A method for producing dialkylsilylbis(2-alkyl-4-aryl indenyl) titanocenes including rac-Me2Sibis(2-methyl-4-phenylindenyl)-titanium dichloride is described.
|
1. A method for preparing a dialkylsilylbis(2-alkyl-4-arylindenyl) titanium dichloride which comprises:
(i) reacting a 2-alkyl-4-arylindene with an alkali metal alkyl and a dihalodialkyl silane to provide a first reaction mixture in a first reaction vessel;
(ii) separately reacting in a second reaction vessel titanium tetrachloride with and a second alkali metal alkyl which may be the same as or different from said first alkali metal alkyl to provide a second reaction mixture containing titanium trichloride in said second reaction vessel ;
wherein said second first reaction mixture contains a ligand of said dialkylsilylbis(2-alkyl-4-arylindenyl) titanium dichloride in which titanium is present in a plus three oxidation state;
(iii) containing said first and second reaction mixtures in the presence of an oxidizing agent;
wherein a third reaction mixture containing a mixture of rac and meso forms of said dialkylsilylbis(2-alkyl-4-arylindenyl) titanium dichloride is produced.
2. The
(iv) separating said mixture of rac and meso forms of said dialkylsilyl (2-alkyl-4-arylindenyl) titanium dichloride from said third reaction mixture.
3. The
(v) separating said rac from said meso form of said dialkylsilyl (2-alkyl-4-arylindenyl) titanium dichloride.
4. The
5. The
0. 6. Rac-Me2Si(2-methyl-4-phenylindenyl)-titanium dichloride.
|
This application is a continuation-in-part of Blankenship application PCT/US96/18666 filed 22 Nov., 1996 and incorporated herein by reference.
This invention relates to the preparation of Bis(2-Methyl-4-Phenylindenyl)-Titanium Dichloride
A first flask was charged with toluene (300 mL) and tetrahydrofuran (THF) (15 g, 0.2 mol) and 2-methyl-4phenylindene (21.2 g, 0.2 mol). The mixture was cooled to −20° C. followed by the addition of 1.6M butyllithium in hexanes (125 mL). The mixture which contained 2-methyl-4-phenylindene lithium was warmed to 25° C. and stirred for four hours. The stirred contents were cooled to −20° C. and dichlorodimethylsilane (12.9 g) was added. The reaction mixture so formed was warmed to 25° C. and stirred for 12-16 hours and then cooled to −20° C. 1.6M butyllithium in hexanes (125 mL) was added and the contents of the first flask were then warmed to 25° C. and stirred for eight hours. The first flask reaction mixture contained the dilithium salt of Me2Si bis(2-methyl-4-phenylindene).
A second flask was charged with heptane (300 mL) and titanium tetrachloride (18.9 g, 0.1 mol). 1.6M butyllithium in hexanes (62.5 mL, 0.1 mol) was slowly added maintaining the temperature below 25° C., for example, 0° C. to 20° C. THF (100 g) were added. The reaction mixture was stirred for two hours. The contents were cannulated to the dilithium salt in the first flask and the mixture stirred for two hours at 25° C. CuCl (2 g, cuprous chloride) was added and the mixture was stirred for two hours at 25° C. The solids were separated from the reaction mixture by filtration, washed with hexanes (50 mL) and then dried in a vacuum.
The dry solids were dissolved with dichloromethane (500 mL) and the solutions filtered through a small bed of celite. The volume of the filtrate was reduced to 50-75 mL. The crystals separated by filtration were washed with 20 mL of dichloromethane, and dried in vacuum. Yield=9-15 g. 15/20% yield of rac Me2Sibis(2-methyl-4-phenylindenyl)-titanium dichloride having the same NMR spectrum as FIG. 1.
Example 1 is repeated with the 2-methyl-4-α-naphthylindenyl used as a first flask reactant instead of 2-methyl-4-phenylindene.
Example 1 is repeated with the 2-methyl-4-anthracenyl indene used as a first flask reactant instead of 2-methyl-4-phenylindene.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5329033, | Aug 26 1991 | Basell Polyolefine GmbH | Process for the preparation of an olefin polymer |
5693836, | Aug 15 1992 | Basell Polyolefine GmbH | Process for the preparation of polyolefins |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 19 2002 | Boulder Scientific Company | (assignment on the face of the patent) |
Date | Maintenance Fee Events |
Jun 02 2006 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Jun 07 2010 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Jan 04 2008 | 4 years fee payment window open |
Jul 04 2008 | 6 months grace period start (w surcharge) |
Jan 04 2009 | patent expiry (for year 4) |
Jan 04 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 04 2012 | 8 years fee payment window open |
Jul 04 2012 | 6 months grace period start (w surcharge) |
Jan 04 2013 | patent expiry (for year 8) |
Jan 04 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 04 2016 | 12 years fee payment window open |
Jul 04 2016 | 6 months grace period start (w surcharge) |
Jan 04 2017 | patent expiry (for year 12) |
Jan 04 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |