCAST STATIONS" option, step 402 is entered and a menu similar to that illustrated in
In step 403, the user can enter a telephone number which will be used for retrieving information from a program information retrieval system wherein programs broadcast from the station is stored. It is contemplated that the telephone number is provided by the television or radio station through publication in newspapers (e.g. the TV/radio section) or the television guides, etc. The telephone number may be the number for the station itself which has its own program information retrieval system, or it may be the number of central location which keeps schedules and information of broadcast programs of several different stations in a PIRS.
The name, frequency and telephone number entered by the use at step 403 are stored into the non-volatile portion of the RAM 203.
The user can set another preset key 102 or execute the exit option which causes the CPU 201 to re-display the set-up menu of FIG. 6a.
If the user selects the "PUBLICATIONS" option, step 404 is entered and a menu similar to that shown in
If the user selects the "USER ID" option, step 406 is entered and a menu similar to that shown in
If the user selects the "CLOCK" option, steps 408 and 409 are executed and the CPU 201 prompts the user to enter a new clock value. As setting of the clock is similar to that found in many existing television and VCR remote controls, detail explanation thereof is thus deemed unnecessary.
When the user finishes with the setup operation, the "EXIT" option can be selected from the setup menu of
A user can tune the unit 100 to any one station and listen to the broadcast using headphones. When a program (including, music, commentary, commercial, etc.) from that station is of interest to the user, the BROADCAST INFO key 112 can then be actuated. Thereupon, step 411 is entered. In step 411, the CPU 201 stores into the non-volatile portion of the RAM 203 an identification of the station, along with the time of the clock at which the BROADCAST INFO key 112 is pressed.
The station can be identified by its broadcast frequency or the name of the station (e.g. using 105.1 to retrieve the name KKGO). Using the station name is considered more advantageous because it is easier of the listener to recognize the station name than recognizing the frequency.
From the identification stored in the RAM 203, the user can retrieve auxiliary information of an identified program. This is performed by connecting the unit 100 to a telephone using a modular connector or an acoustic coupler. When the unit 100 is connected, the user can press the REVIEW KEY 113.
When the REVIEW KEY 113 is actuated, program identifications previously stored in the RAM 203 are retrieved (step 414) and displayed on the display 101 (step 415). There are several formats in which this information can be displayed. For example, the stored identifications may be displayed with the identifications organized by stations. The advantage of this format is that the user can now review the identified programs for one station before the corresponding telephone number is dialed. Another format is to organize the identification by dates. This format may help the user to more easily find a particular program previously registered.
When the previously identified programs are displayed, the user can use the cursor keys 90 to select the particular program of, or a particular station from, which the user is interested in getting the auxiliary information. When the program or the station is selected, the user can actuate the DIAL KEY 114 and the corresponding telephone number is retrieved (step 416) and dialed (step 417). When telephone connection is established, the CPU 201 retrieves the station identification from the RAM 203 and activates DTMF generator and decoder circuit 209. DTMF tones are then generated to send the program identification(s) to the PIRS of the station or central location (step 418). After the program identification is sent, the CPU 201 waits for the PIRS to transmit the information back (step 419).
In step 418, a user identification, which was entered previously under the USER ID option, may optionally be sent to the PIRS. The user identification may be a name, address and telephone number as described previously, or it may simply be a number such as his social security number. Transmitting the user identification has the advantage that it allows the PIRS to send bulky written information through mail or by direct telephone call.
Upon receiving a request (step 501), the PIRS uses the station ID from the program identification to locate data for that station (step 503). (However, if the PIRS is an in-house system of a station step 503 may not be needed.)
In step 504, the clock value from the program identification is decoded to search the identified program. When the identified program is found, the PIRS retrieves auxiliary information (step 505) thereof.
Advantageously, the PIRS makes a record of the request. This record can then be used to provide statistical data for determining the popularity of the program, the station or other audience monitoring type data (step 506).
The PIRS sends the auxiliary information to the user by first sending a DTMF tone to unit 100 (step 507). The DTMF tone is received by the DTMF generator and decoder circuit 209 of the unit 100, which then interrupts the CPU 201. The CPU 201, upon interrupted by circuit 209, starts the tape recorder through control of the circuit 210. When the tape recorder is started, a signal is sent to the PIRS to initiate transmission of the auxiliary information (step 508). When the auxiliary information from the PIRS is received by the unit 100, they are stored on the tape.
If the auxiliary information relates to a musical selection, it might include the album, artist and title along with a short (e.g. 10 second) audio segment of the selection so that the user can relate the melody to the title. This concept is disclosed in my U.S. Pat. No. 5,119,507. if the auxiliary information relates to an advertisement, a portion of the ad may be repeated along with the auxiliary information to relate the product or service to additional information.
At completion of the transmission, the PIRS generates a DTMF tone to the unit 100 to stop the tape recorder and terminate the telephone connection (step 509). A signal can also be generated at the unit 100 so that the user is alerted to the completion and availability of the auxiliary information.
Referring back to the flow charts of
When the program identifications are displayed upon actuation of the REVIEW KEY 113, a user may select to cancel a previously stored program identification from the RAM 203. This may be done by first using the cursor keys 90 to select the program identification the user wishes to cancel. Once the program identification is selected, the CANCEL KEY 118 can be actuated and the data corresponding to the selected program identification is thereby erased from the RAM 203 (step 420).
When the transmission is completed, the user can either hear the information directly from the tape recorder, or, optionally, the signals stored in the tape may be interpreted by the CPU 201 to produce text data which can then be displayed on the display 101.
Although the above is described with reference to identifying a radio program, the invention is not so limited. As described above, during setup of the unit 100, a user can also program the preset keys to store names of different publications (such as the Los Angles Times, Newsweek, Barrons, etc.), along with a corresponding telephone number for each publication. When reading an article, the user can press the corresponding preset key 102. When the user reads an article or an advertisement of interest, the PRINT INFO key 115 can be actuated to store the name of the publication into the RAM 203 (step 424). The CPU 201 then prompts the user for a code number such as an I PLUS number (step 425), which may be found printed in the article or the advertisement. The user enters the I PLUS number through the telephone keys 88, which is then stored into the RAM 203 (step 426).
To retrieve information on the identified article or advertisement, the user connects the unit 100 to a telephone. The REVIEW KEY 113 can be actuated to display the identification and then the DIAL KEY 114 to connection the unit to the PIRS as described above. The information is then retrieved through the telephone connection as disclosed previously.
In the above described embodiment, the identification of a broadcast program is recorded as a number so that it is sent over the DTMF tone. However, if unit 100 has a modem, more detailed program identification can be entered and sent to a PIRS, and a PIRS can send text information to unit 100. Moreover, if unit 100 has a modem, the transmitted information need not be stored on the tape, but directly in the RAM 203 which can then be displayed at display 101.
As an option, the unit 100 can be implemented to have keys commonly found in a calculator, as shown in FIG. 3. The CPU 201 can then be implemented to be able to perform mathematics so that the unit 100 can be used as a calculator.
A user need not be listening to the unit 100 in practice, but can be listening to any radio or television (including a car radio), with the unit 100 set to the same tuned station. Then, if there is program of interest, the BROADCAST INFO key 112 can be actuated to identify the program.
Preferably, the clock 206 is set to correspond to the local time. An audible DTMF tone can be broadcast by a local station on the hour a few times each day, so a user can synchronize the unit 100 using its internal radio circuit or from another radio, using the microphone of the tape recorder to detect the audible tone and reset the clock to the hour. Alternatively, a synchronizing DTMF tone can be downloaded to unit 100 via a telephone link to the central processing station through coupler circuit 208.
In accordance with the present invention, the receiver 600 has a CPU 606 coupled to the digital tuner 604 and the clock 602. The CPU 606 has means 608, such as a socket for receiving a non-volatile memory chip 607 such as a EEPROM, or a magnetic strip recorder receiving a card with a magnetic strip. If a clock and battery are incorporated into chip 607 as described below, a less expensive volatile memory could be used.
The CPU 606 is activated when a "BROADCAST INFO" key 609 is actuated. When activated, the CPU 606 operates to store an identification of the tuned station (e.g. its frequency from the digital tuner 604) to the memory chip 607 along with the value of the clock 602 at the time the key 609 is actuated.
Since the memory 607 may be used separately (i.e. in different receivers), it becomes necessary to have a memory management scheme so that the CPU 606 can know where to write new data thereon each time. One such memory management scheme is to maintain a pointer in the memory 607. The pointer is kept at a predefined location, such as the first address. It points to a location in the memory for inputting the next data. When the memory 607 is inserted into the socket 608, the pointer is read by the CPU 606.
When a user hears a program of interest, the BROADCAST INFO key 609 can be actuated, which causes the station identification and the clock to be stored into the memory 607. Optionally, a user identification, which may be preset into the receiver 600, is also stored for purposes described above.
As described above, the user can retrieve information about the broadcast program by removing the memory 607 from the socket 608 and inserting it in a retrieval device (hereinafter called an Automatic Information Machine), which is one useful form of central station 20.
It is contemplated for this embodiment that a plurality of these Automatic Information Machines (AIMs) will be installed in different locations, such as in record stores and other retail establishments.
In the AIM, the time and station of the broadcast program is retrieved from the memory 607. From such identification, information such as the title (and/or other information, such as the singer) of a song is output in print form. With this information, the user can, for example, either purchase a record of the song, or other records by the same singer.
Clock 713 can serve as a master time standard to update the clocks in the receivers of the individual listeners or viewers via the memory chips plugged into the AIM. Specifically, there is incorporated into the memory chips a clock circuit 720 that serves as a slave clock when it is plugged into the AIM and as a master clock when it is plugged into a receiver. Clock circuit 720 is powered by a small battery 722 on board chip 607. CPU 701 is configured to synchronize the clock circuit on the memory chip to clock 713 when the memory chip is plugged into the AIM. CPU 606 (
A display 708, a printer 710, and headphones 712 coupled to audio circuitry 711 are provided to facilitate communication with a user.
The CPU 701 is coupled to a socket 709 where the memory 607 from a user can be inserted.
In operation, upon registering the programs of interest into the memory 607 as described above, a user can insert it into the socket 709 of the AIM 700. The CPU 701 reads the identification (channel or station, date and time (SDT) of the program from the memory 607 and uses this identification to search its memory, 703, 704 or 705 for information relating to the identified program. The information may include, for example, the title of a song, author or singer, price of a record or album for the song, etc. It may also be the program itself or a program related to the identified program.
The information can be stored in an AIM 700 in different formats. For example, if the information to be provided is for identifying an album of a song, then the information may simply be a standard UCC product identification bar code number which most record stores have been using to monitor their inventory. This UCC number can be incorporated as part of the information stored in the AIMs in the form of a broadcast station program schedule for a particular day as follows:
Station Frequency (e.g. FM 98.7) | ||
Date (e.g. 11/9/1991) | ||
Start Time (e.g. 13:01:03)- | UCC number/Track | |
End Time (e.g. 13:05:06) | ||
Start Time (e.g. 13:05:06)- | UCC number/Track | |
End Time (e.g. 13:08:18) | ||
Start Time (e.g. 13:08:18)- | Station commentary | |
End Time (e.g. 13:08:48) | ||
To further illustrate operation of the AIM, assuming a user was listening to FM 99.9, and at 1:05 pm on Nov. 9, 1991. The "BROADCAST INFO" key is actuated because a song of interest was heard on that station. At that time, the frequency (i.e. FM 99.9) of the station, along with the time at which the key was activated, would be stored in the non-volatile memory 607. When the non-volatile memory 607 is late inserted into a AIM 700 (which is located, for example, in a record store), the channel or station, date and time data ("SDT") are then used by the AIM 700 to locate the UCC number and track of the song.
From The UCC number and the track number, the user can retrieve other auxiliary information regarding the song, including the store stock level and the price of the album.
The retrived information can be displayed on the display, printed out on the printer, and/or provided to the user in audio from the tape 703 drive via the headphones 712.
If an AIM does not have information concerning an identified program (such as when the AIM belongs to a record store and an identified program is for a commercial of a automobile), an error message is displayed or printed so that the user is advised to take the memory to the right AIM.
After the information is retrieved, the AIM may give an option to the user to erase the corresponding identification from the memory 607.
Although the invention has been described above with reference to a radio, its application is not so limited. For example, instead of identifying radio programs, a device embodying the present invention can used to identify a television program. Moreover, an alternate embodiment may be implemented to allow a user to retrieve the program itself or an associated program. For example, the use may want to listen to the identified program again (such as a comedy or a commentary). In this case, the CPU 701 uses the program identification to retrieve a copy of the program and replays it on the audio circuit 711, so that the user can listen to it at the earphones 712. Alternatively, a user may want to watch a television program again. In that case, the CPU 701 uses the program identification to retrieve a copy of the program and replays it on the display 708. Another important feature of the AIM 700 is that it stores the information retrieved from the user's RAM chip memory 607, and furnishes that information to the information provider. This information yields valuable audience monitoring data concerning the popularity of various broadcast stations, musical selections and advertisements. The user information may be stored on the hard disk 704, and periodically provided to the information provider via the floppy drive/disk 706 on the telephone line/modem 707.
Another alternate embodiment of the present invention is shown in FIG. 10. This unit 800 has the advantage that it can be used with all existing receivers without modification thereto.
With reference to both
Within the unit 800 is a central processing unit (CPU) 803 which controls operation thereof, and a memory 805, such as a random access memory (RAM) which is used for storing program identification.
The unit 800 does not need to have a radio receiver circuit. When actuated, it merely operates to store the station frequencies and the value of the clock.
Optionally, provisions are made to let a user enter his user identification such as a social security number using the USER ID and STATION PRESET keys.
The unit 800 also includes a plug 807 for interfacing to an AIM, as described above.
In operation, a user sets the unit 800 to the station being listed to, either by the preset keys or manually. When the user hears a program of interest and desires to obtain information for the program, the INFO key 810 can be actuated. This action causes the value of the clock 802, as well as the station identification to be stored in the memory 805. These information can then be used to retrieve information from an AIM in the same manner as described above.
Optionally, the unit 800 has a circuit for reading the clock 713 when it is connected to an AIM. In this way, the clock 802 can be synchronized by the AIM. Alternatively, the unit 800 may have a microphone 808 whereby the clock 802 can be synchronized through audio time tones broadcast by an external radio.
In the same way as described above, the unit 800 may be equipped with means for storing identifications of different publications and I PLUS codes to retrieve information relating to a published article or advertisement.
In
CPU 914 is configured so that the remote controller will operate without memory chip 920 being plugged into socket 918. Thus, the plug in memory chip can be removed at any time and taken to an AIM to gain access to the auxiliary information. Furthermore, the plug in memory chips can be personalized to each user. For example, each member of a family could have his or her own plug in memory chip to store his or her own individual request for an auxiliary information and to obtain a personalize print-out from the AIM.
In another embodiment, an information card 1010 is provided as shown in
The information card 1010 can have a beeper 1034 for warning the user of certain situations such as that the memory in the information card is full or that a clock in the information card needs to be reset. The information card is designed to have differential serial interface. The contact terminals for the serial interface on the information card can be provided directly onto the surfaces of the card. As shown in
There is a particular problem that arises if a station is a cable station. In the case of cable channels, the channel number is not enough to identify the station. A cable channel map is required for the cable company transmitting on the station. It is not necessary to store the cable channel map in the memory 1042, because the cable channel map can be stored at a central location, such as the memory in the AIM 1160 or server 1180 of
Other information that can be loaded into the memory 1042 upon initializing the clock/calendar includes the user's name 1064, address 1066, zip code 1068, and driver's license number 1070. The information card can also be assigned to identification (ID) number 1072, which can be stored in the memory. Other items that can be stored in the memory of the information card include the last clock update date 1074, which is the date of the last clock/calendar 1040 setting, the initialization date 1076, the allowed number of key presses per day 1078, the last readout date 1080, which is the date of the last readout of the memory 1042, and the number of data sets last read 1082. The function of these entries in the memory are explained below. Other items shown in
When a user presses a key on the information card, the controller 1040 accesses the table 1050 of key-to-station ID correspondences stored in memory 1042. For example, suppose the user presses the key 1007 on the front side of the card, then the station identification (ID) that is found in the table shown in
It is also possible to use the information card for recording a response to a question transmitted from a station. Suppose the station asks a question having a numerical answer. Then by pressing the key corresponding to the station N times in rapid succession, the user can affectively enter a number answer into the information card. For example, elements 1120 through 1125 are entries that are made in the memory 1042 when a particular key is pressed three times. As indicated in
Another type of data that can be stored in the information card is a YES or NO response to a question transmitted on a station with a YES or NO answer. To accomplish this, a performer on the station can announce that for the user to enter a YES answer that the user should press the key now. Then after waiting for example 30 seconds, the performer on the station can announce to the audience that to enter a NO answer the user should press the same key that corresponds to the station now. It is assumed that the user will either enter a YES or a NO answer rather than both answers. By comparing the date and time and station identification read from the information card to a station log that is for the station that corresponds to the station identification, and comparing the date and time of the entry in the information card to a corresponding date and time in the station log, it can be determined whether the user has entered a YES or a NO response. For example entries 1150 and 1151 shown in
In order for the data sets stored in the information card to be compared to station logs, the station logs are communicated to an automated information machine (AIM) that is adapted to receive the station logs and compare them with data sets read from the information card.
In the system shown in
The automated information machine has a slot 1161 which is adapted to receive the information card 1010 for reading the data sets in the memory 1042 into the automated information machine. Similarly the merchant AIMs also have a slot 1192 adapted to receive the information card 1010.
The AM stations can communicate directly via telephone line to the AIMs or via telephone to the televisions stations 1168 or the FM stations 1164, which would then transmit the AM station logs to the AIMs 1160 via sideband transmissions or inserting the station logs into the VBI of a television station. The audience monitoring data collected in each AIM can be provided to audience monitoring facility 1184, each night, using the modems 1163 and 1193 and the telephone lines 1162.
The following description describes the manner of embedding data in a video signal at a station and decoding the data at a receiver.
Video images in a cathode ray tube (CRT) type-video device, e.g. television, are generated by scanning a beam along a predefined pattern of lines across a screen. Each time all the lines are scanned, a frame is said to have been produced. In on implementation, such as used in the United States, a frame is scanned 30 times per second. Each television frame comprises 525 lines which are divided into two separate fields, referred to as field 1 ("odd field") and field 2 ("even field"), of 262.5 lines each. Accordingly, these even and odd fields are transmitted alternately at 60 Hz. The lines of the even and odd fields are interleaved to produce the full 525 line frame once every {fraction (1/30)} of a second in a process known as interlacing. Another standard in the world uses 625 lines of information and interlace 312 and 313 lines at 50 fields per second. In the 525 line standard used in the United States, approximately 480 lines are displayed on the television screen.
Referring now to the drawings,
From the bottom center of the screen, the beam returns to the top where it starts scanning from substantially the center of the screen along the lines 1604 for field 2 which interlace the lines of field 1. This is not an instantaneous bottom to top jump but actually requires the length of time to scan 21 horizontal lines. These lines 1606 are lines 1 through 21 of field 2. The second half of line 21 field two (line 284 as shown in
During the time in which the beam returns from the bottom to the top of the screen between the fields, it carries no video or picture signals because it does not produce any picture element on the screen. This time interval is generally known as the vertical blanking interval (VBI). Its duration is typically 21 times the time duration that it takes the beam to scan across the screen. In other words, the duration of the VBI is equal to the time for the beam to scan 21 lines and is divided into 21 lines. In interlaced scanning, the VBI is identified by the field with which it is associated. Apparatus and methods using the NTSC standard wit 21 lines in each VBI are well known in the art and therefore are not discussed in detail herein.
Because no image is produced on the display during the vertical blanking interval, no picture information therefore needs to be carried by the broadcast signals. Thus, the VBI is used for conveying auxiliary information from a television network or station to an audience. For example, closed caption data associated with the television program are transmitted as encoded composite data signals in VBI line 21, field 1 of the standard NTSC video signal, as shown in FIG. 21.
Lines 1 through 9 of the VBI of each field are used for vertical synchronization and post equalizing pulses. Thus, lines 10 through 21 are available for auxiliary information.
More specifically, the network head end has a video tape recorder (VTR) 10006 for providing a program signal to an inserter 10007. A controller 10008 also at the head end controls the scheduling of loading tapes from a cart (a machine with a plurality of video tape cassettes which are moved by a robotic arm from a storage location and inserted into a video tape recorder and vice versa). Furthermore, the controller 10008 controls the lighting of stages during live broadcasts, such as news broadcasts. The controller 10008 is typically a microprocessor based system. A traffic computer 10009 controls the exact timing of playing individual segments of video tapes and inserting commercials therebetween as well as switching between different programs. Some network head ends have both a traffic computer 10009 and a controller 10008. The controller 10008 provides data and commands to the inserter 10007. The traffic computer 10009 provides data and commands to the controller if present. Otherwise, the traffic computer 10009 provides these signals directly to the inserter 10007. The inserter 10007 inserts data into the vertical blanking interval of the composite television signal, as will be described below, and provides the television signal to a transmitter 10010 which in turn provides the television signal on a microwave carrier to a satellite dish 10011 for transmission to the satellite 10002.
The satellite 10002 retransmits the received signal, which is received by a satellite dish 10012 at the affiliate 10003. The dish provides the signal to a station inserter 10013 at the local affiliate 10003. The affiliate may also insert data into the composite television signal as will be described below. The television signal is then provided to a transmitter 10014 and then to a transmitting antenna 10015.
A local cable operator 10004 has a plurality of satellite dishes 10016 and antennas 10017 for receiving signals from a plurality of networks 10001 and affiliates 10003. The received signal from each of the dishes 10016 and antennas 10017 is provided to a respective input of a multi-channel inserter 10018, which can input data into the vertical blanking interval of a received signal. The multi-channel output from the inserter 10018 is amplified in an amplifier 10019 and provided over a cable 10020 to individual receivers 10005. Alternately the receivers 10005 could receive broadcast information via antennas or satellite receivers. Each receiver 10005 includes a VBI decoder, which can include a VBI slicer and closed caption decoder, that scans VBI lines 10-21 of both fields 1 and 2. In addition it is possible to use the first few visible lines in each video frame for VBI data, for example, lines 22-24. Lines 1 through 9 are typically used for vertical synchronization and equalization and, thus, are not used to transmit data. Closed captioning and text mode data are generally transmitted on VBI line 21, field 1 of the standard NTSC video signal, at a rate of 2 bytes for each VBI line 21, field 1, as shown by closed caption data 1612 in FIG. 21. The text mode fields fill the entire screen with text. The default mode is an open ended mode in which the page is first filled up and then scrolled up. The individual recipient of such data has no control over the data. Extended data services (EDS) data can be transmitted on VBI line 21, field 2, as shown by EDS data 1616 in
By way of background, the data in the vertical blanking interval can be described in terms of the wave form, its coding and the data packet. The closed caption data wave form has a clock run-in followed by a frame code, followed by the data. The coding of the data is non-return-to-zero (NRZ) 7 bit odd parity.
Under mandatory FCC requirements effective July 1993, color televisions having a size 13" and greater must provide a closed caption decoder. Caption data decoding is further described in the following specifications, which are hereby incorporated by reference herein: Title 47, Code of Federal Regulations, Part 15 as amended by GEN. Docket No. 91-1; FCC 91-119: "CLOSED CAPTION DECODER REQUIREMENTS FOR THE TELEVISION RECEIVERS"; Title 47, C.F.R., Part 73.682(a). Caption Transmission format; Title 47, C.F.R. Part 73.699,
Under the extended data services (EDS) proposed in the Recommended Practice for Line 21 Data Service, Electronics Industries Association, EIA-608 (drafts Oct. 12, 1992 and Jun. 17, 1993) (hereinafter referred to as "EIA-608"standard"), the subject matter of which is incorporated herein by reference, additional data is provided in line 21, field 2 of the vertical blanking interval. This recommended practice includes two closed captioning fields, two text mode fields and the extended data services. The extended data includes, among other information, program name, program length, length into show, channel number, network affiliation, station call letters, UCT (universal coordinated time) time, time zone, and daylight savings time usage. Upstream at the network, the network inserts the program name, the length of the show, the length into the show, the network affiliation, and the UCT time. Downstream at the affiliate, the affiliate inserts the channel number, the time zone, the daylight savings time usage and program names. The network inserts the data that does not differ for different affiliates.
It is possible for the insert to the insert data other than closed captioning data and EDS data into the television signal. The station inserted data can include data such as the station log data and other auxiliary data, which can be inserted into either or both fields in any VBI line between 10 and 20. For example, the data can be inserted into line 20 of field 2, as shown by data 1614 in FIG. 21. The data may be inserted into the VBI at the closed caption rate (1X format) or at two times the closed caption rate (2X format), which is further explained below.
The data may be manually entered from a local terminal 10021, which can be used to pre-build, recall, or edit messages. The terminal 10021 typically includes a computer. In addition, a modem 10022 may be used to provide data to the inserter 10007. The output of the inserter 10007 is a composite television signal with the data inserted.
The timing of video signals in NTSC format is well known in the art. As described above, the vertical blanking interval is the time between the flyback from the bottom of the screen to the top of the screen. Although no video signal is displayed, the horizontal synchronization pulses are still provided during the VBI. The standard data transmission rate is defined in the EIA-608 standard.
As shown in
An accelerated data format (2X format) as shown in
Either continuously or periodically, the radio or TV stations transmit the station logs and the correct time of day to the server 1180 via modem 1352 and telephone network 1162. TV stations and FM stations can also contain an SCA generator 1354 and transmitter 1356 which can transmit the station log via antenna 1358. Television stations can also insert the station log data into vertical blanking interval (VBI) of a video signal by using VBI inserter 1354 to transmit the data. Note that when the station log is transmitted either via the telephone network or via antenna 1358, that the station ID 1344 is appended to the station log and is also transmitted.
The scanning SCA FM receiver or television VBI decoder receives transmissions from the FM radio stations and the television stations that transmit their station logs via SCA FM or via the VBI. Since each station transmits on a different carrier frequency, the receiver 1200 and the tuner 1203 must scan the frequencies to receive the station logs from all of the transmitting stations via antenna 1202. Alternatively, multiple receivers can be employed, each tuned to a station.
The AIM 1160 also has an information card serial interface 1161 which interfaces to the contacts 1036 and 1038 on the exterior of the information card, as shown in
Auxiliary program information, such as computer data, can also be appended to station log data in each AIM using the keyboard or other input media. A merchant can also program data filters. For example, the merchant hosting the AIM may not wish to print coupons of a competitor.
The AIM 1160 is used to initialize the information card 1010. For example, the table 1050, shown in
The station information is used by the user to initialize the information card. In particular the station identifications corresponding to keys are loaded into the memory 1042 of the information card 1010. When the information card 1010, and the memory 1042 is read by the AIM 1160, then the station identification of a data set in the memory 1042 such as station identification 1103 shown in
Note that there will rarely be an exact match of time. It is only necessary that the time stored in the information card fall within a range between the time of a program and the start time of a following program to generate a match. For example, if a station log indicates that a first program starts at 10:00 a.m. and that the next program starts at 10:15 a.m., then if the time reads from the information card is 10:08, then the auxiliary information for the first program will be accessed.
The station log 1300 shown in
As shown in
Also on
If the station logs are first collected in a server 1180, as shown in
In
Then in step 1500 it is determined whether a series of entries in the information card memory are found with the same station code and with each date and time in the series having a date and time less than a predetermined interval of time say five seconds after the log time of another entry. If no such entry is found then the method proceeds to FIG. 40B. In step 1502 of
If in step 1500 of
If in step 1592 the count is greater than a predetermined threshold value, then in step 1598 the user receives a reward from the merchant and the AIM can print a coupon or the user can bet a free item when the AIM alerts the merchant. Then in step 1600 a count of zero is written to the information card memory. If in step 1586 the user does not purchase or conduct some other transaction with the merchant then in step 1588 the information card is returned to the user. Also if in step 1592 the count is not greater than some threshold value then the count calculated in step 1590 is written into the information card and then in step 1596 the current date is written into the last merchant visit date in the information card and then the information card is returned to the user in step 1588. This data can also be stored in the AIM for verification purposes.
As shown in
A publisher such as the LA Times transmits a publication log such as that shown in
It is also possible to use the information card to keep track of books that a user has read. Many people have trouble keeping track of books read in the past and end up buying the same book several times. The user can use the book list key 1712 and the number keys 1708 to enter an ISBN or UPC number for each of the books he owns. The user does this by entering the ISBN number and then pressing the book list key 1712 shown in FIG. 42. The ISBN numbers are stored as a list 1734, as shown in FIG. 45. When the user goes to a book store he can plug the information card into an AIM. When the cashier scans the ISBN number of the books being purchased, the numbers are compared to those already stored in the unit. If there is a match, the user does not buy the book. If there is no match, the scanned item is automatically stored in the information care by the AIM, which is connected to the scanner. Thus, the user does not have to manually enter an ISBN number for each new book purchased.
Another use for the information card is to automatically store all of the user's credit card numbers including frequent flyer, hotel discount, and rental car card number. These may be entered using the numeric keyboard and then pressing the card key 1706 on the information card 1700. The entered card numbers are stored in a list as shown in element 1735 in FIG. 45.
The card numbers can also be entered by putting the information card into an AIM and then swiping the credit cards or other card through a magnetic strip card reader such as magnetic strip card reader 1710 shown in FIG. 26A. Numbers stored into the information card can be retrieved in the future by putting the information card into an AIM.
The present embodiments contemplate a system that includes a broadcast station program log data distribution system where log data is collected at a server such as a regional data collection and storage facility, and then forwarded to docking stations at participating retailers.
In another embodiment, the existing bank ATM distribution system and/or the existing retail credit card Point-of Sale Terminal (POST) data distribution system are used instead of, for example, the server 1180 and AIMs 1160 of FIG. 17. The setup and use the information card with the ATM or POS is in many respects similar to that described for the AIMs and the concepts described for use with AIMs apply also to use with an ATM or POS.
The capability for operation with an information card 1010, as shown in
To setup the information card, the user inserts an ATM card and an information card in their respective sockets. The ATM requests the user's personal identification number (PIN) number and also detects the presence of the information card 1010 in the connector 2034. The ATM then asks (on the display 2026) whether the user wants to setup the information card, or print out stored information. The user follows instructions and presses the designated key on the keyboard 2020 for the setup mode. At this point, the ATM, which has read the ATM card ID from the magnetic strip by using magnetic card reader 2022, transfers the ID (which is typically the ATM card number) to the memory 1042 in the information card, thereby setting the information card ID.
The display 2026 then displays various menus to allow the user to choose his favorite AM, FM and TV stations from a list of local stations stored in the ATM memory or in the interchange memory accessed via the regional interchanges, in a manner identical to that described for the AIM embodiment. The user presses the designated keyboard 2020 keys to make his choices, which are then transferred to the information card memory to identify the information card keys. Note that each station in the country is assigned a unique station number (corresponding to its call letters). The ATM also prints out cover sheets which the user inserts under the clear overlays on each side of the information card to label the keys. The ATM also sets the clock in the information card to be correct time. The ATM clock (in the CPU) is itself maintained accurate from time data distributed throughout the data system. The setup selections chosen by the user are stored in the ATM memory and then downloaded to the interchange along with the consumer's ATM card number as consumer monitoring data to be used for targeted direct mailings. Other setup steps can be performed in a manner similar to that described above for the information card setup via an AIM, including
When the user wants to print out information corresponding to station, day and time (SDT) data stored in the information card, he inserts the information card in the connector 2034 in the ATM. The ATM detects the presence of the information card, reads the stored ID, and other information that is stored during the setup, such as the Cable ID NO. 1096, and requests the user's PIN (this is optional and verifies that the user is the owner of the information cared). The clock time and last clock update date and time 1074, as shown in
The retrieved text data is then printed out on the ATM printer 2032. The ATM then erases the SDT data from the information card memory and resets the information card clock 1040 to the correct time. The transaction is now complete. The SDT data is stored in the ATM memory 2012 during the transaction. At the end of the transaction, this data is sent to the interchange where it is routed to a designated site along with the information card ID for collection of consumer monitoring data. This data is also used for billing the advertiser whose commercial was being broadcast during the SDT interval.
A POS terminal 2040 is located at most retailers and is used to complete a credit card transaction and print out a confirming receipt. A POS Terminal data system is similar in structure to the ATM system, except that the ATM 2002 is replaced with a POS Terminal 2040. Referring to
The capability for operation with the information card 1010 is added to the system by providing a connector unit 2060, as in the previous embodiment, which is designed to hold the information card 1010 and to connect to the information card contacts 1036 and 1038. Using a cable, the connector is connected, via suitable circuits, to both the input bus 2052 and output bus 2054 of the POS Terminal CPU. Thus, the information card connector 2060 can be easily connected to an existing POS Terminal without any modifications. A typical POS terminal is a VeriFone brand terminal, sold by VeriFone Corporation, Redwood City, Calif. The information card connector 2060 includes suitable I/O circuits as well as memory 2062 to store the retrieve log data for printing. The program log data from participating stations is stored in a manner identical to that described above.
The user is provided with an information card with the keys unlabeled. The clock 1040 may already have been set to the correct time. The user is also provided with a paper sheet, designed to be slipped under the information card clear cover (see
The user checks off the stations of interest, writes the call letters and station frequency of each chosen station into one of the key boxes on the overlay sheet of
The user now programs the memory 1042 in the information card to store the station information, as follows. On the rear surface of the information card (see
Before the consumer can use the information card, he must link it to one of his credit cards as an ID. This is accomplished by taking the information card to a participating retailer, and giving the clerk a credit card and the information card. The clerk swipes the credit card in the POS reader 2022, and inserts the information card 1010 in the connector 2060. The user presses suitable keys on the keyboard 2020 to indicate information card setup, and the credit card number is transferred to information card memory 1042 for ID, the information card clock 1040 is set to the correct time, the station numbers set by the user are copied into the memory 2046, and the list of the user chosen stations are printed by printer 2044 for verification. The consumer can also enter the Cable ID No. The consumer setup selections, which were stored in memory 2046 are then downloaded to the interchange via telephone line 2016 along with the consumer's credit card number and can be used for a number of purposes, including targeted direct mailings.
When the user wants to print out information corresponding to station, data, time (SDT) data stored in the information card, the user gives the information card to a retail clerk, along with the credit card used during setup. This credit card step is optional, and is done to ensure the validity of the information card holder, and hence the consumer monitoring data. The clerk inserts the information card in connector 2060 in the POS terminal 2040, and optionally swipes the credit card in the card reader 2022. The POS terminal 2040 detects the presence of the information card, reads the stored ID, and compares it to the credit card number read from the magnetic strip information on the credit card. The clock time and last clock update data and time 1074, as shown in
The retrieved test data is then printed out on the POS Terminal printer 2044. The POS Terminal 2040 then erases or cancels from the information card memory 2046 the SDT data, and resets the information card clock 1040 to the correct time. The transaction is now complete. The SDT data is stored in the information card connector memory 2062 during the transaction. At the end of the transaction, this data is sent to the interchange along with the information card ID, where it is routed to a designated site for collection of consumer monitoring data. This data is also used for billing the advertiser whose commercial was being broadcast during the SDT interval.
There are several important features of the information card. The method of connection to a POS terminal eliminates the need to modify the terminal in any way. During information card setup, the user's ATM card or credit card is also read, and data is transferred from that card to the memory of the information card for a customer ID, which eliminates the need to manually enter any ID. During information readout, the user is requested to enter a PIN to verify ownership of the information card. This prevents children from using their parent's information cards and adds accuracy to Neilsen type customer monitoring data.
In existing ATM and card systems, the magnetic strip is only used in a "read only" mode. In the case of the information card, data (correct time, setup information, delete signals, etc.) are read from and written to the information card. In the case of a contest, if a consumer has won as indicated by the data stored in the information card, by reading the consumer's ATM or credit card in the same transaction, a direct payment can be made into the consumer's bank account (via ATM card) or a credit posted to his/her credit card account.
The log data stored in the interchanges can be updated in real time by the broadcasters. Further, a national (or worldwide) contest can be held (such as during a Super Bowl) and answers compared to other players on a semi-real time basis (small delays caused by signal handling & processing). Hence the "tenth" user on a national level to get the right answer can be awarded a prize.
In the POS terminal embodiments described above, the user obtains the information corresponding to the SDT data stored in the information card by plugging the information card into a POS terminal, where the information is printed out.
In another embodiment, the information card is still plugged into a POS terminal 2040, but no information is printed. Instead, the information is linked to the user's charge card number, and is printed out as part of the user's charge card statement every month.
In some of the embodiments of the information card, the information card includes a clock calendar 1040 as well as memory 1042 and keyboards 1020 and 1030. In the present embodiment, which is linked to the charge card, the clock calendar, battery, and keyboards are eliminated, leaving only nonvolatile memory (preferably flash RAM). This configuration is identical to the smart cards presently being designed and tested by card companies.
During setup of the information card, the user identifies the information card using his charge card number, which is stored in RAM in the information card. The information card is then used in the usual manner. When the user plugs the information card into a POS terminal to obtain the information, the system detects that the information card is identified by a charge card number. Instead of printing out the information on the POS printer 2044, the system instead links the information with the charge card number and transfers the information along with the charge card number to the bank corresponding to the charge card number, where the linked information is stored in a portion of the bank's memory dedicated to storage of such linked information for all of the bank's charge card customers who are also information card users.
When the user's charge card monthly statement is being prepared by the bank, the linked information is scanned. If a coupon was retrieved, the bank software looks to see if a corresponding purchase was made for the coupon item using the charge card. If so, the coupon value is automatically credited to the user's account. In like manner, if the user won a contest, the winning amount is also automatically posted to his account. All other information is printed as part of the statement.
As described above, the system uses Station, Date, Time (SDT) to locate information about broadcast selections. This approach requires an accurate measure of the current time, since many of the selections are very short. A feature of the system is that the clock 1040 in the information card is reset to the correct time very time the information card is inserted in a AIM, ATM, or POS terminal or any other terminal that has a clock or access to time, for example, via telephone. However, to keep the cost of the information card low, it is desirable to employ a cheap time standard such as a ceramic resonator instead of a crystal. If the user does not use a docking station such as an AIM, ATM or POS terminal relatively frequently, this type of clock circuit could conceivably accumulate enough error between dockings so that the stored time/date in the SDT is not able to be correlated with the correct broadcast selection.
Referring to the flow chart of
Upon subsequent dockings to retrieve information from stored SDTs, the docking station in step 2330 reads from information card memory the stored date and time (DTI) of the last docking, which is also the date and time that the card clock was last reset to the correct time. The station also reads in step 2340 the current time (Tc) from the card clock. Presumably, Tc is in error compared to the correct time as reflected by the station clock.
The station calculates in step 2350 the difference T1, (in seconds) between Tc and the station clock, and also calculates in step 2360 the time difference T2, (in hours) between DT1 and the correct current time as reflected by the station clock T2 represents the time interval since the last docking.
The station then computes in step 2370 the information card clock error rate (e) as T1/T2. For example, if the information card clock h as drifted 10 seconds since the last docking, which was, for example, 240 hours ago, then the information card clock error rate (e) is 10/240, or 1 second every 24 hours.
The station then proceeds to read in step 2380 the stored SDTs from the information card memory. For each SDT, the station computes in step 2390 the number of hours (H) between the SDT and DT1. In essence, H represents the number of hours that elapsed from the last docking until that particular SDT was stored. For every hour, it is assumed that the clock in the information card is in error by (e times H) seconds.
The value of "T" in that SDT is then corrected in step 2394 by adding to it the correction factor (e times H), which may be a positive or negative number depending on whether the information card clock is running slow or fast. The corrected value of "T" is then used with S and D to locate the desired broadcast program selection from the stored log data in the station computer. This correction procedure is repeated for each of the stored SDT data.
When all of the SDT data has been provided as determined in step 2396, then the clock in the information card is again reset in step 2325 to the correct time read from the docking station clock, and the current data and time are stored in the information card memory. For the ATM 2002 and POS 2040 the docking station time can be obtained via telephone line 2016, which provides a convenient way to keep the docking station time very accurate. The ATM 2002 and POS 2040 can also contain a clock (not shown).
The above-method provides a way of compensating for clock drift which takes place between dockings. It is based on the assumption that clock drift (e) is a constant. More exotic second-order correction schemes can also be implemented. For example, the value of (e) could also be stored in the information card memory, so that it can be compared to subsequent calculations of (e) in subsequent dockings. Thus, multiple values of (e) can then be used to calculate a nonlinear correction factor.
In some embodiments, for example, as shown, for example, in
In another embodiment, the product (remote control, TV, etc.) is not only equipped with a slot and an information button, but is also equipped with a clock/calendar chip. The information card for use in this embodiment does not have a keyboard, battery, or clock/calendar, but only contains a RAM memory chip. This type of card configuration is identical to that of a "smart card."
The smart card is currently under development and test by the banking industry. Typically a flash memory chip is embedded in the card, and contact is made through plated metal terminals or possibly through a magnetic strip. The banking industry idea is to store in memory the current balance in the card account, and a large amount of cardholder identification information (address, ss number, etc.).
In the present embodiment, when the user inserts the smart card into the card slot on the product (radio, television, remote controller) and presses the information key/button on the product, the SDT information is transferred from the product (station is known from the tuning commands, and date/time is known from the clock/calendar chip in the product) into the memory in the smart card. The user removes the smart card from the slot and takes it to an ATM or POS terminal equipped to read data from smart cards. The rest of the system behaves in the normal manner.
A problem to be addressed is how to keep the clock in the product accurate. Because there is no clock in the smart card, the time data retrieved from the POS system cannot be used as a clock reset.
The solution for a TV is to encode the correct time in the vertical blanking interval (VBI). For radios for the correct time can be encoded in the FM SCA subcarrier. Suitable decoders in the TVs and radios decode this data and use it to reset the internal clock. Currently time data is being broadcast in the VBI of all of the public broadcasting stations (PBS).
For the case where the product is a remote controller that contains a clock calendar, the clock in the remote controller keeps track of the data at which it was last reset. At a predetermined interval, for example, of one month, the remote controller beeps (or flashes) the user to indicate that the clock needs to be reset. The user is instructed that participating broadcasters will be periodically broadcasting an on-the-hour time tone. This is presently done on Japanese radio every hour. When the user hears such tone, he is instructed to immediately press a time key 2221, as shown in
As described above, the information card is used to store SDT as a means of identifying broadcast information, as well as storing a user response to that information. The response can be in the form of a YES or NO, or can be a numeric response. The numeric keys 2082 are used to enter a wide variety of numeric responses such as lottery numbers and answers to quiz questions. The user simply presses the desired numeric keys 2082, after pressing the appropriate station ID key. The combination of SDT and a numeric response (#) to form SDT# leads to very powerful applications.
It is anticipated that broadcast information which can be responded to using the information card may be transmitted at very close intervals. Thus, a typical series of ads may be spaced apart at thirty second intervals. If one of the ads includes a numerical response, such as a quiz or contest answer, the user may want a little time to think of the answer. If the user's answer # is entered after the contest ad is completed and the next ad is being broadcast, it is important that the answer be paired with the correct SDT of the contest ad. For example, say the contest ad was aired from 10:00:00 am to 10:00:30 am, followed by a second ad aired from 10:00:30 to 10:01:00. The user pushes the station key at 10:00:20 to respond to the contest, and then enters his/her guess at 10:00:40, which is during the airing of the second ad. The system resolves this conflict in several ways.
First, stored in the information card is a number representing a timeout interval, which is typically set at 30 seconds (the value of this interval may be changed by the system when data (such as the correct time) is uploaded to the information card. After a user presses a station ID key (representing SDT), a timer is started which stops 30 seconds later. This timer establishes a window during which any numerical key entries (#) are stored with the prior stored SDT. When the timeout point is reached, the window is closed and further numerical entries are ignored until another station key is pressed. Thus, in the above example, the user has until 10:00:50 to enter the contest answer, which will be stored along with the SDT entered at 10:00:20. Suitable tones from the beeper in the information card can be used to alert the user that the window is closing or has closed. The timer window is also closed if a station key is pressed during the timer window.
By processing user responses to broadcast information using intelligent information agent algorithms, it is possible to build a profile of the wants, needs and habits of users of the information card. This profile can then be used to provide back to the user additional information which should prove useful, based on the user's history of broadcast information selections and responses thereto. Intelligent information agents are widely used to assist users of large information databases, such as are found in libraries and on the Internet, to find particular, information of interest. The agents are generally based on algorithms derived from research in the field of artificial intelligence. Basically, the agents "learn" the desires of the user based on the user's history of requests for information. The historical information is used to adjust the algorithms to more accurately determine types of information which would be of interest to the user. The Media Lab at MIT has published extensive research in this area.
The following example illustrates how the information card can be used in conjunction with an agent to provide the user with information of interest. Assume the user is driving to work in the morning, listening to the car radio on one her favorite music stations, KTWV 94.7FM. Upon hearing a music selection she likes, she press the KTWV/94.7 station ID key on her information card. Upon hearing a song she does not like, she again presses the station ID key, followed by the number 0 from the numeric keys. When the information stored in the card is compared to the KTWV station log, both the station log information, the SDT, and the user responses are routed to agent software, which processes the data. The agent has been preprogrammed with a basic instruction that if the user does not store any # with the SDT, the user is responding positively to the broadcast information, and is requesting more information about the information. The agent has also been preprogrammed with the basic instruction that if a zero is stored with the SDT, the user is responding negatively to the broadcast information. This is valuable data for the agent to learn about the user's likes and dislikes in music. From these simple keystrokes, the agent also learned that the user listens to the radio in the morning during a weekday at about 7am, and likes new wave music (the KTWV format). In particular, the user likes a particular Kenny G selection, and does not like a particular Dave Grusin selection.
As the information card continues to be used, the agent becomes smarter. Soon, it will know that the user drives to work between 7-8am, and return from work between 6-7pm, she does not listen to the radio at home, but watches a lot of TV. How will it know when the user drives? Perhaps one of the radio announcers will ask her: if you're in a car, press 1; at home, press 2; at work, press 3; in the subway (with a Walkman), press 4, etc. Another way for the agent to learn that she drives to work is because she regularly corresponds with the agent from a gas station POST.
Let us assume that the agent software not only receives the broadcast log, SDT, and # response, but also communicates with information providers who are typically providers of goods and services and are the companies who, through radio and television commercials, broadcast to the user information about these products and services. Using the information it has deduced about the user, the agent scours the masses of data from the information providers to find items that fit the user profile. Using the above example, the agent might find a coupon for half off on a breakfast at a popular restaurant if the user eats it before 8pm, provides the user with the name of the Kenny G selection, the name of the album, and a $3 discount coupon for the album at Tower records. It also lists for the user all of the other Kenny G albums, where the best prices are, the Kenny G tour schedule, deals on his concert tickets, and when his TV special will be on, if it is on after 7 pm, when the user is home.
The agent further finds a coupon for a discount car wash if it is used on weekdays between 6-7 pm, informs station KTWV that the user is a regular listener, and conveys to the station her music likes and dislikes. The user's agent further informs her that because she is a loyal listener, KTWV has entered her into its on the air contest, where she can participate before 7am next Wednesday, using her information card to guess the right answers. The prize is a free trip to Hawaii. If the user had indicated to her agent that she rides the subway to work, the agent might find her a discount coupon for AA batteries for her Walkman. The information found by the agent is returned to the user using the methods described above, such as the POST printer and credit card statements.
As described above, it is necessary that each agent be able, at a minimum, to communicate with its user, and to have access to broadcaster log data. To fully exploit the power of the system, each agent should also have access to the masses of information furnished by information providers. All of these connections can be provided using the ATM/POS system previously described, where the agent software and the data from information providers are connected via suitable servers and routers to the ATM data distribution system, in a manner similar to the broadcaster logs.
Yet another way to interconnect the information card, broadcaster logs, information providers and the user is by using the Internet. The following is a description of how the Internet is used in an alternate embodiment of the present invention. In the discussions that follow, the systems being described will be referred to as the PassKey systems.
For users wishing to use telephone access to their agents, they are provided with a low cost telephone/fax adaptor which connects between the phone line and a conventional telephone,
As you can see, users have a multitude of choices for communicating with their agents. If they want to do so at retail establishments, they simply ask the retailer to process their information card in the same way as a payment card, or they can do it themselves at consumer operated POS terminals (gas stations, supermarkets, etc.) If they want to communicate with their agent at home, at the office, or on the road, they can do so using any convenient telephone.
The details of how PassKey interfaces with Internet are as follows, referring to FIG. 64. The various I/O devices to enable the user to communicate with the system (POS terminal, telephone set, fax machine) are all connected via a dial-up phone line to a local PassKey Data Translator 2302, shown in detail in FIG. 67. The purpose of the translator is to first determine what type of I/O device is dialing in, and once this determination is made, to translate the dial-in device signal format to the Internet signal format, commonly known as TCP/IP (Transmission Control Protocol/Internet Protocol), and to translate the TCP/IP signals from Internet to the dial-in device signal format, so that two-way communication is established. The data translator is not needed when the user dials-in from a PC, because the PC software and/or the commercial Internet access provider already includes a TCP/IP translator.
The determination of the signal format of the other dial-in devices can be accomplished in several ways. One way is to have the adaptor used with each device insert a signal on the phone line which uniquely identifies the device (POS terminal, telephone set, fax machine). Another way is for the translator to analyze the type of signal being received from the device. This is possible because the POS terminal uses it own signal format to communicate, the fax machine uses the standard fax signal protocol, and the telephone set uses the well known DTMF touch tone format. Each of these is distinct from the other, and hence easily distinguishable. One the signal format is determined, the proper translator is connected between the device and the net to establish communications.
With respect to the POS terminal, the adaptor, described in detail above, is connected to either the pin pad connector or the RS-232 connector, and thus establishes a link between the terminal and the circuits in the information card plugged into the adaptor. The terminal has the ability to dial up a variety of prestored phone numbers, depending on the type of card being used. This is usually accomplished by reading the payment card number, which identifies the type of payment card (Visa, MasterCard, AmEx, ATM, etc). Once this is known, the proper dial-up number is chosen. In the case of PassKey, stored in the information card is a unique number which identifies the Card as a information card. The terminal is pre-programmed by the retailer to dial the PassKey dial-in phone number upon detection of the information card.
The purpose of the telephone/fax adaptors is to convert the data stored in the information card to standard DTMF signals, and also to provide an automatic dial-up of the PassKey phone number when the information card is inserted. The operation of the fax adaptor is described in detail in my published PCT application US94/08748, incorporated herein by reference. The operation of the telephone adaptor 2304 is as follows, referring to FIG. 65. To setup the adaptor, which is connected between the phone and the line, the phone dialpad is used. The user picks up the handset, enters a code number (such as #123#), followed by the phone number to dial into PassKey, followed by the code number. The adaptor recognized the code number as meaning the unit is in the setup mode. The follow-on phone number is then stored in the adaptor memory for use in auto dialing PassKey. Other information such as ID numbers, may also be stored in the adaptor in the same manner.
After setup is complete, the adaptor is used as follows. The user takes the phone off hook, and plugs the information card into the adaptor. The information card presence is detected (voltage or resistance sensor), and the adaptor dials the stored PassKey phone number using its internal DTMS tone generator 2306. Once the link is established to the Data Translator (which sends back a confirm DTMF tone), the adaptor can identify itself as a telephone adaptor by sending a unique code (which may also be programmed during setup). This unique code tells the Translator that it should route further signals to the DTMF-TCT/IP translator. One this is done, the data stored in the information card memory (ID, SDT#) is sent via the net to a PassKey Server, where it is stored for further processing. The server sends back signals which erase the SDT# data from information card memory, and which reset the clock in the information card. The transaction is now complete, and a green light or other suitable indicator alerts the user to hang up the phone and remove the information card.
PassKey uses the Internet E-mail system to determine which PassKey server 2308 the information card data is to be routed to, and where it is to be stored in the server memory. Each server has a unique IP address, which is written as four decimal numbers separated by periods (eg. 192.100.81.100). This address can also be expressed as a name such as netcom.com. Internet uses a Domain Name System to look up the IP address number which corresponds to the name. The memory in each server is divided into E-mail boxes, where each box is identified by an E-mail name which is unique to the user of the box. Typically, the box name is the name of the user. A complete E-mail address consists of the mailbox name followed by an @ symbol, followed by the IP address of the server at which the box is located. Thus an E-mail box for Bob at Netcom might be Bob@netcom.com.
PassKey uses the information card ID number (such as a social security number in the U.S.) as the E-mail name for each user. Stored in the information card is also the IP address for the PassKey server assigned to that user. Typically, the server address is already stored in information card memory before it is distributed. Server addresses are chosen on the basis of the location where the information card is to be distributed (eg. New York, Los Angeles). In this way , the information card data traffic can be distributed among many servers, avoiding a data traffic jam. When the data stored in the information card is transmitted to the Translator, the ID number and server address are also sent. The Translaotor combines these to form an E-mail address which is used to route the information card data to the user's E-mail box, and to recover the PassKey information stored in that E-mail box for transmission back to the user. By way of example, if the user's social security number is 127-34-8391, and the server address stored in the information card is 126.49.7591.8053, the E-mail address is 127348391 @ 126.49.7591.8053.
Data received by a PassKey server from a information card is stored in the user's E-mail box 2310 for archive purposes and then routed, along with previously archived data to a suitable agent 2312. The agent processes the new data in conjunction with the archived data, communicates with the information providers, and makes decision as to what information is to be returned to the user. This information is then sent back to the applicable PassKey server, where it is stored in the user's PassKey E-mail box for later retrieval using the techniques described below.
Once the agent receives the SDT# data, it uses it in conjunction with the applicable broadcast log data 2314 connected to the net to update its surrogate model of its user. It then polls the mass of PassKey information provider data 2316 provided to the net at its disposal, selects and filters this data, and storess the resultant information in the user's E-mail box for retrieval on demand. It may also take action based on the distilled data (place orders with third parties, communicate portions of the data to others for mailings, etc.). All of this activity is reported back to the user.
The user may obtain the agent processed information using the same methods for sending the SDT# data to the agent, as well as additional methods. For example, if the user transmits the data to the agent using a POS terminal, the agent's output information, stored in his/her E-mail box, can be sent back to the user in this same transaction (or a later one), by printing it using the same printer used by the POS terminal to print payment card receipts. Examples of such printouts are shown in FIG. 72.
If the user employs a telephone to transmit the SDT# data to the agent, the agent output data can be sent to the user by conventional mail. This is particularly convenient if the user added to his/her information card ID a payment card number. The agent output is then linked with the payment card account and is sent to the user along with his monthly card statement as previously described.
If the user connects his PassKey adaptor between his home or office fax machine and the telephone line, the agent output can be sent back in the same or a later transaction, and printed out on the fax machine.
If the user employs his PC to transmit SDT# data to the agent, in this same or a later transaction, the agent output information is stored in the user's Email box for later retrieval and storage on disk or printout on the printer.
While the above discussion showed the use of Internet for connecting the various components of the PassKey system, the ATM/POS communications system can be used as well. The following is a description of such a system, using smart cards.
As shown in
Because the remote can be used to change channels via direct numeric entry or via up/down keys, several provisions are made in order to ensure that the remote control has stored the correct channel number that the TV is receiving. Whenever the power button is pressed on the remote, a numerical channel command (say channel 2) is sent to establish the starting point for tuning. Because may tv receivers include a shannel skip function where up/down keys do not tune every channel in sequence, the user must setup the remote to teach it the actual up/dn channel sequence. This may be easily accomplished by placing the remote in a learn mode, where after each up/dn key press, the actual numerical channel number is entered and stored in a table for later use.
The user's broadcast information responses are processed as follows. The smart card that was inserted into the Pad or Remote Control is removed and used in the normal manner for conventional payment/stored value card transactions. During such a transaction, the SDT# information stored in the card, along with the card number, is automatically read from the card and stored in memory at the card reader location for later transmission to the issuing bank (along with the conventional payment transaction). The SDT# data is then erased from card memory. Local storage and delayed transmission are employed so that transaction time is not increased as a result of real time processing of the PassKey data. The SDT# data is then transmitted to the issuer bank and stored in the user's account.
The S portion of the data identifies which broadcaster log pertains to that event. The SDT information is sent to that log, which returns the identity of the event and the information provider for that event. The event identity and # are then routed to the appropriate information provider. The provider in turn processes the response (#), and returns the information (song title, winner notification, coupon) to the bank where it is processed by the agent software (which uses it to update the profile of user needs, desires and habits) and stored for later retrieval by the user. While the above discussion assumed the issuing bank processed the user responses, there are many other possibilities. For example, dedicated PassKey servers can be hooked to the data network for this task. Alternately, the responses can be routed to the Internet for further processing.
The user obtains the agent processed information using the same methods for sending the SDT# data to the agent, as well as additional methods. For example, when the user next uses his/her smart card for a payment transaction, the information stored in the user's account at the issuing bank is sent back to the user's location, where it is printed on the POS receipt printer. Additionally, if the user has won money, the amount can be automatically posted by the issuing bank as a credit to the card account, or it can be transferred to the card memory to increase the stored value. Alternatively, the PassKey information can be sent to the user as part of his/her monthly card statement.
Other options include retrieving the information using a home computer, where it is printed, or on a fax machine equipped with a smart card adaptor in the manner described above.
The described embodiments of the invention are only considered to be preferred and illustrative of the inventive concept, the scope of the invention is not to be restricted to such embodiments. Various and numerous other arrangements may be devised by one skilled in the art without departing from the spirit and scope of this -invention.
It is therefore intended by the appended claims to cover any and all such applications, modifications and embodiments within the scope of the present invention.
Patent | Priority | Assignee | Title |
10133794, | Oct 26 1999 | Sony Corporation | Searching system, searching unit, searching method, displaying method for search results, terminal unit, inputting unit, and record medium |
10148623, | Nov 12 2010 | Time Warner Cable Enterprises LLC | Apparatus and methods ensuring data privacy in a content distribution network |
10521190, | Mar 31 2000 | Rovi Guides, Inc. | User speech interfaces for interactive media guidance applications |
10602231, | Aug 06 2009 | Time Warner Cable Enterprises LLC | Methods and apparatus for local channel insertion in an all-digital content distribution network |
10713009, | Mar 31 2000 | Rovi Guides, Inc. | User speech interfaces for interactive media guidance applications |
11032518, | Jul 20 2005 | Time Warner Cable Enterprises LLC | Method and apparatus for boundary-based network operation |
11271909, | Nov 12 2010 | WELLS FARGO TRUST COMPANY, N A | Apparatus and methods ensuring data privacy in a content distribution network |
11336551, | Nov 11 2010 | Time Warner Cable Enterprises LLC | Apparatus and methods for identifying and characterizing latency in a content delivery network |
7036013, | Jan 31 2002 | Brocade Communications Systems, Inc | Secure distributed time service in the fabric environment |
7281262, | Sep 03 1997 | Universal Electronics Inc. | Universal remote control system |
7373122, | Jul 14 2003 | Sony Corporation | Reproduction device information setting method, and information setting program |
7505605, | Apr 25 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Portable devices and methods employing digital watermarking |
7636545, | Jul 29 1998 | IRONWORKS PATENTS LLC | Information processing apparatus and method, information processing system, and transmission medium |
7774022, | Jul 29 1997 | IRONWORKS PATENTS LLC | Information processing apparatus and method, information processing system, and transmission medium |
7783490, | Mar 31 2000 | Rovi Guides, Inc; TV GUIDE, INC ; UV CORP | User speech interfaces for interactive media guidance applications |
7783491, | Mar 31 2000 | Rovi Guides, Inc; TV GUIDE, INC ; UV CORP | User speech interfaces for interactive media guidance applications |
7801499, | Apr 24 2007 | Visteon Global Technologies, Inc. | System and method for filtering program service name data |
7810435, | Apr 11 2006 | Power regulation device for model railway system | |
7912421, | Dec 19 2003 | Nokia Technologies Oy | Radio device |
7917583, | Feb 17 2006 | Verizon Patent and Licensing Inc | Television integrated chat and presence systems and methods |
7953270, | Nov 12 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and arrangements employing digital content items |
7991431, | Jul 29 1997 | IRONWORKS PATENTS LLC | Information processing apparatus and method, information processing system, and transmission medium |
8031196, | Feb 19 2002 | Sharp Kabushiki Kaisha | Display, electronic device, data transmitting method, information terminal, host apparatus, program, recording medium |
8041864, | Oct 26 1999 | Sony Corporation | Storage apparatus including a USB connector |
8060109, | Aug 04 1997 | Enovsys LLC | Authorized location reporting mobile communication system |
8086589, | Oct 26 1999 | Sony Corporation | Searching system, searching unit, searching method, displaying method for search results, terminal unit, inputting unit, and record medium |
8108484, | May 19 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Fingerprints and machine-readable codes combined with user characteristics to obtain content or information |
8121846, | Mar 31 2000 | Rovi Guides, Inc; TV GUIDE, INC ; UV CORP | User speech interfaces for interactive media guidance applications |
8161505, | Dec 31 2007 | LLOYD, JEFFREY R | Interactive television system |
8190202, | Jul 29 1997 | IRONWORKS PATENTS LLC | Information processing apparatus and method, information processing system, and transmission medium |
8195188, | Aug 04 1997 | SPRINT SPECTRUM, L P | Location reporting satellite paging system with optional blocking of location reporting |
8332478, | Oct 01 1998 | ADEIA TECHNOLOGIES INC | Context sensitive connected content |
8429205, | Jul 27 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Associating data with media signals in media signal systems through auxiliary data steganographically embedded in the media signals |
8433571, | Mar 31 2000 | Rovi Guides, Inc; TV GUIDE, INC ; UV CORP | User speech interfaces for interactive media guidance applications |
8509680, | Sep 16 1998 | SONIXIO, INC | Physical presence digital authentication system |
8522276, | Feb 17 2006 | Verizon Patent and Licensing Inc | System and methods for voicing text in an interactive programming guide |
8543661, | May 19 1999 | Digimarc Corporation | Fingerprints and machine-readable codes combined with user characteristics to obtain content or information |
8544753, | Oct 02 1998 | SONIXIO, INC | Card for interaction with a computer |
8559942, | Aug 04 1997 | Enovsys LLC | Updating a mobile device's location |
8584174, | Feb 17 2006 | Verizon Patent and Licensing Inc | Systems and methods for fantasy league service via television |
8660846, | Mar 31 2000 | Rovi Guides, Inc; TV GUIDE, INC ; UV CORP | User speech interfaces for interactive media guidance applications |
8668544, | Sep 16 1998 | Dialware Inc. | Interactive toys |
8706078, | Aug 04 1997 | MERGENET SOLUTIONS, INC | Location reporting satellite paging system with privacy feature |
8713615, | Feb 17 2006 | Verizon Patent and Licensing Inc | Systems and methods for providing a shared folder via television |
8843057, | Sep 16 1998 | SONIXIO, INC | Physical presence digital authentication system |
8935367, | Jan 08 1999 | SONIXIO, INC | Electronic device and method of configuring thereof |
8938750, | Dec 31 2007 | LLOYD, JEFFREY R | Interactive television system |
8983365, | Dec 21 2007 | iBiquity Digital Corporation | Systems and methods for communicating and rendering electronic program guide information via digital radio broadcast transmission |
8996063, | Jul 29 1997 | IRONWORKS PATENTS LLC | Information processing apparatus and method, information processing system, and transmission medium |
9002307, | Mar 08 2011 | Nokia Technologies Oy | Radio broadcast reception |
9021520, | Sep 29 2004 | Hewlett-Packard Development Company, L.P. | Systems and methods for providing and processing print-augmented broadcast signals |
9077460, | Apr 25 2005 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Systems and methods for measuring interest levels of audience in broadcast program and providing information based on the interest levels |
9088374, | Jul 29 1997 | IRONWORKS PATENTS LLC | Information processing apparatus and method, information processing system, and transmission medium |
9135352, | Jun 03 2010 | Cisco Technology, Inc. | System and method for providing targeted advertising through traffic analysis in a network environment |
9143735, | Feb 17 2006 | Verizon Patent and Licensing Inc | Systems and methods for providing a personal channel via television |
9178719, | Feb 17 2006 | Verizon Patent and Licensing Inc. | Television integrated chat and presence systems and methods |
9215510, | Dec 06 2013 | Rovi Product Corporation | Systems and methods for automatically tagging a media asset based on verbal input and playback adjustments |
9219708, | Mar 22 2001 | Dialware Inc | Method and system for remotely authenticating identification devices |
9237381, | Aug 06 2009 | Time Warner Cable Enterprises LLC | Methods and apparatus for local channel insertion in an all-digital content distribution network |
9275517, | Sep 16 1998 | DIALWARE COMMUNICATION, LLC | Interactive toys |
9349369, | Mar 31 2000 | UV CORP ; TV GUIDE, INC ; Rovi Guides, Inc | User speech interfaces for interactive media guidance applications |
9361444, | Oct 02 1998 | Dialware Inc. | Card for interaction with a computer |
9462353, | Feb 17 2006 | Verizon Patent and Licensing Inc | Systems and methods for providing a shared folder via television |
9482561, | Oct 26 1999 | Sony Corporation | Searching system, searching unit, searching method, displaying method for search results, terminal unit, inputting unit, and record medium |
9489949, | Oct 04 1999 | Dialware Inc. | System and method for identifying and/or authenticating a source of received electronic data by digital signal processing and/or voice authentication |
9607475, | Sep 16 1998 | BEEPCARD LTD | Interactive toys |
9635421, | Nov 11 2009 | Time Warner Cable Enterprises LLC | Methods and apparatus for audience data collection and analysis in a content delivery network |
9693103, | Nov 11 2009 | Time Warner Cable Enterprises LLC | Methods and apparatus for audience data collection and analysis in a content delivery network |
9740373, | Oct 01 1998 | Digimarc Corporation | Content sensitive connected content |
9830778, | Sep 16 1998 | DIALWARE COMMUNICATION, LLC; Dialware Communications, LLC | Interactive toys |
Patent | Priority | Assignee | Title |
3764747, | |||
3911446, | |||
4337463, | Aug 22 1980 | SIEMENS POWER TRANSMISSION & DISTRIBUTION, L L C | Time synchronization master station and remote station system |
4361851, | Jan 04 1980 | System for remote monitoring and data transmission over non-dedicated telephone lines | |
4592546, | Apr 26 1984 | INTERACTIVE NETWORKS, INC | Game of skill playable by remote participants in conjunction with a live event |
4622583, | Jul 10 1984 | Video Research Limited | Audience rating measuring system |
4630143, | Jun 25 1985 | SHARP KABUSHIKI KAISHA, OSAKA, JAPA, A CORP OF JAPAN | Magnetic recording and reproducing device |
4695879, | Feb 07 1986 | Television viewer meter | |
4718106, | May 12 1986 | PRETESTING COMPANY, INC , THE | Survey of radio audience |
4847886, | May 11 1987 | Method for causing large numbers of telephones to dial the same telephone numbers | |
4864604, | Apr 07 1986 | Casio Computer Co., Ltd. | Electronic wristwatch having dialing tone generator |
4870515, | Dec 05 1986 | Sony Corporation | Music memory data recording, storage and playback system for magnetic recording and/or reproducing apparatus |
4887308, | Jun 26 1987 | Broadcast data storage and retrieval system | |
4920432, | Jan 12 1988 | Lodgenet Interactive Corporation | System for random access to an audio video data library with independent selection and display at each of a plurality of remote locations |
4943963, | Jan 19 1988 | A. C. Nielsen Company | Data collection and transmission system with real time clock |
4953039, | Jun 01 1988 | MICRO-W CORPORATION | Real time digital data transmission speed conversion system |
4956768, | Feb 25 1987 | Etat Francais, Centre National d'Etudes des Telecommunications | Wideband server, in particular for transmitting music or images |
4977455, | Jul 15 1988 | STARSIGHT TELECAST, INC | System and process for VCR scheduling |
4989234, | Apr 11 1989 | SCHAUER,NANCY,AS RECEIVER | Systems for capturing telephonic mass responses |
5013038, | Dec 08 1989 | INTERACTIVE NETWORKS, INC | method of evaluating data relating to a common subject |
5036500, | Dec 20 1988 | Junghans Uhren GmbH | Autonomous radio time piece having a resettable receiver actuation switch |
5054360, | Nov 01 1990 | International Business Machines Corporation | Method and apparatus for simultaneous output of digital audio and midi synthesized music |
5063610, | Sep 27 1989 | BROADCAST DATA RETRIEVAL CORPORATION | Broadcasting system with supplemental data transmission and storage |
5073931, | May 25 1989 | Audebert-Delahaye-Venture | System and individual device for participation in a broadcast program |
5081680, | Nov 20 1987 | GENERAL INSTRUMENT CORPORATION GIC-4 | Initial reporting of remotely generated data |
5083800, | Jun 09 1989 | INTERACTIVE NETWORKS, INC | Game of skill or chance playable by several participants remote from each other in conjunction with a common event |
5119507, | Feb 19 1991 | DIGIMEDIA HOLDINGS, LLC | Receiver apparatus and methods for identifying broadcast audio program selections in a radio broadcast system |
5119711, | Nov 01 1990 | INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NY | MIDI file translation |
5120076, | Dec 08 1989 | INTERACTIVE NETWORKS, INC | Method of evaluating data relating to a common subject |
5132992, | Jan 07 1991 | Greenwich Information Technologies, LLC | Audio and video transmission and receiving system |
5136644, | Apr 21 1988 | TELECASH, A FRENCH JOINT STOCK COMPANY | Portable electronic device for use in conjunction with a screen |
5155762, | Mar 14 1988 | Croquet & Cie | Method and a system for acquiring and transmitting information about TV program audiences |
5162905, | Apr 06 1990 | K. K. Video Research | Automatic commercial message recognition and monitoring device |
5189630, | Jan 15 1991 | MLB ADVANCED MEDIA, L P | Method for encoding and broadcasting information about live events using computer pattern matching techniques |
5191573, | Jun 13 1988 | SIGHTSOUND TECHNOLOGIES, LLC | Method for transmitting a desired digital video or audio signal |
5195134, | Mar 27 1990 | Sony Corporation | Transmitting, receiving, and automatic recording system for programs with time and channel information |
5210611, | Aug 12 1991 | PATTISELANNO, ALLEN | Automatic tuning radio/TV using filtered seek |
5214792, | Sep 27 1989 | BROADCAST DATA RETRIEVAL CORPORATION | Broadcasting system with supplemental data transmission and storge |
5216703, | Jun 17 1991 | CELLCO PARTNERSHIP, INC ; Cellco Partnership | Piggy-back number and routing isolation for cellular telephone switches |
5262964, | Apr 10 1991 | Codian Limited | Method and apparatus for variable playback speed of multimedia data interchange within a data processing system |
5303393, | Nov 06 1990 | VIATECH COMMUNICATIONS, LLC | Integrated radio satellite response system and method |
5313408, | Mar 26 1990 | Matsushita Electric Industrial Co., Ltd. | Multistation display system for controlling a display monitor associated with plural audio video devices |
5355302, | Jun 15 1990 | MARTIN AUTOMATIC, INC | System for managing a plurality of computer jukeboxes |
5357505, | Mar 30 1992 | Ricos Co., Ltd. | Device for bidirectional communication on a telephone line |
5418844, | Apr 17 1992 | Verizon Patent and Licensing Inc | Automatic access to information service providers |
5438355, | Apr 16 1993 | RPX Corporation | Interactive system for processing viewer responses to television programming |
5444499, | Jan 08 1993 | Sony Corporation | Audio video apparatus with intelligence for learning a history of user control |
5448625, | Apr 13 1993 | MSI ELECTRONICS INC | Telephone advertising method and apparatus |
5455823, | Nov 05 1990 | VIATECH COMMUNICATIONS, LLC | Integrated communications terminal |
5457739, | Jun 19 1992 | France Telecom | Method and system of interactive access to radio broadcast information elements |
5539635, | Jul 19 1994 | Radio station program identifier and distribution system | |
5559878, | May 23 1994 | Teltrust, Inc. | Telephonic communications answering and callback processing system |
5570295, | Mar 18 1994 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | System and method of capturing encoded data transmitted over a communications network in a video system |
5572442, | Jul 21 1994 | Sony Corporation | System for distributing subscription and on-demand audio programming |
5574962, | Sep 30 1991 | THE NIELSEN COMPANY US , LLC | Method and apparatus for automatically identifying a program including a sound signal |
5592511, | May 10 1994 | MANTA MUSIC, LLC | Digital customized audio products with user created data and associated distribution and production system |
5629867, | Jan 25 1994 | DIGIMEDIA HOLDINGS GROUP LLC | Selection and retrieval of music from a digital database |
5661787, | Oct 27 1994 | GLOBAL INTERACTIVE MEDIA, INC | System for on-demand remote access to a self-generating audio recording, storage, indexing and transaction system |
5675734, | Jun 13 1988 | SIGHTSOUND TECHNOLOGIES, LLC | System for transmitting desired digital video or audio signals |
5689081, | May 02 1995 | Yamaha Corporation | Network karaoke system of broadcast type having supplementary communication channel |
5689245, | Oct 19 1992 | VIATECH COMMUNICATIONS, LLC | Integrated communications terminal |
5703795, | Jun 22 1992 | INTELLECTUAL VENTURES AUDIO INNOVATIONS LLC | Apparatus and methods for accessing information relating to radio and television programs |
5721584, | Jul 22 1994 | Sony Corporation | Two-way broadcast system and receiving system |
5734119, | Dec 19 1996 | HEADSPACE, INC NOW KNOWN AS BEATNIK, INC | Method for streaming transmission of compressed music |
5752186, | Jun 07 1995 | SITO MOBILE LTD | Access free wireless telephony fulfillment service system |
5758286, | Aug 26 1993 | Intellectual Ventures I LLC | Method for accomplishing a mobile telecommunications connection using abbreviated dialing |
5761606, | Feb 08 1996 | OPENTV, INC | Media online services access via address embedded in video or audio program |
5774534, | Dec 27 1994 | Cooper Union for the Advancement of Science and Art | Context-based transactions using broadcast advertising |
5809246, | Jan 25 1994 | DIGIMEDIA HOLDINGS GROUP LLC | Selection and retrieval of music from a digital database |
5815814, | May 07 1993 | EMSAT ADVANCED GEO-LOCATION TECHNOLOGY, LLC | Cellular telephone system that uses position of a mobile unit to make call management decisions |
5835583, | Oct 05 1995 | Verizon Patent and Licensing Inc | Mediated AIN control of short code access to information service providers |
5857149, | May 27 1994 | TOKYO FM BROADCASTING CO , LTD | Multibroadcast receiver for extracting desired broadcast information based on an identification code |
5864804, | Jun 10 1995 | U S PHILIPS CORPORATION | Voice recognition system |
5867155, | Mar 14 1997 | Large scale distributive video on demand system for the distribution of real estate properties information | |
5867780, | Jun 07 1995 | SITO MOBILE LTD | Access free wireless telephony fulfillment service system |
5870710, | Jan 24 1996 | Sony Corporation | Audio transmission, recording and reproducing system |
5880386, | Nov 30 1995 | Yamaha Corporation | Musical information processing system with automatic data transfer |
5886274, | Jul 11 1997 | Seer Systems, Inc. | System and method for generating, distributing, storing and performing musical work files |
5892171, | Oct 18 1996 | Yamaha Corporation | Method of extending capability of music apparatus by networking |
5900564, | Oct 19 1996 | Yamaha Corporation | Music data processing apparatus with communication interface and graphic user interface |
5907322, | Oct 16 1996 | OPENTV, INC | Television event marking system |
5907793, | May 01 1992 | RPX Corporation | Telephone-based interactive broadcast or cable radio or television methods and apparatus |
5913258, | Mar 11 1997 | Yamaha Corporation | Music tone generating method by waveform synthesis with advance parameter computation |
5961603, | Apr 10 1996 | Comcast IP Holdings I, LLC | Access system and method for providing interactive access to an information source through a networked distribution system |
5999970, | Apr 10 1996 | COX COMMUNICATIONS, INC | Access system and method for providing interactive access to an information source through a television distribution system |
EP604639, | |||
FR2630536, | |||
17023, | |||
WO9111062, | |||
WO9322877, | |||
WO9400842, | |||
WO9414282, | |||
WO9528803, | |||
WO9616491, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 15 2002 | MANKOVITZ, ROY J | PATENTLAB LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025174 | /0147 | |
Dec 18 2004 | PATENTLAB LLC | BISMUTH LANDLESS WIRE LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015711 | /0743 | |
Oct 18 2010 | BISMUTH LANDLESS WIRE LLC | INTELLECTUAL VENTURES AUDIO INNOVATIONS LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 028026 | /0160 | |
Jan 27 2011 | INTELLECTUAL VENTURES AUDIO INNOVATIONS LLC | DIGIMEDIA HOLDINGS, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028026 | /0301 | |
Jan 31 2012 | DIGIMEDIA HOLDINGS, LLC | INTELLECTUAL VENTURES AUDIO INNOVATIONS LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028026 | /0595 |
Date | Maintenance Fee Events |
Mar 30 2007 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 30 2007 | M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity. |
Apr 09 2007 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Apr 11 2007 | R2552: Refund - Payment of Maintenance Fee, 8th Yr, Small Entity. |
Dec 08 2009 | ASPN: Payor Number Assigned. |
Dec 08 2009 | RMPN: Payer Number De-assigned. |
Feb 18 2011 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 28 2007 | 4 years fee payment window open |
Mar 28 2008 | 6 months grace period start (w surcharge) |
Sep 28 2008 | patent expiry (for year 4) |
Sep 28 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 28 2011 | 8 years fee payment window open |
Mar 28 2012 | 6 months grace period start (w surcharge) |
Sep 28 2012 | patent expiry (for year 8) |
Sep 28 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 28 2015 | 12 years fee payment window open |
Mar 28 2016 | 6 months grace period start (w surcharge) |
Sep 28 2016 | patent expiry (for year 12) |
Sep 28 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |