A reciprocating saw including a housing, a spindle mounted for reciprocating motion within the housing, a gear rotatably mounted within the housing, a wobble shaft rotatably mounted within the housing, a wobble plate rotatably mounted on the wobble shaft and connected to the spindle, and a clutch drivingly connecting the gear to the wobble shaft. The clutch includes a clutch driver rotatably positioned within the housing adjacent the wobble shaft, and the clutch driver includes a recess for insertably receiving a portion of the wobble shaft. The clutch driver can also include a relief ledge for providing clearance between the clutch driver and the wobble plate. The clutch can further include a first clutch disk connected with the gear and positioned between the gear and the clutch driver, and a second clutch disk connected with the clutch driver and positioned between the gear and the first clutch disk.

Patent
   RE38606
Priority
Dec 13 1994
Filed
Sep 28 2001
Issued
Oct 05 2004
Expiry
Dec 13 2014

TERM.DISCL.
Assg.orig
Entity
Large
9
63
all paid
0. 15. A reciprocating saw comprising:
a housing;
a spindle mounted for reciprocating motion within said housing;
a gear rotatably mounted within said housing, wherein said gear includes a recess extending into said gear;
a wobble shaft rotatably mounted within said housing;
a wobble plate rotatably mounted on said wobble shaft and connected to said spindle; and
a clutch drivingly connecting said gear to said wobble shaft, said clutch including a clutch driver rotatably positioned within said housing adjacent said wobble shaft, said clutch driver including a surface in facing relation to said wobble plate, said surface including a relief ledge for providing clearance between said clutch driver and said wobble plate, wherein said clutch is at least partially positioned within said recess of said gear.
0. 1. A reciprocating saw comprising:
a housing;
a spindle mounted for reciprocating motion within said housing;
a gear rotatably mounted within said housing;
a wobble shaft rotatably mounted within said housing and having an end adjacent said gear;
a wobble plate rotatably mounted on said wobble shaft and connected to said spindle; and
a clutch drivingly connecting said gear to said wobble shaft, said clutch including a clutch driver rotatably positioned within said housing adjacent said wobble shaft, said clutch driver including a recess in driving engagement with said end of said wobble shaft.
0. 17. A reciprocating saw comprising:
a housing;
a spindle mounted for reciprocating motion within said housing;
a gear rotatably mounted within said housing, said gear including first and second opposed ends and a first recess extending into said first end and a second recess extending into said second end;
a drive mechanism for driving said gear;
a clutch drivingly connecting said gear to said spindle, said clutch being at least partially positioned within said first recess; and
a biasing member at least partially positioned within said second recess.
0. 9. A reciprocating saw comprising:
a housing;
a spindle mounted for reciprocating motion within said housing;
a gear rotatably mounted within said housing; and
a clutch operatively positioned between said gear and said spindle, said clutch including:
a clutch driver rotatably positioned within said housing operatively between said gear and said spindle;
a first clutch disk connected with said gear and positioned between said gear and said clutch driver; and
a second clutch disk connected with said clutch driver and positioned between said gear and said first clutch disk.
0. 19. A reciprocating saw comprising:
a housing;
a spindle mounted for reciprocating motion within said housing;
a wobble shaft rotatably mounted within said housing for rotation about an axis and having a wobble shaft end for receiving power input;
a wobble plate rotatably mounted on said wobble shaft and connected to said spindle; and
a driver rotatably positioned within said housing adjacent said wobble shaft for transferring power to said wobble shaft, said driver including a driver end engaging said wobble shaft end at an interface, said interface including a recess in one of said driver end and said wobble shaft end, the other of the driver end and the wobble shaft end having a portion positioned in and in driving engagement with a portion of the recess, the other of the driver end and the wobble shaft end having a width and a length, the width being at least equal to the length.
0. 2. A saw as claimed in claim 1, further comprising an axle rotatably mounted within said housing, said clutch driver and said wobble shaft being positioned about said axle.
0. 3. A saw as claimed in claim 2, wherein said clutch driver includes an orifice for receiving said axle, and wherein said recess substantially surrounds said axle.
0. 4. A saw as claimed in claim 1, wherein said clutch driver and said wobble shaft are mounted for rotation about a rotational axis, and wherein said recess is asymmetrical with respect to said rotational axis.
0. 5. A saw as claimed in claim 1, wherein said recess includes an inner contour, wherein said end includes an outer contour, and wherein said outer contour of said end substantially matches said inner contour of said recess.
0. 6. A saw as claimed in claim 1, wherein said clutch further includes:
a first clutch disk connected with said gear and positioned between said gear and said wobble shaft; and
a second clutch disk connected with said clutch driver and positioned between said gear and said first clutch disk.
0. 7. A saw as claimed in claim 1, wherein said clutch driver includes a relief ledge for providing clearance between said clutch driver and said wobble plate.
0. 8. A saw as claimed in claim 1, wherein said gear includes a recess extending into said gear, and wherein said clutch is at least partially positioned within said recess of said gear.
0. 10. A saw as claimed in claim 9, wherein said clutch driver includes a hub portion, and wherein said first and second clutch disks are mounted about said hub portion.
0. 11. A saw as claimed in claim 10, wherein said gear is mounted about said hub portion.
0. 12. A saw as claimed in claim 9, wherein said gear includes a plurality of grooves, and wherein said first disk includes a plurality of splines positioned within said grooves.
0. 13. A saw as claimed in claim 9, wherein said clutch driver includes a plurality of grooves, and wherein said second clutch disk includes a plurality of splines positioned within said grooves.
0. 14. A saw as claimed in claim 9, wherein said gear includes a recess, and wherein said first and second clutch disks are positioned within said recess.
0. 16. A saw as claimed in claim 15, wherein said clutch driver includes a recess housing a portion of said wobble shaft.
0. 18. A saw as claimed in claim 17, wherein said biasing member comprises a spring that biases said gear toward said clutch.
0. 20. A saw as claimed in claim 19, wherein the width is greater than the length.
0. 21. A saw as claimed in claim 19, wherein said driver includes a relief ledge providing clearance between said driver and said wobble plate.
0. 22. A saw as claimed in claim 19, further comprising an axle rotatably mounted within said housing, said driver and said wobble shaft being positioned about said axle.
0. 23. A saw as claimed in claim 22, wherein said driver includes an opening for receiving said axle, and wherein said recess substantially surrounds said axle.
0. 24. A saw as claimed in claim 19, wherein said driver and said wobble shaft are mounted for rotation about a rotational axis, and wherein said recess is asymmetrical with respect to said rotational axis.
0. 25. A saw as claimed in claim 19, wherein said recess is defined in said driver end.
0. 26. A saw as claimed in claim 25, wherein said recess includes an inner contour, wherein said wobble shaft end includes an outer contour, and wherein said outer contour of said wobble shaft end is complementary to said inner contour of said recess.
0. 27. A saw as claimed in claim 19, wherein said recess includes an inner contour, wherein the other of said driver end and said wobble shaft end includes an outer contour, and wherein said outer contour of said other of said driver end and said wobble shaft end is complementary to said inner contour of said recess.
0. 28. A saw a claimed in claim 19, wherein said portion of said recess in driving engagement with other of said driver end and said wobble shaft end extends substantially around said axis.

FIGS. 1-4 illustrate a reciprocating saw 9 embodying some of the features of the present invention. The saw 9 includes a main body 10 which includes a handle portion 12. The saw 9 includes a motor 16 supported by the main body 10, and an on-off trigger switch 14 supported by the handle portion 12 and electrically connected to the motor 16 for controlling energization of the motor 16. The motor 16 includes a motor shaft 18.

The saw 9 further includes a gear case 26 and a diaphragm 25 in the main body 10, and a jackshaft 24 journaled in the gear case 26 and the diaphragm 25 by roller bearings 21 and needle bearings 23, respectively. The jackshaft 24 is positioned parallel to the motor shaft 18. The saw 9 further includes a urethane or rubber insulating "boot" 27 covering the gear case 26.

The saw 9 further includes means for converting rotary motion into reciprocating motion. In the illustrated embodiment, such means comprises a wobble plate drive member in the form of a wobble shaft 28 rotatably mounted on the jackshaft 24, and two wobble plates assemblies 30 mounted on the wobble shaft 28. Other means can be employed for converting rotary motion into reciprocating motion. For example, the counterbalanced reciprocating mechanism described in U.S. Pat. No. 5,079,844, issued to Palm, can be employed.

The wobble plate assemblies 30 convert rotary motion into reciprocating motion. Each wobble plate assembly 30 has an input bearing 32 mounted on the wobble shaft 28. The wobble plate assembly 30 on the left (in the figures) is a primary assembly, and the wobble plate assembly 30 on the right (in the figures) is a secondary assembly. Each wobble plate assembly 30 has a drive arm. The primary wobble plate assembly has a drive arm 34 having a somewhat spherical tip 36. The secondary wobble plate assembly has a drive arm 35 also having a somewhat spherical tip 43.

The saw 9 further includes a reciprocating tubular spindle 40 mounted in the gear case 26 for reciprocating motion and parallel to the jackshaft 24. The spindle 40 includes a socket or hole 38 receiving the spherical tip 36 of the primary wobble plate assembly 30, and the spindle 40 is reciprocated by the primary wobble plate assembly 30. The spindle 40 further includes a slot 54 in the lower portion of the spindle 40, opposite the hole 38, for receiving the drive arm 34 of the primary wobble plate assembly 30. The spindle 40 selectively carries a saw blade 42 or other tool bits, outside of the main body 10. The saw blade 42 is attached to or removed from the spindle 40 using a screw or other suitable attachment mechanism.

The saw 9 further includes a reciprocating counterweight 46, mounted in the gear case 26 coaxial with the spindle 40 for reciprocation opposite to the reciprocation of the spindle 40 so as to reduce vibration. The counterweight 46 has a hole 44 receiving the spherical tip 43 of the secondary wobble plate assembly 30 and the counterweight 46 is reciprocated by the secondary wobble plate assembly 30.

The saw 9 includes a spindle bearing 48 fixed in the gear case 26. The reciprocating spindle 40 slides inside of and is guided by the spindle bearing 48. The saw 9 further includes a sleeve 50 fixed on the outside of the bearing 48. The counterweight 46 slides on the outside of the sleeve 50. The sleeve 50 has opposed slots 52, and the drive arm 34 of the primary wobble plate assembly 30 projects through the bottom slot 52 in the sleeve 50, through the slot 54 in the spindle 40, so that the tip 36 can engage the socket or hole 38 in the top of the spindle 40. The sides of the slot 54 engage a cylindrical exterior portion of the drive arm 34, and this engagement prevents the spindle 40 from rotating about the spindle axis of reciprocation.

The saw 9 further includes means drivingly connecting the motor shaft 18 to the jackshaft 24 and providing slippage between the motor shaft 18 and the Jackshaft 24 if there is binding of the spindle 40, such as if the blade 42 encounters a knot or a nail in a workpiece, or the spindle 40 hits the workpiece.

In one embodiment of the invention, shown in FIGS. 1-2, the motor shaft 18 includes a driving pinion 56 oriented to rotate about an axis parallel to the jackshaft 24, and the means providing slippage comprises a clutch mechanism including a clutch driver 58 mounted on the jackshaft 24 and drivingly engaging the wobble shaft 28. More particularly, the clutch driver 58 includes a tab or projection 59 which fits in and engages a keyway 61 in the wobble shaft 28.

The clutch mechanism further includes a driven gear 60 rotatably mounted on the Jackshaft 24, adjacent the clutch driver 58. More particularly, in the embodiment shown in FIGS. 1-2, the driven gear 60 is rotatably mounted on a hub portion 62 of the clutch driver 58. The clutch driver 58 has a discoidal surface perpendicular to the Jackshaft 24. The driven gear 60 has a circumference that is greater than the circumference of the clutch driver 58, and includes a discoidal surface perpendicular to the jackshaft 24 which faces the discoidal surface of the clutch driver 58. The clutch mechanism may include a clutch disk 64 located axially between the clutch driver 58 and the driven gear 60, mounted on the hub portion 62, and having a first side frictionally engaging the discoidal surface of the clutch driver 58 and having an opposite side frictionally engaging the discoidal surface of the driven gear 60.

The driving pinion 56 drivingly engages the driven gear 60. The clutch mechanism further comprises a spring 66 biasing the driven gear 60 into engagement with the clutch driver and providing slippage if there is binding of the spindle 40. In the illustrated embodiment, the spring 66 is a disk spring. The jackshaft 24 further includes an end having an enlarged diameter portion 70, and the saw 9 further includes a spring retainer 72 mounted on the jackshaft 24, against the enlarged diameter portion 70, and retaining the disk spring 66 against the driven gear 60.

The disk spring 66 controls frictional engagement of the clutch disk 64 with the driven gear 60 and clutch driver 58. If a clutch disk 64 is not used, the disk spring 66 controls frictional engagement between the driven gear 60 and the clutch driver 58. The disk spring 66 is compressed to a predetermined load setting during manufacture of the saw 9 by tightening an axle nut 68 to squeeze all the pieces mounted on the jackshaft 24, including the disk spring 66. The clutch mechanism will slip when the load on the saw spindle 40 or blade 42 exceeds the force applied by the disk spring 66. More particularly, the clutch disk 64 will slip relative to either or both of the driven gear 60 and the clutch driver 58. This prevents damage to the wobble plate assemblies 30 and the driving pinion 56 when the blade locks or binds, hits something like a knot or nail, or is otherwise overloaded.

A second embodiment of the present invention is illustrated in FIGS. 3-4. The embodiment shown in FIGS. 3-4 is substantially similar to the embodiment shown in FIGS. 1-2 which was just described. In this regard, like reference numerals indicate like components, except that in this embodiment, the driven gear 160 includes circumferentially spaced apertures which house ball bearings 110, and the clutch driver 158 includes a pocket or depression 114 in its side facing the driven gear 160. The ball bearings 110 are housed between, and engage, the pocket or depression 114 on one side of the driven gear 160 and the disk spring 66 on the other side of the driven gear 160. Also, in this embodiment, the clutch disk 64 is removed. A spacer 112 is provided between the clutch driver 158 and the driven gear 160 radially interior of the ball bearings 110.

By pressing against the driven gear 160 and ball bearings 110, the disk spring 66 controls engagement of the ball bearings 110 with the pocket or depression 114 in the clutch driver 158. The clutch mechanism will slip when the load on the spindle 40 or blade 42 exceeds the force applied by the disk spring 72. This prevents damage to the wobble plate assemblies 30 and the driving pinion 56 when the blade locks or binds, hits something like a knot or nail, or is otherwise overloaded.

FIGS. 5-6 illustrate a third embodiment of the present invention. Similar to the above-described embodiments, the mechanism 170 of FIGS. 5-6 provides relative slippage between the drive pinion 172 (FIG. 6 only) and the jackshaft 174 (FIG. 6 only) of a reciprocating saw. Also similar to the previous embodiments, the illustrated mechanism includes a driven gear 176 having a recess 177, a spring retainer 178, a disk spring 180, a clutch driver 182 having a hub portion 184, and a wobble shaft 186 (FIG. 6 only).

The interface between the driven gear 176 and the clutch driver 182 is provided by a first clutch disk 188 interconnected with the driven gear 176 and a second clutch disk 190 interconnected with the clutch driver 182. Both the first and second clutch disks 188,190 are positioned within the recess 177 in the gear 176. The first clutch disk 188 includes a plurality of radially-outwardly projecting splines 192 that cooperate with corresponding axially-extending grooves 194 on the inner surface of the driven gear 176. The second clutch disk 190 includes a plurality of radially-inwardly projecting splines 196 that cooperate with corresponding axially-extending grooves 198 on the hub portion 184 of the clutch driver 182. In the described embodiment, the first clutch disk 188 is made of bronze and the second clutch disk 190 is made of steel. By virtue of the provision of two clutch disks, the illustrated mechanism has three friction surfaces, as opposed to the single friction surface of the previous embodiments.

The clutch driver 182 of the third embodiment (FIGS. 5-6) eliminates the tab 59 of the first and second embodiments, and instead interconnects with the wobble shaft 186 through a contoured recess 200 in the clutch driver 182. The contoured recess 200 is shaped to match the end of the wobble shaft 186 so that rotation of the clutch driver 182 will result in rotation of the wobble shaft 186. The full surface contact between the clutch driver 182 and the wobble shaft 186 is believed to enhance the strength, fatigue resistance and impact resistance of the interconnection.

The clutch driver 182 further includes a relief ledge 202. The relief ledge provides extra clearance between the clutch driver 182 and the wobble plate 204 (FIG. 6 only), thereby facilitating closer spacing of the entire assembly.

One embodiment of the invention provides a hand held reciprocating saw including a motor, a driving shaft, a driven shaft, and a clutch in driven engagement between the driving shaft and the driven shaft, which clutch activates to provide slippage between the driving shaft and the driven shaft only at a torque higher than the stalling torque of the motor. For example, any of the clutch mechanisms disclosed above in connection with FIGS. 1-4 can be configured to slip only at a torque higher than the stalling torque of the motor. Thus, the motor stalls when the saw encounters an unexpected impediment to operation, preventing harm to the motor, and the impulse caused by the impediment is absorbed by the clutch.

While clutch mechanisms and other means providing slippage have been described in connection with a reciprocating drive mechanism that includes wobble plates, it should be understood that the clutch mechanisms and other means providing slippage can be used in reciprocating drive mechanisms that include other means for converting rotary motion into reciprocating motion. It should also be understood that the clutch mechanisms could be located at other locations in the saw; for example, a clutch mechanism can be located closer to the blade, or a clutch mechanism can be provided between slip motor shafts. The illustrated embodiment has been found to provide a more economical location for the clutch mechanism.

Modifications may be made to the preferred embodiment described and illustrated herein without departing from the spirit of the invention as expressed in the following claims.

Bednar, Thomas R., Kidney, Scott L.

Patent Priority Assignee Title
10293471, Sep 13 2013 ZHI LONG H K COMPANY LIMITED Adapter for multifunctional electric drill
11453093, Jun 24 2019 Black & Decker Inc Reciprocating tool having planetary gear assembly and counterweighting assembly
11839964, Mar 09 2022 Black & Decker Inc Counterbalancing mechanism and power tool having same
7707729, Feb 02 2007 Robert Bosch GmbH Drive mechanism for a reciprocating tool
7797841, Aug 29 2006 Robert Bosch GmbH; Credo Technology Corporation Drive mechanism for a reciprocating saw
8172650, Mar 18 2008 Paul W., Huber Automatic shift dual-action tool
8407902, Mar 07 2008 Milwaukee Electric Tool Corporation Reciprocating power tool having a counterbalance device
9061411, Mar 07 2008 Milwaukee Electric Tool Corporation Reciprocating power tool having a counterbalance device
9073563, May 18 2011 CRYSTAL GLASS CANADA LTD Reciprocating power tool
Patent Priority Assignee Title
1744976,
2566183,
2639737,
2790471,
3170496,
3454059,
3461732,
3527273,
3605443,
3657813,
3681940,
3934629, Jan 15 1974 Atlas Copco Aktiebolag Screw driver
3937036, May 08 1974 The Black and Decker Manufacturing Company Rotary driving tool having a torque responsive clutch
3943800, Feb 18 1975 Chicago Pneumatic Tool Company Portable screw driving tool having screw depth control feature
3945120, Apr 25 1974 Milwaukee Electric Tool Corporation Vibration dampening and heat sink mechanism for a reciprocating power saw
3971132, Sep 17 1971 Porter-Cable Corporation Saber saw
4006785, Dec 19 1974 Robert Bosch G.m.b.H. Power tool
4114270, Dec 12 1976 Schmid & Wezel Butcher's meat saw
4133187, Jan 06 1977 Flexible-disk coupling
4220230, Mar 30 1979 Overload release clutch
4265320, May 16 1977 Matsushita Electric Industrial Co., Ltd. Electrically powered torque-controlled tool
4365962, Nov 02 1979 Hilti Aktiengesellschaft Safety clutch for power-operated hand-held tool
4418766, Jul 25 1979 Black & Decker Inc. Compact multi-speed hammer-drill
4436163, Dec 13 1978 Black & Decker Inc. Arrangement for converting rotary motion to reciprocatory motion
4448098, Mar 10 1982 Electrically driven screw-driver
4448261, Oct 31 1980 Hilti Aktiengesellschaft Motorized hand tool for drilling
4542812, Mar 05 1984 Honeywell Inc. Variable torque slip clutch
4630512, Sep 03 1984 Hilti Aktiengesellschaft Adjustable motor-operated screw driving device
4655103, Mar 23 1985 C. &. E. Fein GmbH & Co. Clutch for power screwdrivers
4676001, Aug 01 1984 Rems-Werk Christian Foll und Sohne GmbH & Co. Portable compass saw
4687082, Mar 09 1984 Z-Lyften Produktion AB Torque-sensing clutch
4699036, Dec 21 1984 G.O. Stumpf GmbH & Co. KG Cutting apparatus
4721169, May 14 1986 Matsushita Electric Industrial Co., Ltd. Electric driver with torque-adjustable clutch mechanism
4776406, Nov 19 1985 Robert Bosch GmbH Motor-driven hand tool for drilling or impact drilling operations
4776442, Mar 03 1987 BLUE LEAF I P , INC Flywheel slip clutch
4809572, Dec 09 1986 Makita Electric Works, Ltd. Power driven screwdriver
4901610, Jul 07 1988 Precision Instruments, Inc. Adjustable torque controlling mechanism
4921083, Feb 28 1989 Square D Company Clutch module with predetermined torque
4967888, Jun 27 1988 Hilti Aktiengesellschaft Safety clutch for motor-operated hand tool
4976164, Nov 14 1988 Black & Decker Inc.; BLACK & DECKER INC , NEWARK, DE , A CORP OF DE Thrust bearing arrangement for a power tool transmission
5005684, Dec 03 1988 EMERSON POWER TRANSMISSION MANUFACTURING, L P Overload clutch
5025562, Mar 01 1990 MILWAUKEE ELECTRIC TOOL CORPORATION A CORP OF DELAWARE Counterbalanced reciprocating mechanism
5050307, Jun 20 1990 MILWAUKEE ELECTRIC TOOL CORPORATION A CORP OF DELAWARE Wobble plate drive
5060733, Feb 10 1989 Kress-Elektrik GmbH & Co., Elektromotorenfabrik Power-driven screwing tool
5079844, Nov 13 1990 MILWAUKEE ELECTRIC TOOL CORPORATION A CORP OF DELAWARE Counterbalanced reciprocating mechanism
5092441, Sep 30 1989 EMERSON POWER TRANSMISSION MANUFACTURING, L P Manually restorable overload clutch
5113951, Jul 07 1988 Credo Technology Corporation Apparatus for driving a drilling or percussion tool
5129465, Mar 28 1989 Atlas Copco Tools AB Screw tightening power tool
5138916, Dec 01 1989 Hitachi Koki Company Limited Power operated screwdriver
5392519, Sep 02 1992 Makita Corporation Reciprocating saw
5555626, Nov 27 1995 Credo Technology Corporation Reciprocating drive mechanism
5566458, Dec 13 1994 Milwaukee Electric Tool Corporation Clutch mechanism for reciprocating saws
5607023, Dec 13 1994 Milwaukee Electric Tool Corp. Impact absorption mechanism for power tools
5689891, Dec 13 1994 Milwaukee Electric Tool Corp. Clutch mechanism for reciprocating saws
5782000, May 07 1996 Milwaukee Electric Tool Corp. Reciprocating saw with spindle extension device
6021573, May 15 1997 Ryobi Limited; One World Technologies Limited In-line oscillating cam assembly
DE9301295,
GB1596408,
GB2042973,
GB2181693,
GB635227,
RE37211, Dec 13 1994 Milwaukee Electric Tool Corporation Clutch mechanism for reciprocating saws
RE37529, Dec 13 1994 Milwaukee Tool Corporation Clutch mechanism for reciprocating saws
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 28 2001Milwaukee Electric Tool Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Jun 28 2005M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 28 2005M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity.
May 26 2009M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Oct 05 20074 years fee payment window open
Apr 05 20086 months grace period start (w surcharge)
Oct 05 2008patent expiry (for year 4)
Oct 05 20102 years to revive unintentionally abandoned end. (for year 4)
Oct 05 20118 years fee payment window open
Apr 05 20126 months grace period start (w surcharge)
Oct 05 2012patent expiry (for year 8)
Oct 05 20142 years to revive unintentionally abandoned end. (for year 8)
Oct 05 201512 years fee payment window open
Apr 05 20166 months grace period start (w surcharge)
Oct 05 2016patent expiry (for year 12)
Oct 05 20182 years to revive unintentionally abandoned end. (for year 12)