A double hull marine vessel is provided which includes a syntactic foam-macrosphere composition between the inner and outer hulls which dissipates force applied to an outer hull.
|
1. A ship which includes a plurality of volumes, hull construction that defines a hull volume positioned within the ship each of said volumes , said hull construction comprising:
an inner wall structure hull,
an outer wall structure hull spaced apart from said inner wall structure hull to provide a space between said inner wall structure hull and said outer wall structure hull,
means for maintaining said inner wall structure hull spaced apart from said outer wall structure hull, and,
an energy absorbing composition positioned within said space comprising between about 10 and about 60 volume percent of a hardened resin containing hollow microspheres and between about 90 and about 40 volume percent macrospheres.
9. A ship which includes a plurality of volumes, positioned within the ship each of said volumes comprising:
an inner wall structure hull,
an outer wall structure hull spaced apart from said inner wall structure hull to provide a space between said inner wall structure hull and said outer wall structure hull,
means for maintaining said inner wall structure hull spaced apart from said outer wall structure and hull,
an energy absorbing composition positioned within said space comprising between about 10 and about 60 volume percent of a hardened resin containing hollow microspheres and between about 90 and about 40 volume percent macrospheres, and
means positioned within said energy absorbing composition for distributing an impact force on said outer wall structure hull throughout said energy absorbing composition.
2. The marine vessel ship of
7. The marine vessel ship any one of claims 1 or 2 wherein said macrospheres have essentially the same size.
8. The vessel ship of any one of claims 1 or 2 wherein said macrospheres have varying diameters between about ¼ inch and 4 inch inches.
10. The marine vessel ship of
15. The marine vessel ship any one of claims 9 or 10 wherein said macrospheres have essentially the same size.
16. The marine vessel ship of any one of claims 9 or 10 wherein said macrospheres have varying diameters between about ¼ inch and 4 inch inches.
|
1. Field of the Invention
The present invention relates to marine vessels and, more particularly, to a vessel including spaced apart hulls wherein the space between the hulls contains an energy absorbing composition. More particularly, the present invention relates to such a vessel wherein the energy absorbing composition includes hollow microspheres and macrospheres in a resin matrix.
2. Description of Prior Art
Spillage of petroleum products, hazardous chemicals or other compositions damaging to the environment resulting from marine vessel hull rupture during grounding, stranding, collision or other accidents has become a major problem. The Oil Pollution Act of 1990 requires that all craft entering United States territorial water have double bottoms and double sides to form an inner hull and an outer hull, traditionally termed a double hull construction. In large marine vessels, the space between the two hulls typically is at least about two meters. The volume defined by the inner surface of the inner hull comprises the tank storage portion for housing the product being transported. The double hull design conventionally is orthogonally-stiffened by both transverse web frames and longitudinal girder (or longitudinal “webs”) between the inner and outer hulls to form a stiff grid bottom and shell structure beneath and surrounding the tank storage portion of the vessel. A common arrangement also includes the use of a center line longitudinal bulkhead positioned within the tank storage portion to form port and starboard oil tanks. In addition, it is known to utilize a double hull construction with marine vessels in addition to tankers, such as barges, ferries, cargo ships, submarines or the like. While it is known that double hulls can effectively protect against minor impact forces, it is also known that they are ineffective to withstand strong impact forces. Such strong impact forces cause both the inner and outer hulls to be breached thereby resulting in spillage of material such as oil from the tank portion of the vessel or of water to allow water ingress into the vessel.
It has been proposed to provide strength enhancing and shock absorbing elements between the two hulls of a double hull ship. It also has been proposed to provide a foam material between the two hull to provide improved hull strength. Such arrangements are shown, for example in U.S. Pat. Nos. 3,811,141; 3,831,212; 3,840,296; 3,887,952 and 3,911,190. It has also been proposed to utilize hollow beads between the two hulls, as for example by U.S. Pat. No. 3,124,626. While the use of foam material or hollow beads comprise an improvement over a hollow space between the two hulls to effect absorbance and diffusion of force applied to the outer hull and to reduce force transmission to the inner hull, their use is undesirable since a significant portion of the impact force is transmitted to the inner hull.
It has also been proposed in U.S. Pat. No. 5,353,727 to provide a collision guard to the exterior hull surface of a marine vessel which is formed from a lightweight permanent buoyant material, such as a fire retardant foam, in order to improve resistance against forces applied to the exterior hull. Such modules are undesirable since they are subjected to the normal sea forces to which a vessel is subjected resulting in their detachment from the vessel.
It has been proposed in U.S. Pat. No. 5,277,145 to increase the strength of a transom portion of a boat with syntactic foam formed from a resin containing hollow microspheres, usually made of glass. These microspheres generally have a diameter of between about 0.1 and about 300 microns. Such syntactic foam compositions are undesirable for use between hulls of double hull vessels since they preferentially transmit rather than absorb forces applied to them. This is primarily due to the fact that the microspheres, when embedded within a thermosetting resin, are extremely resistant to impact forces and thus transmit impact force through the composition rather than collapsing up to the point wherein very high impact forces are applied to the syntactic foam.
Modified syntactic foams are disclosed in U.S. Pat. No. 3,622,437, which is incorporated herein by reference, for use as buoyant materials to be positioned in sea environments, for example more than a thousand feet below the surface of the sea. Such modified syntactic foams include relatively large hollow spheres which provide a reduced density for the modified syntactic foam as compared to the unmodified syntactic foam.
Accordingly, it would be desirable to provide a double hull construction for marine vessels which includes an energy absorbing composition positioned between the two hulls. In addition, it would be desirable to provide such a composition which does not significantly adversely affect the buoyancy of the vessel when the composition is positioned between the hulls. Furthermore, it would be desirable to provide such a composition which preferentially absorbs energy when excessive force is applied to it rather than transmitting energy to the inner hull so that the probability of breaching the inner hull is substantially reduced or eliminated. In addition, it would be desirable to provide such a composition which is substantially impermeable to non-solvating liquids when free of fractures. Such a composition would substantially reduce the probability of cargo leakage from tanks of the vessel or water to ingress into the vessel even when the vessel's exterior hull is breached with excessive force which normally leads to breaching of the inner hull.
In accordance with the present invention, a double hull construction is provided for a marine vessel which includes an inner hull and an outer hull and a space between the inner hull and the outer hull which is filled with an energy-absorbing composition. The energy-absorbing composition is a syntactic foam comprising a resin matrix and hollow microspheres and which includes hollow macrospheres. As used herein the term, “syntactic foam” means a hardened or curable resin matrix containing small hollow microspheres, such as glass microspheres ceramic or polymeric, e.g., polyvinylidenechloride, phenolic or polyurethane microspheres having a diameter between about 1 and about 300 microns as defined by the ASTM Committee on Syntactic Foam. As used herein, the term, “macrospheres” means low density spheres formed from a resin binder either alone or containing reenforcing fibers such as glass fibers, carbon fibers or the like having a diameter about {fraction (1/16)} inch and about 4 inches. The interior volume of the macrospheres contains gas or a low density solid which also contains gas such as a polymeric foam. The macrospheres have a low density of between about 5 and about 40 pounds per cubic feet. The volume percent syntactic foam of the syntactic foam-macrospheres mixture is between about 10 and about 60 volume percent, preferably between about 20 and 40 volume percent while the volume percent macrospheres of the mixture is between about 40 and about 90 volume percent, preferably between about 60 and about 80 volume percent. The syntactic foam functions to provide lower density and strength to the composition positioned between the two hulls. The macrospheres function to provide low density and energy absorbance capacity to the composition.
The syntactic foam-macrosphere composition is positioned between the two hulls by first introducing the macrospheres into the space between the two hulls. Thereafter, the syntactic foam, while the resin matrix is in a fluid state, is introduced into the space between the two hulls such as by being pumped. The macrospheres can have varying diameters or can have essentially the same diameter. After the syntactic composition has been pumped into the space between the hulls, the resin portion thereof is allowed to cure at a suitable temperature to effect crosslinking of the resin matrix and to render it thermosetting.
When the double hull is subjected to an impact force initiated on the outside surface of the exterior hull, the force is transmitted from the exterior into the composition positioned between the hulls and, if the impact force is sufficiently high, the macrosphere in close proximity to the point of impact begin to fracture under the force of the impact thereby absorbing the impact force. When the impact force is sufficiently high, the macrospheres fracture sequentially; first at the most proximate points to the point of initial impact and thereafter sequentially fracturing progressively away from the point of initial impact. Due to macrosphere fracturing, the impact force is dissipated significantly prior to its being transmitted, by way of the hardened resin matrix of the syntactic foam, to the inner hull. Thus, the composition positioned between the two hulls substantially reduces the impact force within the volume between the two hulls. By substantially reducing the impact force prior to the force reaching the inner hull, the probability of the inner hull being fractured is correspondingly reduced or eliminated. In addition, the presence of the hardened syntactic foam provides a physical barrier to the source of the impact force, such as another vessel or a submerged rock formation to prevent it from contacting the inner hull. Accordingly, the syntactic foam-macrosphere composition utilized between the two hulls provides substantial advantages over a hardened syntactic foam or an empty space positioned between the two hulls.
In accordance with the present invention the space between the inner hull and the outer hull of a double hull marine vessel is filled with a composition comprising a hardened syntactic foam and macrospheres. The volume percent hardened syntactic foam of the syntactic foam-macrospheres mixture is between about 10 and about 60 volume %, preferably between about 20 and about 40 volume % while the volume percent macrospheres of the mixture is between about 40 and about 90 volume %, preferably between about 60 and about 80 volume %. The macrospheres can have an essentially uniform diameter or can have a varying diameter between about {fraction (1/16)} and about 4 inches, preferably between about ¼ inch and about ½ inch. The macrospheres can be formed of any synthetic resin composition which may include a reinforcing agent such as fibers including glass fibers, carbon fibers or the like. The macrospheres typically are formed from thermoset or thermoplastic polymers such as polyvinyl esters, polyesters, phenolic resins, epoxy resins, polyurethanes polyamides, high density polyethylene, polypropylene, polyacrylonitrile, acrylonitrile-butadiene-styrene polymers, styrene-acrylonitride or the like. The macrospheres typically are formed by conventional injection molding, such as by molding two matching hemispherical sections and joining them or rotational molding or the like.
The syntactic foam contains glass microspheres having a diameter between about 1 and 300 microns, preferably wherein 50% of the microspheres have a diameter between about 30 and about 70 microns. The resin carrier for the syntactic foam initially is a pumpable liquid which is curable over time at ambient temperature or at elevated temperature. Exemplary resin matricies include phenolic resins, epoxy resins, polyurethanes, polyesters, polyureas, polyvinyl esters, polyamides or the like. The resin is curable to form a crosslinked thermoset hardened composition which is not flowable at ambient temperature. If desired, the resin can contain conventional resin modifiers including stiffening modifiers such as rubber modifiers including butane based rubbers or fibers such as glass fibers or carbon fibers or the like.
Typically, the space between the inner and outer hulls of a double hull vessel is segmented so that subvolumes thereof are defined by plate members which are positioned generally orthogonally within the volume. Segmentation of this volume provides strength to the double hull structure and may serve to isolate leakage from the tank caused by rupture of varying portions of the inner hull. When segmented volumes are provided within the space between the two hulls, orifices are provided through the walls of each segment to permit fluid communication into the segment volume from outside the segment volume. These volumes are filled with the syntactic foam-macrosphere composition by introducing the macrosphere composition into the volume through the orifice to fill the volume to the desired degree. Thereafter, the flowable syntactic foam composition is pumped into the volume to fill the remainder of the volume with the syntactic foam. A second orifice is provided to permit air in the volume to flow through the volume thereby to permit displacement thereof with the syntactic foam. The syntactic foam then is cured in place to form a thermoset composition either by effecting curing at ambient temperature or at elevated temperature, depending upon the resin utilized. Suitable curing temperatures are well known to a person skilled in the art. Liquid flow into the segment volumes is prevented by the cured resin. If desired, the orifices can be further sealed such as with metal plates.
Referring to
The vessel shown in
The modified foam in
An alternative embodiment of this invention is shown in
The failure mode of the syntactic foam-macrosphere composition described above, when utilized in the present invention is illustrated in the
Neogi, Depankar, Swann, Ronald F., Tessler, Noel J., Teague, James M., Daves, Ted M., Yancey, William A.
Patent | Priority | Assignee | Title |
8079321, | Dec 15 2006 | ExxonMobil Upstream Research Company | Long tank FSRU/FLSV/LNGC |
8915203, | May 18 2011 | ExxonMobil Upstream Research Company | Transporting liquefied natural gas (LNG) |
Patent | Priority | Assignee | Title |
3622437, | |||
5253607, | May 16 1990 | One step molded all plastic boat and manufacture of the same | |
5277145, | Jul 10 1990 | Illinois Tool Works Inc | Transom for a boat |
5353727, | Apr 10 1992 | UNITED HEAVY B V | Collision guard for a vessel |
5862772, | Dec 26 1996 | Emerson & Cuming Composite Materials, Inc | Damage control materials for warship construction |
GB13114, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 01 2002 | Emerson & Cuming Composite Materials, Inc | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 24 2006 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 04 2010 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 08 2008 | 4 years fee payment window open |
Aug 08 2008 | 6 months grace period start (w surcharge) |
Feb 08 2009 | patent expiry (for year 4) |
Feb 08 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 08 2012 | 8 years fee payment window open |
Aug 08 2012 | 6 months grace period start (w surcharge) |
Feb 08 2013 | patent expiry (for year 8) |
Feb 08 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 08 2016 | 12 years fee payment window open |
Aug 08 2016 | 6 months grace period start (w surcharge) |
Feb 08 2017 | patent expiry (for year 12) |
Feb 08 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |