Method and apparatus for providing alternate current paths to a junction through different sets of gate controlled SCRs coupled to the junction. The method starts with the step of initiating a switch from an active set of SCRs to an inactive set by removing a gate signal from two parallel connected, opposite sense current carrying SCRs which in combination carry AC current in either direction. Removal of the gating signal is often initiated, for example, in response to an indication that one alternating current source is faulty so that a switch to a second source is initiated. current is then sensed through the two SCRs of the active set to determine a current carrying state for each of those two SCRs. After the state of the current carrying SCRs is determined the current carrying state of the SCRs is confirmed during a delay time period. If the current carrying state of either of said two SCRs is the same during the delay time period, a gating signal is applied to a corresponding SCR in an inactive set to enable current flow through that corresponding SCR. Once both SCRs in the inactive set have been activated the switch is complete. By waiting until the current has been confirmed during the delay period inappropriate activation of the gate signals of an inactive switch is prevented.
|
1. A method for providing alternate current paths to a junction through gate controlled current carrying devices wherein each of said current carrying devices within a set of such devices blocks current flow in one direction and selectively allows current flow in an opposite direction when a gate to said devices is activated, said method comprising the steps of:
a) initiating a switch away from a first current path through a first, active device set of two or more current carrying devices to a second current path through a second, inactive device set of two or more current carrying devices by removing a current sustaining gate signal from the current carrying devices of the first device set; b) sensing a current status of the devices of the first, active device set to determine a, current carrying status of said devices by monitoring a voltage across the first device set; c) if the voltage falls within a specified range designating at least one of the devices that make up the first active device set as being current carrying and otherwise designating the first active device set as being blocking current in both directions; d) again sensing a voltage across the devices of the first, active device set to confirm the current carrying status of said devices; and e) if the current carrying state of said devices in the first, active device set is confirmed in step d to be in the same state sensed in step c b, and the first active device set is not blocking current in both directions, gating one gate controlled device in a the second, inactive set of said gate controlled devices to enable current flow in one direction through said one gate controlled device of the second, inactive device set.
0. 11. A method for providing alternate current paths to a junction through gate controlled current carrying devices wherein each of said current carrying devices within a set of such devices blocks current flow in one direction and selectively allows current flow in an opposite direction when a gate to a said selected device is activated, and method comprising the steps of:
a) sensing a current status of current carrying devices of a first, active device set to determine a current carrying status of said devices by monitoring a voltage across the first, active device set; b) in the event the voltage across the first, active device set exceeds an error threshold voltage, initiating a switch away from a first current path through the first, active device set of two or more current carrying devices to a second current path through a second, inactive device set of two or more current carrying devices by removing a current sustaining gate signal from the current carrying devices of the first, active device set; c) sensing a current status of the devices of the first, active device set to determine a current carrying status of said devices by monitoring a voltage across the first, active device set; d) if the voltage falls within a specified range designating at least one of the devices that make up the first, active device set as being current carrying and otherwise designating the first, active device set as blocking current in both directions; and e) if the first, active device set is not blocking current in both directions gating at least one gate controlled device in a second, inactive set of said gate controlled devices to enable current flow through said at least one gate controlled device of the second, inactive device set.
6. Apparatus for coupling a source to a load through a junction comprising:
a) a first set of gate controlled switches coupled to a junction wherein one switch of the first set conducts current in one sense and another switch of the first set conducts current in an opposite sense; b) a second set of gate controlled switches coupled to said junction wherein one switch of the second set conducts current in one sense and another switch of the second set conducts current in an opposite sense; c) a monitoring circuit for monitoring a current status of the switches of the first and second sets of gate controlled switches; said monitoring circuit comprising threshold determining circuits coupled to the switches of a respective device set the first and second sets of gate controlled switches for categorizing a current status of the devices that make up a device set switches as having either i) a positive current carrying state; ii) a negative current carrying state; or iii) a blocking state; d) a first gate control circuit coupled to the switches of the first set of gate, controlled switches and a second gate control circuit coupled to the switches of the second set of gate controlled switches for gating the switches of a selected one of the first and second sets of gate controlled switches into conduction, the selected one of the first and second sets of gate controlled switches comprising an active switch set; and e) a controller coupled to the first and second gate control circuits for activating switches in the first and second sets of gate controlled switches by actuating the first and second gate control circuits as said controller determines which set of said first and second set sets of gate controlled switches to render select as the active; switch set; said controller also coupled to said monitoring circuits circuit to monitor the current carrying state of the switches of the first and seconds second sets of gate controlled switches; said controller comprising a stored program for changing which of the first and second sets of gate controlled switches is selected as the active switch set by instructing the first and second gate control circuits to remove a gating signal from the gate electrode of a first the switches of the active switch set and subsequent to the removal of the gating signal for repeatedly monitoring an output from the monitoring circuits circuit to confirm a status of the current in the switches of a first the active switch set and subsequent to such confirmation for then applying a gate signal to the gate electrodes of switches in a second of an inactive switch set and thereby allow current to flow through the second switches of the inactive switch set.
2. The method of
3. The method of
4. The method of
5. The method of
7. The apparatus of
8. The apparatus of
9. The apparatus of
10. The apparatus of
0. 12. The method of
0. 13. The method of
0. 14. The method of
0. 15. The method of
0. 16. The method of
0. 17. The method of
|
The present invention is a continuation-in-part patent application that includes subject matter common with application Ser. No. 08/412,067, now U.S. Pat. No. 5,644,175, entitled "New and Improved Static Switch Method and Apparatus" to Gaim having a filing date in the United States Patent and Trademark Office of Mar. 28, 1995.
The present invention relates to a statics switch for providing multiple current paths between a power source and a load that is energized by that source. More specifically the invention relates to a static switch and switch controller for efficient switching between active current carrying devices in a way less likely to cause damage to circuits connected to the static switch.
It is often important and sometimes critical that a back up power source be available in case a primary power source is either unavailable or degrades until it is not suitable for powering a load. A hospital or a large computer center may, for example, have access to two separate sources of alternating current power for operating some or all of the equipment.
A prior art switched power source is disclosed in U.S. Pat. No. 5,138,184 to Keefe. This patent discloses a solid state, static power supply control system for transferring a load from a preferred source of AC power to an alternate source of AC power.
Cyberex, Inc., assignee of the present invention, is one of a number of suppliers of solid state switches. These switches utilize pairs of gate activated silicon controlled rectifiers or SCRs that are connected in parallel. Each pair of SCRs conducts current from a single pole of alternating current to a load. One SCR conducts current in one direction and a second, oppositely connected SCR conducts current in a second direction as the AC source switches polarity. When both SCRs are gated into conduction, first one and then the other SCR provides a low resistance path for alternating current power as current flow alternates back and forth during the AC power cycle.
A transfer from a faulty power source to an alternate power source requires the active or conductive SCRs be de-activated and a second set of SCRs pairs be activated to couple an alternate power source to the load. Such a transfer should be accomplished with a minimum disruption of current flow to the load and also should be accomplished with no current transfer between the two power sources.
Present gate control algorithms generally use a technique that suffers certain deficiencies. Upon initiation of a transfer command, a first set of SCRs that are carrying current are ungated. When current stops flowing through this first set of SCRs, a second set of SCRs through which current is to begin passing are gated on. For multiple pole switches, either individual poles are treated separately, or entire banks of poles associated with the ports are first ungated and then a new bank gated on.
Prior art methods guarantee current distribution during the switching process. Current disruption for one half of a 60 hertz power signal is not important for most applications but can be critical in data monitoring and processing operations. Present switching methods result in particularly severe disruption of current when three phase power sources are not exactly aligned in phase, or do not share a common neutral connection.
In the copending application to Galm there is described in algorithm for controlling the switching from an active set of SCRs that are conducting to a second inactive set of SCRs that are rendered conductive in a specified manner. One feature of the invention disclosed in the Galm application is the confirmation of the sense of current flow through a pair of parallel connected SCRs subsequent to an initial determination of the current flow through those SCRs.
While a preferred use of the invention disclosed in the Galm application works well under almost all conditions, certain loads have caused switching that makes the algorithm less efficient that it should be. The present invention addresses those instances of inappropriate switching by use of a somewhat different criteria for determining the state of a conducting set of SCRs.
Earlier filed U.S. patent application 08/412,067 discloses a method and apparatus for providing alternate current paths to a junction through different sets of gate controlled current carrying devices coupled to the junction. The preferred method disclosed in this application starts with the step of initiating a switch from an active device set to an inactive device set by removing a gate signal from two parallel path, opposite sense current carrying devices which in combination form the active device set. Such a step might be initiated for example in response to an indication that one alternating current source was faulty so that a switch would be instituted to connect a load to a secondary source. Experience with the system disclosed in this application indicates that for certain loads (typically inductive loads) the switching process is not conducted as efficiently as for other loads and the present invention addresses such situations.
Apparatus constructed in accordance with one embodiment of the present invention couples either a source or a load to a junction by controlled activation of first and second sets of gate controlled switches that are coupled to the junction. A monitoring circuit monitors a current status of the switches of the first and second sets of gate controlled switches by categorizing a current status of the devices that make up a device set as having either a positive current carrying state; a negative current carrying state; or no current site, i.e. in a blocking state.
The apparatus provides alternate current paths to a junction through gate controlled circuit carrying devices such as silicon controlled rectifiers. A switch is initiated away from a first current path through a first, active device set of two or more current carrying devices to a second current path through a second, inactive device set of two or more current carrying devices by removing a current sustaining gate signal from the current carrying devices of the first device set.
A current status of the devices of the first, active device set is determined by monitoring a voltage across the first device set. If the voltage falls within a specified range at least one of the devices that make up the active device set is designated as being current carrying and otherwise designated as blocking current in both directions. The voltage across the devices of the first device set is again sensed to confirm the current carrying status of the devices.
If the current carrying state of the devices in the first device set is confirmed to be in the same state and the device set is not blocking current in both directions, one or more gate controlled device in a second, inactive set of said gate controlled devices are gated to enable current flow in one direction. If the sensing of voltages indicates the first set is blocking, then devices in the second, inactive device set can be gated to enable current flow in both directions.
The present invention has applications in single phase as well as multiple phase alternating current power systems. From the above it is apparent that one object of the invention is method and apparatus for controlling the switching of a gate controlled switching system to effectively and safely accomplish that switching. These and other objects, advantages and features of the present invention will be better understood by reference to a preferred embodiment of the present invention which is described in conjunction with the accompanying drawings.
Turning now to the drawings,
The control system 10 provides alternate current paths to three junctions 12, 14, 16 through six sets 20-25 of gate controlled current carrying devices coupled to the junctions 12, 14, 16. A primary three phase power source is coupled to three inputs 30a, 30b, 30c in
A controller 50 monitors the condition of the two sets of alternating current signals from the primary and secondary sources by means of signal conditions sensors. A presently preferred controller 50 is implemented using a Motorola 68HC16Z1 based microcomputer including I/O interfacing for communicating with the signal condition sensors. As depicted in
To switch from one source to another, the controller 50 must de-active an active group of three devices sets 20-22, for example, and activate an inactive group of three device sets 23-25. In accordance with a preferred embodiment of the invention a given device set includes oppositely connected gate controlled SCRs. The device set 20 includes two such SCRs 20a, 20b, (
To switch from one power source to another the controller 50 deactivates an active device set by removing the gate signals from gate inputs of the two parallel path, opposite sense current carrying SCRs which combine to form an active device set. As an example to deactivate the device set 20 made up of the two SCRs 20a, 20b the gate inputs 20ga, 20gb to these two devices are brought to a system reference or ground voltage.
To perform a safe, yet efficient transfer of power through the junctions 12, 14, 16 from one source to another the controller 50 initiates a transfer and relies upon two field programmable gate array controllers 110, 112 to supervise the shutdown of the active device sets and start up the inactive device sets. The present invention is implemented using model XC3064 field programmable gate array controllers commercially available from Xllinx.
The controllers 110, 112 must sense current through the two devices of each active device set to determine a current carrying state for that set. Six gate drive circuits 120-125 help determine the current state or status of the device sets 20-25 as well as activate and deactivate the SCRs of these devices sets. The gate drive circuits 120-125 allow the two controllers 110, 112 to periodically monitors shut down of an active device set and more particularly to periodically monitor current through the two devices of the active set to confirm the current carrying state of the two devices.
As seen by the double pointed arrow in
The process of switching between an active and inactive device set is more simply described for a single phase, single pole application of the invention.
The manner in which the two device sets 20, 23 leave the states S1 and S10 and switch state, i.e. the device set 20 becomes inactive in state S10 and the device set 23 becomes active and switches to state S1 is described in detail below. To help describe the
1) I+, POSITIVE CURRENT=1
2) I-, NEGATIVE CURRENT=1
3) TD, TIMER RUNNING=1, TIMER FINISHED=0.
4) AS, ACTIVE SOURCE COMMAND BIT, 1 MAKE ACTIVE.
In state S1 of the state transition diagram, the SCR set 20 is active. This means by referring to
The second edge 152 corresponds to a path for leaving the state S1 and entering the state S2. This edge 152 is traversed when a command is issued to make the active device set 20 inactive (AS=0). By monitoring the signals from the gate control circuit 120 the controller 110 examines the conduction status of the two SCRs 20a, 20b that make up the set 20.
Three possible current conduction sensed status conditions and one error condition are possible when in state S2. If current is flowing in a direction toward the load 42 through the SCR 20a (I+=1), the state machine executed by the controller 110 exists state S2 and moves along an edge 154 to state S3. If current if flowing in a direction away from the load through the SCR 20b (I-=1), the state machine in the controller exists state S2 and moves along an edge S2 is that no state S5. A third sensed alternative in state S2 is that no current is flowing through the device set 20. This means that the device set is at the zero crossing of the alternating current power cycle when a single to de-activate the device set 20 is issued by the controller 50. If no current is sensed, the state machine exists state S2 along an edge 158 and enters state S4 in the
Exiting the state S2 to either of the three mutually exclusive states S3, S4, S5 causes the controller 110 to start a timer (TR=1) and continue to periodically monitor current. A typical value for the duration of the timer that is started is 300 microseconds.
As the timer runs, if the sensed current status changes from the condition that caused that state to be entered, the state machine returns to state S2. If the sensed current condition in state S3 is anything but a positive current through the SCR 20a, the state machine will return to state S2 by means of the edge transition 160.
If the same current condition is consistently monitored during the sensing of states S3, S4, and S5, a forward transition (to be contrasted with a backward transition to state S2) from these states occurs. State S3 goes to state S6 by an edge 170, state S4 goes to state S10 by an edge 172, and state S5 goes to state S7 by an edge 174. As explained in detail below, a transition from either of the three mutually exclusive states S3, S4, or S5 to other than state S2 causes a transition of the inactive device set 23.
If the state machine running on the controller 110 enters state S6 from state S3 the controller has confirmed that positive current is flowing in the SCR 20a associated with the source being deactivated (I+=1). In a preferred embodiment of the invention this is assured because each and every time the current condition was sensed during the 300 microseconds delay of state S3 a positive current condition is sensed. Preferably sensing occurs about every 10 microseconds. Thus, during state S3 thirty different current condition sensing steps took place and all of them indicated a positive current condition. When the timer times out (TD=0), the state machine exists state S3 along the edge 170. While a preferred implementation requires all sensing steps performed during state S3 to yield the same result, in an electrically noisy environment it is possible that only a certain percentage of current sensings would be required to confirm the status of the device set 20. Also, although multiple current sensing steps are preferred, state S3 could be performed with only a single step to confirm the earlier indication in state S2 that the current is positive.
When the state machine enters the state S6 the controller 112 connected to the device set 23 is signaled by the transfer bus to initiate current flow in a corresponding positive SCR 23a in the device set 23. This is accomplished by application of a gate signal to the SCR gate input 23ga. The state machine for the device set 20 stays in state S6 until the positive current in the SCR 20a stops. When the current is sensed as being zero (I+=0) the state machine enters a state S8 through the transmission edge 176.
If the state S7 is entered from state S5, it is known that a negative current (I-=1) is flowing through the SCR 20b. The state machine of the controller 110 signals the other controller 112 and the other controller initiates current flow in a corresponding negative SCR 23b of the device set 23. This is accomplished by application of a gate signal to the SCR gate input 23gb. The state machine for the set 20 stays in state S7 until the negative current in the SCR 20b stops (I-=0). When the current is sensed as being zero the state machine enters a state S9 by the transition edge 178.
The transition from each of the three mutually exclusive states S4, S8, and S9 is typically to the inactive state S10 by means of edge transition paths 172, 180, 182. Upon entering the states S4, S8, or S9 the state machine starts a timer and so long as that timer is running, i.e. TD=1, the state machine continues to monitor current. For state S4, if during any of the multiple current sensing steps the conduction status of the set 20 changes from the no current condition, the state machine returns to state S2 by the edge transition 184. Similarly, if at any time during the multiple current sensing steps in state S8 the conduction state changes to a positive current the state machine returns to state S6 by the transition edge 186. Finally, if at any time during the multiple current sensing steps in state S9 the conduction state changes to a negative current the state machine returns to state S7 by the transition edge 188. Note the two states S6 and S7 have only a single transition edge leaving those states if current has fallen to zero. Thus, even if a backward transition from state S8 to state S6 occurs, the state machine waits for the current to fall to zero and has no other exit transition.
Recall that as one of the state machines for the controller 110 is executing, a similar state machine for the controller 112 is also executing for the device set 23. When the controller 50 instructs the controller 110 to cause the device set 20 to exit state S1 of the controller 110, the controller 50 is simultaneously issuing a command to the state machine running on the controller 112 to exit state S10 and enter state S11 by a one way transition edge 210. When this command comes it is the intent of the controller 50 that the device set 23 become active.
The transitions from the state S11 in
POSITIVE CURRENT--X0=1.
NEGATIVE CURRENT--X1=1.
TIMER RUNNING--XT=1.
After the transfer of the state machine running on the controller 112 out of state S10, the state machine is in state S11 and can receive four different messages. If a positive current is sensed in the device set 20 and communicated by the controller 110 to the controller 112, a transition from state S11 to state S12 occurs by the transition edge 212. If negative current is sensed in the device set 20 and communicated by the controller 110 to the controller 112, a transition from state S11 to state S14 occurs by the transition edge 214. If no current is sensed in the set 20 and communicated by the controller 110 to the controller 112, the state machine of the controller 112 causes a transition from state S11 to state S13 by the transition edge 216. The states S12, S13, and S14 track the states S3, S4, and S5 of the state machine in the controller 110.
Assume a positive current is sensed in the device set 20 and has been conveyed on the transfer bus. The state machine running on the controller 112 enters state S12. At the same time state S12 is entered by the controller 112 the controller 110 enters state S3 and starts a timer. So long as the timer of the controller 110 is running (XT=1) and the current sensed by the controller 110 is positive (X0=1) the state machine of the controller 112 remains in the state S12. Once the timer elapses (XT=0) the state machine shifts to state S15 by an edge transmission 218. In state S15 the controller 112 causes the positive SCR 23a to be gated into connection.
Now assume a negative current is sensed by the controller 110 in state S2. The state machine running on the controller 112 is sent information that causes a switch to state S14 by the edge transition 214. At the same time state S14 is entered by the controller 112 the controller 110 enters state S5 and starts a timer. So long as the timer of the controller 110 is running (XT=1) and the current sensed by the controller 110 is negative (X1=1) the state machine of the controller 112 remains in the state S14. Once the timer elapses (XT=0) the state machine shifts to state S16 by and edge transition 220. In state S16 the controller 112 causes the negative SCR 23b to be gated into conduction.
If no current is sensed by the controller 110 in state S2 (X0=X1=0), the state machine running on the controller 112 switches to state S13 by the edge transition 216. At the same time state S13 is entered by the controller 112 the controller 110 enters state S4 and starts a timer. So long as the timer of the controller 110 is running (XT=1) and the current sensed by the controller 110 is zero (X0=X1=0) the state machine of the controller 112 remains in the state S13. Once the timer elapses (XT=0) the state machine shifts by the transition 222 to state S1 and in this state the controller 112 causes the gates of both the positive and negative SCRs 23a, 23b to be gated allowing conduction in both directions between the load 42 and the input 40a.
Running to state S15, one notes that in this state the positive SCR 23a is gated into conduction but the negative SCR 23b has not yet been gated into conduction. When the controller 112 gates the SCR 23a, the controller 110 is in state S6 and continues to monitor current until the current in the SCR 20a goes to zero. When the current reaches zero, the controller 110 moves to state S8 and also sets X0=0 on the transfer bus. This causes the controller 112 to shift to state S17 by means of the edge transition 224. After the time delay imposed during state S8 and assuming the current in the SCR 20a remains zero for that time delay the controller 110 shifts to state S10 and also sets XT=0. This causes the controller 112 to shift to state S1 by the edge transmission 226 and gate the negative SCR 23b into conduction.
If the controller 112 is in state S16, the negative SCR 23b has been gated into conduction but the positive SCR 23b is not yet conducting. When the controller 112 gates the SCR 23b, the controller 110 is in state S7 and continues to monitor current until the current in the SCR 20b goes to zero. When the current through the SCR 20b does reach zero, the controller 110 moves to state S9 and also sets X1=0 on the transfer bus. This causes the controller 112 to shift to state S18 by means of the edge transmission 228. After the time delay imposed in state S9 and assuming the current in the SCR 20b remains zero for that time delay the controller 110 shifts to state S10 and also sets XT=0. This causes the controller 112 to shift to state S1 by the edge transition 230 and gate the positive SCR 23a is gated into condition.
An output from a third full wave rectifier 324 provides a backup direct current input to the gate drive circuit 123. A PCOM connection 328 from the gate drive 120 is coupled to a corresponding PCOM connection (not shown) of the gate drive 123. A connector 330 coupled to the full wave rectifier 324 routes three signals to a NCOM connector of the circuit 123 such as the NCOM connector 332. An extra output from the circuit 123 connects to the connector 332 of the circuit 300 depicted in FIG. 5. If the switching power supply of one gate drive (120 or 123) fails, the backup, from the functioning circuit allows both circuits 120, 123 to operate and perform its gate monitoring functions.
The inputs 350, 352 pass through optoisolator circuits 354, 356 to MOSFET switching transistors 360, 362 which activate the respective gate inputs designated GATE+and GATE-shown in FIG. 3. The transistors 360, 362 are also coupled to diagnostic light emitting diodes 364, 366 for indicating a given SCR has been activated. The output from the two MOSFETS are coupled to the gates of the SCRs 20a, 20b and to optoisolators 370, 372 in the upper right hand portion of
The assumption is made that ff the voltage drops below 300 millivolts across the SCR, its current is less than the minimum holding current required to maintain the SCR in the conducting state. A forward biased SCR will have more than 300 millivolts across its forward biased connections. A voltage divider 410 at the left hand portion of
This overvoltage protection is separate from the signal quality sensing conducted by the controller 50. As seen below a voltage of greater than 3 volts for a short period of time is not necessarily a problem but is treated in a slightly different manner from the technique disclosed in applicant's prior application Ser. No. 08/412,067.
Assuming the voltages is less than 3 volts but greater than 0.3 volts, the comparator amplifier 401 switches states and produces a low output causing an optoisolator circuit 420 on the right hand side of the 4A circuit to also provide a low signal at an output 430. The other optoisolator circuits similarly go low in response to certain sensed conditions. Both a top and a bottom optoisolator circuit 422, 424 typically will not provide low outputs during normal operation of the circuit 120. During the 60 Hz signal applied across the SCRs, the two middle optoisolator circuits 420, 421 alternate, first one and then the other, at a 60 cycle per second rate from low to high signals at the outputs 430, 431. For a brief interval at the zero crossing point both outputs 430, 431 are low and this would account for the need in the state machine of
The state machine described above in relation to
In the event the source 520 is deemed unsuitable and it is desirable to couple a different source to the load L, the switch 522 is opened and a second, substitute source is coupled to the load L through a second set of parallel coupled SCRs. As outlined above, the opening of a switch such as the switch S1 does not actually take place. Instead the SCRs 510, 512 are rendered non-conductive when their gate signal is removed and the circuitry external to the SCRs causes their current to fall below the holding current. Under such circumstances a premature coupling of the second source to the load could couple together the sources with potentially serious problems.
Two different situations are depicted in FIG. 8 and are labeled Case #1 and Case #2. These situations indicate the status of labeled parameters in the
In Case #1, when the switch 522 opens, the current through the resistor and the inductor will circulate such that the voltage VSCR across the SCRS will maintain its polarity when the polarity of the voltage VSCR across the resistance 514 reverses. This results in efficient switching to the second source without undue disruption of power applied to the load.
In Case #2 when the switch 522 opens, the voltage Vs and current IL are of opposite polarity and the current IL circulates so that the voltage across the SCRs VSCR reverses polarity while the polarity VO across the resistor 514 remains the same. The polarity reversal of VSCR is responsible for the
It is instructive to examine operation of the
Assume a voltage of 4 volts is sensed. If this condition is sensed repeatedly (longer than a few milliseconds), it is an error condition. The
In accordance with the presently preferred implementation of the invention a threshold or range of voltages is chosen to define transition states that is depicted in FIG. 9B. In this figure voltages in the range 0.3 to -0.3 and greater than 3 volts (both positive and negative) are treated the same, i.e. indicative of a blocking or otherwise non-conductive condition so that the transition to state S4 is chosen. Voltages across a set of SCRs between 0.3 and 3 volts cause the transition from state S2 to S3 and voltages between -0.3 and -3 volts cause the transition from state S2 to S5. Extended (several milliseconds) voltage excursions of more than 3 volts are still error conditions which cause traversal of the switching algorithm to abort.
Although a preferred embodiment of the invention has been described with a degree of particularly, it is the intent that the invention include all modifications and alternates from the disclosed design falling within the spirit or scope of the appended claims.
Patent | Priority | Assignee | Title |
7132951, | Jul 11 2003 | Liebert Corporation | Apparatus and method for protecting an uninterruptible power supply and critical loads connected thereto |
7495356, | Jan 22 2007 | Hon Hai Precision Industry Co., Ltd. | Dual power supply system |
7616460, | Dec 22 2005 | Vitesco Technologies USA, LLC | Apparatus, system, and method for AC bus loss detection and AC bus disconnection for electric vehicles having a house keeping power supply |
8674555, | Mar 07 2011 | LayerZero Power Systems, Inc. | Neutral switching high speed AC transfer switch |
Patent | Priority | Assignee | Title |
4622513, | Sep 28 1984 | SIEMENS POWER TRANSMISSION & DISTRIBUTION, L L C | Gating of the thyristors in an arcless tap changing regulator |
4717841, | Dec 05 1984 | La Telemecanique Electrique | Static power switch apparatus |
4742424, | Apr 28 1987 | General Electric Company | Power status monitor for electronic system |
4761563, | Oct 27 1987 | International Business Machines Corporation | Asynchronous multiphase switching gear |
5079688, | Dec 13 1989 | NEC CORPORATION, 7-1, SHIBA 5-CHOME, MINATO-KU, TOKYO, JAPAN | Transformerless power monitor circuit having means for electronically latching DC alarms |
5138184, | Jan 22 1990 | POWER DISTRIBUTION, INC | Solid state static power transfer mechanism |
5229651, | Sep 08 1989 | BEST POWER TECHNOLOGY INCORPORATED | Method and apparatus for line power monitoring for uninterruptible power supplies |
5319514, | Mar 03 1992 | Voltage Control, Inc., a Montana corporation | Digital voltage and phase monitor for AC power line |
5386147, | Apr 01 1991 | Leland Electrosystems Inc. | Aerospace power control system for monitoring and reliably transferring power buses |
5644175, | Mar 28 1995 | Thomas & Betts International LLC | Static switch method and apparatus |
6051893, | Oct 29 1998 | Mitsubishi Denki Kabushiki Kaisha | Electric power supply system for load |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 22 2000 | Danaher Power Solutions LLC | (assignment on the face of the patent) | / | |||
Nov 08 2007 | DANAHER POWER SOLUTIONS, LLC | Thomas & Betts International, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020143 | /0750 | |
Mar 21 2013 | Thomas & Betts International, Inc | Thomas & Betts International LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 032388 | /0428 |
Date | Maintenance Fee Events |
Oct 02 2006 | EXPX: Patent Reinstated After Maintenance Fee Payment Confirmed. |
Nov 21 2006 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 21 2006 | M1558: Surcharge, Petition to Accept Pymt After Exp, Unintentional. |
Nov 21 2006 | PMFP: Petition Related to Maintenance Fees Filed. |
Jun 04 2007 | PMFG: Petition Related to Maintenance Fees Granted. |
Mar 29 2010 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Apr 02 2010 | ASPN: Payor Number Assigned. |
Date | Maintenance Schedule |
Oct 19 2007 | 4 years fee payment window open |
Apr 19 2008 | 6 months grace period start (w surcharge) |
Oct 19 2008 | patent expiry (for year 4) |
Oct 19 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 19 2011 | 8 years fee payment window open |
Apr 19 2012 | 6 months grace period start (w surcharge) |
Oct 19 2012 | patent expiry (for year 8) |
Oct 19 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 19 2015 | 12 years fee payment window open |
Apr 19 2016 | 6 months grace period start (w surcharge) |
Oct 19 2016 | patent expiry (for year 12) |
Oct 19 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |