An electro-stimulation device includes a pair of electrodes for connection to at least one location in the body that affects or regulates the heartbeat. The electro-stimulation device both electrically arrests the heartbeat and stimulates the heartbeat. A pair of electrodes are provided for connection to at least one location in the body that affects or regulates the heartbeat. The pair of electrodes may be connected to an intravenous catheter for transvenous stimulation of the appropriate nerve. A first switch is connected between a power supply and the electrodes for selectively supplying current from the power supply to the electrodes to augment any natural stimuli to the heart and thereby stop the heart from beating. A second switch is connected between the power supply and the electrodes for selectively supplying current from the power supply to the electrodes to provide an artificial stimulus to initiate heartbeating. In another aspect, the invention is directed to a method for arresting the beat of a heart in a living body comprising the steps of connecting the pair of electrodes to at least one location in the body that affects or regulates the heartbeat and supplying an electrical current to the electrodes of sufficient amplitude and duration to arrest the heartbeat. The device may also serve to still the lungs by input to a respirator or by stimulation of the phrenic nerve during surgical procedures.

Patent
   RE38705
Priority
Apr 30 1996
Filed
Nov 15 2001
Issued
Feb 22 2005
Expiry
Apr 30 2016
Assg.orig
Entity
Large
249
16
all paid
2. A method for stimulating desired nerve fibers within a living body, comprising the steps of:
advancing a lead carrying electrodes through the vascular system to a point within an internal jugular vein adjacent the nerve fibers to be stimulated;
employing electrodes to direct electrical pulses applied to the electrodes to the desired nerve fibers; and
delivering electrical pulses to the employed electrodes.
1. A method for stimulating desired nerve fibers within a living body, comprising the steps of:
advancing a lead carrying an array of electrodes through the vascular system to a point within a vein adjacent the nerve fibers to be stimulated;
selectively employing electrodes within the array to direct electrical pulses applied to the electrodes to the desired nerve fibers; and
delivering electrical pulses to the selectively employed electrodes.
10. An apparatus for stimulating desired nerve fibers within a living body, comprising:
a transverse lead carrying an array of electrodes locatable in the vascular system at a point within a vein adjacent the nerve fibers to be stimulated;
switch means for selectively employing electrodes within the array to direct electrical pulses applied to the electrodes to the desired nerve fibers; and
pulse generator means for delivering electrical pulses to the selectively employed electrodes.
3. A method according to claim 1 or claim 2 wherein said advancing step comprises advancing said lead to position said electrodes adjacent vagus nerve fibers.
4. A method according to claim 1 or claim 2 wherein said advancing step comprises advancing said lead to position said electrodes adjacent hypoglossal nerve fibers.
5. A method according to claim 1 or claim 2 wherein said advancing step comprises advancing said lead to position said electrodes adjacent phrenic nerve fibers.
6. A method according to claim 1 wherein said advancing step comprises advancing said lead to position said electrodes within an azygous vein.
7. A method according to claim 1 wherein said advancing step comprises advancing said lead to position said electrodes within a hemizygous vein.
8. A method according to claim 1 wherein said advancing step comprises advancing said lead to said position said electrodes adjacent parasympathetic nerve fibers.
9. A method according to claim 1 wherein said advancing step comprises advancing said lead to position said electrodes adjacent sympathetic nerve fibers.
11. An apparatus according to claim 10 wherein said array is locatable in a patients internal jugular vein adjacent the patient's vagus nerve, and wherein said device further comprises cardiac pacing means for stimulating heartbeats following delivery of pulses to the electrode array.
12. An apparatus according to claim 10 or claim 11 further comprising phrenic nerve stimulation electrodes locatable adjacent the patients phrenic nerve and means for delivering electrical pulses to the phrenic nerve stimulation electrodes in conjunction with delivery of pulses to the electrode array.

Continuation in part of application Ser. No. 08/640,013 filed on Apr. 30, 1996 now abandoned.

1. Field of the Invention

This invention relates to methods and devices for controlling the operation of the human heart or other organs by means of electrical stimulation, and more particularly, to devices for electronically slowing or stopping the heart.

2. Description of the Related Art

In some surgical procedures, such as coronary bypass surgery, it is necessary to stop the heart from beating so that the surgeon can perform necessary techniques. The use of a cardioplegia solution to stop the heart from beating without rerouting the blood would permit the surgeon to accomplish the required task without interference from heart movement. However, this is not a viable approach, since the body needs a constant supply of oxygen. Thus, there exists a need to temporarily slow down or stop heart movement during minimally invasive CABG or other surgical procedures to permit the surgeon to accomplish the required task. In the context of treatment of the heart by means of implanted medical devices, such as pacemakers, defibrillators and drug dispensers, it is also sometimes beneficial to slow or temporarily stop the heart, either for diagnostic or therapeutic purposes.

It has been known in the past to stimulate the vagal nerves by invasively dissecting the major nerve bundle and placing a spiral or enveloping nerve-type cuff around the nerve bundle. The nerve fibers are then directly stimulated by electrical field to achieve reduction in epilepsy, heart rate slowing, and potential blood pressure changes. In a study entiteld “Selective Stimulation of Parasympathetic Nerve Fibers to the Human Sinoatrial Node”, Circulation, Vol. 85, No. 4, April 1992, it was reported that cardiac parasympathetic nerve fibers located in an epicardial fat pad at the margin of the right atrium, the superior vena cava, and the right pulmonary vein in humans could be electrically stimulated to affect the heart rate. Additional reference is found in PACE October 1992 Vol. 15, No. 10, pt. 11, pages 1543-1630 on the use of nerve cuff stimulation of the vagal nerves (left side) in humans for reducing of epilepsy and it's side-effects. Additional uses for electical nerve stimulation have been disclosed for the prevention of arrhythmias, alteration of hemodynamics, stimulation of the hypoglossal nerve for sleep apnea, stimulation of the stomach, and control of the sphincter for blader or colon evacuation.

Currently, only nerve cuff-type electrodes or impalement-type electrodes are used for nerve stimulation, other than in the spinal cord. These types of electrodes can potentially cause irreversible nerve damage due to swelling or direct mechanical damage of the nerve. The placement of these electrodes either around the nerve bundle or into the neural perineum also poses a significant risk. The electrode placement is usually perfomred through very invasive surgery which in and of itself produces a high risk to nerve damage, and would be self-defeating when performing minimally invasive surgery. However, it has been demonstrated that the paraympathetic nerve fibers associated with the heart can also be stimulated by means of electrodes located on transvenous leads, as in U.S. Pat. No. 5,243,980, issued to Mehra et al, U.S. Pat. No. 5,507,784, issued to Hill et al and U.S. Pat. No. 5,356,4215, issued to Bardy et al. The use of transvenous electrode leads to stimulate parasympathetic nerves associated with the heart is also discussed in the article “Neural effects on Sinus Rate and Atrial Ventricular Conduction Produced by Electrical Stimulation From a Transvenous Electrode Catheter in the Canine Right Pulmonary Artery, by Cooper et al., published in Circulation research, Vol. 46, No. 1, January 1980, pp. 48-57.

In conjunction with spinal cord stimulation, electrodes or electrode arrays located on pliant electrode pads are often employed. Recently, the ability to select from among various pairs of electrodes located on such electrode pads has been proposed to allow steering of the electrical field produced by the electrodes, as in U.S. Pat. No. 5,501,703, issued to Holscheimer, incorporated herein by reference in its entirety. Such electrode arrays offer additional possibilities to stimulate nerve fibers without direct and possibly damaging contact.

It is with these problems in mind that a new apparatus and mehtod have been developed for electrically stimulating or destimulating certain nerves associated with the functioning of the heart or other organs which can be combined with certain surgical procedures or incorporated into implantable medical devices. According to one aspect of the invention, the invention is embodied in an electro-stimulation device includes at least two electrodes for connection to at least one location in the body that affects or regulates the heartbeat. At least one switch is connected between a power supply and the electrodes for selectively supplying current from the power supply to the electrodes to augment the natural stimuli to the heart in order to control the beating of the heart, and preferably to stop the heart from beating. Preferably, the switch is a foot switch operable by a surgeon to free a surgeon's hands during surgery.

According to another aspect of the invention, the at least two electrodes are connected to an intravenous catheter for transvenous stimulation/destimulation of the heartbeat.

According to another feature of the invention, an electro-stimulation device for both electrically destimulating and stimulating the heart includes a pair of electrodes for connection to at least one location in the body that affects or regulates the heartbeat. A first switch is connected between a power supply and the electrodes for selectively supplying current from the power supply to the electrodes to augment the natural stimuli to the heart and thereby stop the heart from beating. A second switch is connected between the power supply and the electrodes for selectively supplying current from the power supply to the electrodes to provide an artificial stimulus to initiate the heartbeat.

In a further aspect of the invention, a method for arresting the beat of a heart in a living body includes the process of connecting a pair of electrodes to at least one location in the body that affects or regulates the heartbeat and supplying an electrical current to the electrodes of sufficient amplitude and duration to arrest the heartbeat. According to one aspect of the inveiton, the step of supplying an electrical current to the electrodes includes supplying an alternating current.

In yet further aspects of the invention, the invention is embodied in an external or implantable device which employs electrodes located on transvenous leads located in veins adjacent nerve fibers to be stimulated, in these aspects of the invention, the leads preferably carry an array of electrodes from which pairs of electrodes can be chosen in order to direct the electrical field appropriately with respect to the desired nerve fibers.

It is to be noted that with regard to the effect of the delivered nerve or other stimulus pulses relative to the action of the heart the phrase “stimulate the heart” and its derivatives as used herein refer to the initiation of the heartbeat through the application of electricity, while the phrase “destimulate the heart” and its derivatives refer to stopping or arresting the heartbeat through the application of electricity.

The iunvention will now be described with reference to the drawings in which:

FIG. 1 is a perspective view of an electro-stimulation device according to the present invention;

FIG. 2 is a perspective view of an electro-stimulation device according to a second embodiment of the present invention;

FIG. 3 is a schematic diagram of a circuit for use with the electro-stimulation device of FIGS. 1 and 2;

FIG. 4 is a diagrammatical view of a pair of electrodes of the electro-stimulation device attached to a pair of points on the heart;

FIG. 5 is a diagrammatical view of a pair of electrodes of the electro-stimulation device attached to a single point on the heart;

FIG. 6 shows operation of a foot pedal by a surgeon during heart electro-stimulation.

FIG. 7 is a cross sectional view of a catheter and a set of electrodes positioned circumferentially around the catheter according to the invention;

FIG. 8 is a cross sectional view of a catheter and a set of electrodes positioned circumfernetially around the catheter according to a second embodiment of the invention;

FIG. 9 is a side elevational view of a catheter with electrodes positioned axially along the catheter according to a third embodiment of the invention;

FIG. 10 is a side elevational view of a catheter with electrodes positioned axially along the catheter according to a fourth embodiment of the invention;

FIG. 11 is a top plan view of a cathether with electrodes positioned axially along the catheter according to a fifth embodiment of the invention;

FIG. 12 is a top plan view of a catheter with electrodes positioned axially and circumferentially along the catheter accordingto a sixth embodiment of the invention;

FIG. 13 is a cross sectional view similar to FIG. 8 showing the current density distributed between two of the electrodes;

FIG. 14 is a cross sectional view similar to FIG. 7 showing the current density distribution between two of the electrodes;

FIG. 15 is a top view of a catheter with electrodes positioned axially and circumferentially along the catheter and showing the current density distribution between two of the electrodes.

FIG. 16 illustrates an embodiment of the invention as employed with an implantable cardiac pacemaker which also stimulates the vagal nerve to treat arrhythmias and/or angina.

FIG. 17 illustrates the present invention in an embodiment including an upper airway stimulator in which stimulation of the hypoglossal nerve is employed to treat obstructive sleep apena.

FIG. 18 illustrates an embodiment of the invention employed to stimulate the phrenic nerve in order to provide a diaphragamatic pacemaker.

FIG. 19 illustrates an embodiment of the invention ss employed in conjunction with an implantable cardioverter defibrillator in which vagal nerve stimulation is employed to treat detected arrhythmias or to prevent arrhythmias.

Referring now to FIG. 1, a first embodiment of an electro-stimulation device 10 includes a housing 12 and a control panel 14 located on an upper surface of the housing 12. The control panel 14 is divided into a heart stimulation control area 15 and a heart destimulation control area 17. The stimulation control area 15 includes a rotary dial 16 and scale 16A for setting the amount of current that is passed to the heart, and as rotary dial 18 and scale 18A for setting the duration or frequency of cycles that the current is passed to the heart to start the hert beating. Likwise, the destimulation control area 17 includes a rotary dial 20 and scale 20A for setting the amount of current that is passed to the heart, and a rotary dial 22 and scale 22A for setting the duration that the current is passed to the heart to stop the heart from beating. Controls for regulating pulse width, pulse voltage, pulse phases and/or band duration may also be added. A normally open stimulation switch 24 can be pressed to initiate heart stimulation while a normally open destimulation switch 26 can be pressed to initiate the heart destimulation. An on/off switch 28 can be used to turn the entire device off when not in use.

A foot petal assembly 30 has a normally open heart stimulation foot switch 32 and a heart destimulation foot switch 34 that can be used as an alternative to switches 24, 26. The provision of a foot petal assembly permits the surgeon to control when the heart stimulation and destimulation occurs while leaving the hands free to perform other procedures. This also permits the surgeon's hands to remain sterile since contact with the housing 12 or switches 26, 28 is avoided. The foot pedal assembly 30 is connected via cable 36 to an electronic control device 50 (FIG. 3) within the housing 12. An alternative to providing two different foot switches 32, 34 would be to provide a single foot switch which intermittently switches between stimulation and destimulation each time the switch is actuated. It is also contemplated that automatic stimulation could be provided after a preset time period or only if the device detects that the heart did not automatically restart.

A pair of electrodes 37, 38 are connected via a pair of leads 39A, 39B, respectively, to the electronic control device 50 for supplying electrical current to the heart during stimulation and destimulation. A second pair of electrodes 43A, 45A can also be connected via a pair of leads 43, 45, respectively, to the electronic control devices 50 for supplying electrical current to the phrenic nerve to control breathing during heart stimulation and destimulation. A lead 48 having a connector 49 may be provided in addition to or alternatively of the phrenic nerve electrodes 43A, 43B. The connector 49 interfaces with a respirator (not shown) and, upon stimulation or destimulation of the heart, sends a logic signal to activate or deactivate the respirator.

Referring now to FIG. 2, a second embodiment of an electro-stimulation device 40 according to a second embodiment is shown, wherein like parts from the previous embodiment are represented by like numerals. The electro-stimulation device 40 is miroprocessor based and includes a housing 41 having a display 42, a plurality of numeric keys 44, a heart stimulation switch 46, and a heart destimulation switch 48. One of the keys 44 may be an on/off switch for supplying electrical power to the device 40. The device 40 prompts a user to enter the patient's age, height, weight, body temperature, etc., via the keys 44 to calculate the proper amount of electrical current and its duration necessary for proper heart stimulation and destimulation. In most instances, the amount of current and duration to stop the heart will typically be different than the amount of current and duration to start the heart, and will vary from one person to another depending on factors such as height, weight, body temperature, etc. In the embodiments of FIGS. 1 and 2, the current may be of the alternating, direct, or waveform type.

Referring now to FIG. 3, the electronic control device 50 for use with the electro-stimulator of FIGS. 1 and 2 includes a regulated power source 52, such as a battery and regulator, a stimulation timer circuit 54, a destimulation timer circuit 55, a stimulation power amplifier 56, and a destimulation power amplifier 57. The timer circuits and power amplifiers can be chosen from any of several well-known timers and amplifiers that can incorporate the dials 16, 18, 20, and 22. These dials may be of the variable resistive, capacitive, or pulse type to vary the timer frequency and power dissipation. Alternatively, input from the keys 44 stored in a microprocessor 60 (shown in dashed line) in the FIG. 2 embodiment can be used to vary the amplification and duration of the applied electrical current. The stimulation switch 24 and stimulation foot switch 32 on pedal assembly 30 are connected in parallel such that actuation of one or the other switch begins heart stimulation. Likewise, the destimulation switch 26 and stimulation foot switch 34 on pedal assembly 30 are connected in parallel such that the actuation of one or the other switch begins heart distimulation. Preferably, the switches are of the single-shot type that permit current to flow through the circuit for the amount of time set by the timers 54, 56, even when the switches are released. Alternatively, the switches may be of the type requiring manual positioning between the open and closed positions. In this alternative embodiment, the timers 54, 56 may provide an audible signal to indicate when the appropriate duration of electrical current application has been reached. The timers 54, 56 may also be eliminated. In this instance, the appropriate switch is manually closed until the surgeon visually observes that the heart has been properly stimulated or destimulated.

With reference now to FIG. 4, the electrode 37 is connected to the sinoatrial region 72 of heart 70 while the electrode 38 is connected to the atrioventricular region 74 in a unipolar arrangement, while the electrodes 43A, 43B are connected to the phrenic nerve (not shown) or to other regions of the body or heart. The separate connection regions on the heart serve to alternatively stimulate and destimulate the heart. The electrode terminations may be of the type used in pacemakers, such as corkscrews, clips, pads, tines or barbs, needles, etc. The electrodes 37, 38 may both be connected to the ventricular wall as shown in FIG. 5 in a bipolar arrangement or at any position that a pacemaker is commonly connected to. The electrodes 43A, 43B may be connected in a bipolar arrangement to the vagus nerve or one of its cardiac branches. In the bipolar arrangement, the electrodes 37, 38 are placed near each other at a particular region for stimulating the heart while the electrodes 43A, 45A are placed near each other at a second region for destimulating the heart. The tissue between each pair of serves to close the circuit such that electrical current from the power source and amplifier passes through the tissue to cause stimulation or destimulation of the heart.

When the electrodes are connected to other locations besides the heart, a series of current pulses is passed long enough through the tissue to augment any recurring natural heartbeat stimuli to stop the heart from beating. In has been found that a continuous pulse train for 10-30 seconds using a constant current of 10-100 mA in conjunction with a constant pulse width of 0.01-0.5 msec. and a frequency between 6 Hz and 50 Hz applied to the epicardial parasympathetic nerves is sufficient to augment the recurring natural heartbeat stimuli to stop the heart. When the electrodes are connected directly to the heart, it is preferred that a burst pulse width of current be applied instead of a continuous pulse train. Once activity from the heart is sensed, a burst pulse width having the same current amplitude and frequency as in the constant pulse width is applied during the repolarization phase. Typically, the burst pulse time will be less than the continuous pulse train to stop the heart. Preferably, the burst pulse is programmable for different burst times, current amplitudes, and frequency. Upon cessation of heart destimulation, the natural heart beat stimuli will typically occur again automatically a short time thereafter. The separate heart stimulation leads, therefore, provide an added safety feature in the event that the heart does not automatically restart. In order to stimulate the heart, if required, a series of current pulses are passed through the tissue to initiate the natural heartbeat stimuli. These current pulses are similar to those used in pacemakers.

In use, the electrodes 37, 38 are secured at an appropriate position on the patient 80 (FIG. 6). During open surgery or minimally invasive surgery, as the surgeon 82 performs various steps such as cutting, stitching, etc., one of the foot switches 32, 34 is pressed to initiate or stop the heartbeat as required. For example, the surgeon may wish to stop the heartbeat while making one or a plurality of stitches where movement of the heart would normally be a hindrance. The heart may then be stimulated either naturally or artificially through the present device to beat for a predetermined time to permit blood flow throughout the body and then be destimulated or stopped again to continue stitching. If desired, the electrodes 43A, 45A may be connected to the phrenic nerve and/or the connector 49 may be attached to a respirator to still the lungs during the surgical procedure. When the electrodes are attached to the phrenic nerve, a continuous pulse train having the range of values as discussed previously is sufficient for controlling lung movement.

Referring now to FIG. 7, and according to a further embodiment, a set of four electrodes 102, 104, 106, and 108 are equally circumferentially spaced around a catheter 100. Each electrode 102-108 is embedded in and extends from an inner wall 110 to an outer wall 112 of the catheter 100. A separate insulated lead 102a, 104a, 106a, and 108a are each soldered or otherwise electrically connected to their respective electrode. The insulated leads extend through the catheter 100 and into the electronic control device 50. Any pair of electrodes can be accessed through extra switches in the control device 50 for supplying electrical current to the heart during stimulation and destimulation.

Referring now to FIG. 8, and according to a further embodiment, a set of three electrodes 122, 124 and 126 are equally circumferentially spaced around a catheter 120. Each electrode 122-126 is embedded in and extends from an inner wall 130 to an outer wall 132 of the catheter 120. A separate insulated lead 122a, 124a and 126a are each soldered or otherwise electrically connected to their respective electrode. As in the previous embodiment, the insulated leads extend through the catheter 100 and into the electronic control device 50. Any pair of electrodes can be accessed through extra switches in the control device 50 for supplying electrical current to the heart during stimulation and destimulation.

Although the catheters 100, 120 have been described with three or four electrodes, any number of electrodes may be provided, depending on the particular nerve stimulation application. For example, as shown in FIG. 9, two electrodes 142, 144 may be spaced axially on a catheter 140. The longitudinal centerline of each electrode 142, 144 extends perpendicularly to the axis of the catheter 140.

In FIG. 10, two electrodes 152, 154 are spaced axially and circumferentially from each other on the catheter 150. Their longitudinal centerlines extend parallel to the axis of the catheter. Two additional electrodes 156, 158 (shown in dashed line) may be provided on an opposite side of the catheter 150, as shown in FIG. 11.

In yet another embodiment, as shown in FIG. 12, a first electrode 162 is spaced axially and circumferentially from a pair of circumferentially electrodes 164, 166 on a catheter 160. Each of the electrodes 162-166 extends approximately 120° around the circumference of the catheter 160.

The catheters 100-160 as shown in FIGS. 7-12 are preferably of a small size to fit easily into the internal jugular vein, superior vena cava or other appropriate vessel adjacent to the desired nerve bundle. The internal jugular vein is next to the vagal nerve bundle, and thus presents an ideal path for the catheter when attempting to stimulate the vagal nerve. The human internal jugular vein is about 2 to 6 mm in diameter and tapers over an estimated length of about 15 cm. Hence, the use of a 7 F or smaller size catheter is contemplated. The electrodes are placed on the catheter in such a way that the amplitude required to stimulate the nerve fibers would have the correct field distribution. For an internal jugular vein of about 5 mm in diameter and a vagal nerve bundle of about 3 mm in diameter, and for an applied current of 10 mA with a frequency of 2-20 Hz, the spacing between the electrodes would need to be about 1-2 cm to achieve nerve stimulation. This spacing may vary depending on the size of the internal jugular vein and vagal nerve bundle, as well as the amount of applied current.

Referring now to FIG. 13, electrodes 104, 106 of the catheter 100 are in contact with a nerve (not shown) and have been selected to apply a current thereto. The circumferential current density through the nerve tissue, as represented by lines 170, diminishes as the distance increases from the pair of activated electrodes. FIG. 14 shows a similar occurrence for the three-electrode embodiment of FIG. 8. Since the electrodes in this embodiment are spaced a greater distance than the electrodes from in the FIG. 7 embodiment, the current distribution is not as concentrated, and therefore produces a different neural stimulation.

An axial current distribution may be required in addition to or in place of the circumferential distribution, as shown in FIG. 15, depending on the particular nerve stimulation desired. The axial current distribution is obtained by accessing a pair of axially spaced electordes (FIG. 9) or a pair of axially and circumferentially spaced electrodes (FIGS. 10-12).

The preferred use of the electro-stimulation device would be a transvenous implementation through standard transvenous implantation techniques such as those used to implant pace/sense leads into the heart. For the method of transvenous vagal stimulation in laproscopic/endoscopic/minithorascopic surgical coronary artery bypass graft (CABG) procedures, the use of vagal nerve stimulation provides a reversible, quick acting (like an on/off switch) method for slowing the heart rate.

Although the foregoing description relates to the stimulation/destimulation of the heart during surgical procedures, it is not intended that the invention be limited thereto. The electro-stimulation device could be provided with two or more electrode-welding catheters for use in multiple transvenous regions for the stimulation of different nerves. For example, a pair of catheters could be inserted into the internal jugular vein for stimulation of the right and left vagal nerve bundles. The right bundle could be used to elicit more specific heart effects and reduce heart rate and increase AV delay for antiarrhythmic and hemodynamic benefits; whereas the left bundle could be used to effect afferent vagal information and potentially reduce epileptic activity. An electrode-wielding catheter could be inserted into the very high internal jugular vein to stimulate the hypoglossal nerve and/or into the very low internal jugular vein or superior vena cava to stimulate the phrenic nerve for respiratory control. The stimulation of the phrenic nerve in conjunction with heart stimulation would insure that the blood is properly oxygenated during surgical procedures on the heart with intermittent heart destimulation. Likwise, catheters of the present invention could be inserted into the azygos or accessory hemizygous veins to stimulate the sympathetic nerves for increasing heart rate to altering DFT efficacy for antiarrhythmic and hemodynamic benefits. Other transvenous routes to nerve stimulation for functional purposes may also be applicable.

The electro-stimulation device may also have sepcificity for direction of neural stimulation in regards to the location of the vessel and the nerve bundle that is to be stimulated. For example, the phrenic nerve could be elicited on and off by a mere rotation of the transvenous catheter, depending on the location of the electrodes on the catheter and the resulting electric current density generated. In order to observe and control the amount of catheter rotation, a series of degree markings may be located on an outer circumference of the catheter at a position readily observable by the surgeon. Alternatively, the catheter may be associated with a rotary encoder to obtain a digit read-out of the amount of catheter rotation.

The electrodes of the intravenous catheters according to the present invention could also be used to manipulate the heart rate or hemodynamics in response to device sensors. In addition, in response to precursors of an arrhythmic event, the devices may stimulate either the sympathetic or the parasympathetic individually or in combination to attempt to delay or prevent the event. Alternatively, current may be applied to different pairs of electrodes as discussed above.

Although the use of catheters having electrodes permanently mounted thereto for temporarily manipulating or stimulating nerves accessibly through blood carrying vessels, it is to be understood that a more permanent nerve stimulation arrangement is possibly by fixing electrodes onto the inside of the vessel adjacent to the nerve to be stimulated. Thus, this new device in its preferred embodiment, eliminates the potential for direct nerve damage and reduces the invasiveness of the placement of the electrodes for direct neural stimulation in conjunction with implantable medical devices. Examples of how the present invention may be employed in the context of implantable medical devices are illustrated in FIGS. 16-19.

FIG. 16 illustrates an embodiment of the present invention employing a permanently implantable cardiac pacemaker 300 coupled to an electrode lead 304 used to stimulate the vagal nerve in accordance with the present invention. The pacemaker is also provided with a second electrical lead 308, which, like electrical lead 304 is coupled to the circuitry within the housing of pacemaker 300 by means of a connector blocks 302. Pacemaker 300 includes therein both a dual chamber cardiac pacemaker and an implantable nerve stimulator, and may correspond to that illustrated in U.S. Pat. No. 5,334,221 issued to Bardy; U.S. Pat. No. 5,330,507 issued to Schwartz or U.S. Pat. No. 5,199,428 issued to Obel et al, all of which are incorporated herein by reference in the entireties.

Electrode lead 304 has an array of electrodes as illustrated in FIGS. 7-15, discussed above, located at or adjacent its distal end 306 which is positioned within the internal jugular vein 316, with electrodes chosen to direct the stimulation pulses provided by the electrodes to the vagal nerve in order to slow heart rate. The second electrodes 308 carries a pair of electrodes 310 for sensing depolarizations of the atrium of the patient's heart and a pair of electrodes 312 for sensing and pacing the ventricle of the patient's heart. As described in the above cited patents, the electrodes on lead 304 may be employed to slow the patients heart rhythm in order to prevent or treat detected arrhythmias, ischemia, angina or other problems. The electrodes 310 and 312 may be employed to sense the rate of the heart and to ensure that the heart is beating at an adequate rate, preventing over-stimulation of the vagal nerve from causing the heart to drop below a base heart rate determined either as a fixed parameter or as a function of an indwelling activity sensor within pacemaker 300. Electrode lead 304 may be formed with a bend 318, performed into the body of the lead a distance from the electrode array the distal end of the lead 306 to position it appropriately for vagal nerve stimulation. The lead may be inserted and positioned generally according to the procedure disclosed in U.S. Pat. No. 5,354,318 issued to Taepke, describing a similarly located and configured lead, also incorporated herein by reference in its entirety.

FIG. 17 illustrates an embodiment of the invention in which an implanted stimulator 400 is used in conjunction with an electrode lead according to the present invention to stimulate the hypoglossal nerve to treat obstructive sleep apnea. The pulse generator may correspond to that disclosed in U.S. Pat. No. 5,549,655 issued to Erickson and incorporated herein by reference in its entirety. The stimulator 400 is provided with a first electrode lead 404 which carries adjacent its distal end 406 an array of electrodes as described in FIGS. 7-15, discussed above. The lead is located relatively higher up within the internal jugular artery than the electrode array in FIG. 16 and is directed to stimulate the hypoglossal nerve by selection of appropriate electrodes as described above. Like the lead 304 described in FIG. 16, lead 404 may optionally be provided with a preformed bend 414, an appropriate distance from the location of the electrode array the distal end 406 of the catheter to position it in appropriate position and orientation to stimulate the hypoglossal nerve. The lead, like lead 304 in FIG. 16, may be inserted according to the procedure described in U.S. Pat. No. 5,354,318 issued to Taepke. The pulse generator 400 is additionally provided with a second lead 408 which carries a pressure sensor 410 which is used to synchronize delivery of hypoglossal nerve stimulus pulses to the detected inspiratory phase of the respiration cycle as described in the above cited Erickson patent.

FIG. 18 illustrates an additional embodiment of the present invention including a pulse generator 500 employed to stimulate the phrenic nerve in order to provide a diaphragmatic pacer. Pacer 500 may correspond generally to that disclosed in U.S. Pat. No. 5,056,519, issued to Vince et al. which employs a signal indicative of the normal respirative function of the right diaphragm to regulate stimulation of the left phrenic nerve to correspondingly stimulate the left diaphragm. A pulse generator 500 is provided with a second lead 508 which carries at its distal tip a temperature sensor 510 which is employed to sense the temperature changes within body tissues resulting from inspiration of outside air through the upper airways. Temperature sensor 510 may be located within the airway to the right diaphragm as described in the Vince patent and employs to regulate stimulus pulses provided to the electrodes on lead 504 so that the left diaphragm functions in synchrony with the inspiratory cycle of the right diaphragm. Lead 504 may be provided with a preformed bend 514 located an appropriate distance from the electrode array located at the distal end of 506 of the lead to position the electrode array adjacent the phrenic nerve. The lead may be introduced using the procedure described in the above cited Gunderson patent.

FIG. 19 illustrates an embodiment of the invention employed in conjunction with an implantable cardioverter/defibrillator 600 which employs vagal nerve stimulation as an adjunct to its array of antiachyarrhythmia therapies including antitachyacardia pacing, cardioversion and defibrillation. Pulse generator 600 may correspond, for example, to the pulse generator illustrated in U.S. Pat. No. 5,014,698 issued to Collins or U.S. Pat. No. 5,243,980 issued to Mehra, both incorporated herein by reference in their entireties.

Pulse generator 600 is provided with an electrical lead 604 which carries adjacent its distal end 606 an array of electrodes as described in conjunction with FIGS. 7-14 above. Electrode lead 604 may correspond to electrode lead 304 illustrated in FIG. 15, with its distal end 606 located within the internal jugular vein in a position appropriate to stimulate the vagal nerve. The pulse generator 600 is also provided with a second electrode lead 608 which carries first and second defibrillation electrodes 610 and 612 and pacing/sensing electrodes 614 and 616 which are employed to sense and pace the ventricle of the patient's heart. The vagal nerve stimulator may be employed in conjunction with delivery of therapies of treatment of arrhythmias or prevention of arrhythmias as described in the above cited Collins et al patent or may be employed as part of a diagnostic regimen as described in the above cited Mehra patent.

The embodiments of the invention illustrated in FIGS. 16-19 above are intended to be exemplary of general types of devices in which the present invention may be employed by transvenously locating an electrode or array of electrodes in a blood vessel adjacent a desired nerve to be stimulated, as discussed above. It should be understood that permanently implanted leads configured and located according to the present invention may be used with a wide variety of implantable electrical devices not specifically illustrated in conjunction with FIGS. 16-19, including implantable drug dispersers, implantable muscle or nerve stimulators, and implantable monitoring systems in which regulation of one or more nervous functions is desired. It should also be understood that in conjunction with such devices, as discussed above, electrodes may be located bi-laterally, and employed to simulate the same or different nerves, also as discussed above.

Reasonable variation and modification are possible within the spirit of the foregoing specification and drawings without departing from the scope of the invention.

Jonkman, Kenneth R., Hill, Michael R. S.

Patent Priority Assignee Title
10052484, Oct 03 2011 CYBERONICS, INC. Devices and methods for sleep apnea treatment
10105538, Dec 31 2008 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
10166395, May 23 2000 The Feinstein Institutes for Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
10195429, Aug 02 2017 LUNGPACER MEDICAL INC Systems and methods for intravascular catheter positioning and/or nerve stimulation
10207112, Apr 29 2010 Medtronic, Inc. Cardiac therapy including vagal stimulation
10220203, Jun 09 2009 SetPoint Medical Corporation Nerve cuff with pocket for leadless stimulator
10231645, Jan 28 2011 LivaNova USA, Inc Screening devices and methods for obstructive sleep apnea therapy
10293164, May 26 2017 LUNGPACER MEDICAL INC Apparatus and methods for assisted breathing by transvascular nerve stimulation
10300270, Jan 22 2007 ZOLL RESPICARDIA, INC Device and method for the treatment of breathing disorders and cardiac disorders
10314501, Jan 20 2016 SetPoint Medical Corporation Implantable microstimulators and inductive charging systems
10335280, Jan 19 2000 Medtronic, Inc. Method for ablating target tissue of a patient
10358629, Mar 08 2006 KWALATA TRADING LIMITED Regulating stem cells
10384068, Dec 23 2009 SetPoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
10391314, Jan 21 2014 LUNGPACER MEDICAL, INC Systems and related methods for optimization of multi-electrode nerve pacing
10406366, Nov 17 2006 ZOLL RESPICARDIA, INC Transvenous phrenic nerve stimulation system
10406367, Jun 21 2012 Lungpacer Medical Inc. Transvascular diaphragm pacing system and methods of use
10449358, Mar 26 2012 SetPoint Medical Corporation Devices and methods for modulation of bone erosion
10512772, Mar 05 2012 LUNGPACER MEDICAL, INC Transvascular nerve stimulation apparatus and methods
10518090, Nov 17 2006 ZOLL RESPICARDIA, INC System and method to modulate phrenic nerve to prevent sleep apnea
10532215, Jan 25 2016 SetPoint Medical Corporation Implantable neurostimulator having power control and thermal regulation and methods of use
10549101, Apr 25 2005 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
10561843, Jan 29 2007 LUNGPACER MEDICAL INC Transvascular nerve stimulation apparatus and methods
10561844, Jun 21 2012 Lungpacer Medical Inc. Diaphragm pacing systems and methods of use
10561846, May 23 2000 The Feinstein Institutes for Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
10583304, Jan 25 2016 SetPoint Medical Corporation Implantable neurostimulator having power control and thermal regulation and methods of use
10589097, Jun 21 2012 Lungpacer Medical Inc. Transvascular diaphragm pacing systems and methods of use
10589130, May 25 2006 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
10596367, Jan 13 2016 SetPoint Medical Corporation Systems and methods for establishing a nerve block
10632306, Dec 31 2008 LivaNova USA, Inc. Obstructive sleep apnea treatment devices, systems and methods
10632308, Oct 13 2006 LivaNova USA, Inc. Obstructive sleep apnea treatment devices, systems and methods
10695569, Jan 20 2016 SetPoint Medical Corporation Control of vagal stimulation
10716936, Jun 09 2009 SetPoint Medical Corporation Nerve cuff with pocket for leadless stimulator
10737094, Dec 31 2008 LivaNova USA, Inc. Obstructive sleep apnea treatment devices, systems and methods
10765867, Jan 29 2007 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
10792499, Jan 29 2007 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
10864374, Jan 29 2007 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
10864375, Oct 03 2011 LivaNova USA, Inc. Devices and methods for sleep apnea treatment
10912712, Mar 25 2004 The Feinstein Institutes for Medical Research Treatment of bleeding by non-invasive stimulation
10926087, Aug 02 2017 Lungpacer Medical Inc. Systems and methods for intravascular catheter positioning and/or nerve stimulation
10940308, Aug 04 2017 LUNGPACER MEDICAL INC Systems and methods for trans-esophageal sympathetic ganglion recruitment
10987511, Nov 08 2018 Lungpacer Medical Inc. Stimulation systems and related user interfaces
11000208, Jan 28 2011 LivaNova USA, Inc. Screening devices and methods for obstructive sleep apnea therapy
11027130, Jan 29 2007 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
11051744, Apr 10 2013 SetPoint Medical Corporation Closed-loop vagus nerve stimulation
11065443, Sep 10 2009 ZOLL RESPICARDIA, INC Respiratory rectification
11083899, Oct 01 2008 INSPIRE MEDICAL SYSTEMS, INC Transvenous method of treating sleep apnea
11090489, Aug 02 2017 Lungpacer Medical, Inc. Systems and methods for intravascular catheter positioning and/or nerve stimulation
11110287, Dec 23 2009 SetPoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
11129988, Apr 29 2010 Medtronic, Inc. Nerve signal differentiation in cardiac therapy
11173307, Aug 14 2017 SetPoint Medical Corporation Vagus nerve stimulation pre-screening test
11207518, Dec 27 2004 The Feinstein Institutes for Medical Research Treating inflammatory disorders by stimulation of the cholinergic anti-inflammatory pathway
11260229, Sep 25 2018 The Feinstein Institutes for Medical Research Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation
11278718, Jan 13 2016 SetPoint Medical Corporation Systems and methods for establishing a nerve block
11305114, Jun 27 2007 ZOLL RESPICARDIA, INC Detecting and treating disordered breathing
11305119, Nov 18 2005 ZOLL RESPICARDIA, INC System and method to modulate phrenic nerve to prevent sleep apnea
11311725, Oct 24 2014 SetPoint Medical Corporation Systems and methods for stimulating and/or monitoring loci in the brain to treat inflammation and to enhance vagus nerve stimulation
11311730, Jan 21 2014 Lungpacer Medical Inc. Systems and related methods for optimization of multi-electrode nerve pacing
11344724, Dec 27 2004 The Feinstein Institutes for Medical Research Treating inflammatory disorders by electrical vagus nerve stimulation
11357979, May 16 2019 LUNGPACER MEDICAL INC Systems and methods for sensing and stimulation
11357985, Jun 21 2012 Lungpacer Medical Inc. Transvascular diaphragm pacing systems and methods of use
11369787, Mar 05 2012 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
11383083, Feb 11 2014 LivaNova USA, Inc. Systems and methods of detecting and treating obstructive sleep apnea
11383091, Jan 25 2016 SetPoint Medical Corporation Implantable neurostimulator having power control and thermal regulation and methods of use
11389648, Feb 07 2008 ZOLL RESPICARDIA, INC Transvascular medical lead
11400287, Dec 31 2008 LivaNova USA, Inc. Obstructive sleep apnea treatment devices, systems and methods
11406833, Feb 03 2015 SetPoint Medical Corporation Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator
11471681, Jan 20 2016 SetPoint Medical Corporation Batteryless implantable microstimulators
11471685, Oct 13 2006 LivaNova USA, Inc Obstructive sleep apnea treatment devices, systems and methods
11517746, Oct 13 2006 LivaNova USA, Inc. Obstructive sleep apnea treatment devices, systems and methods
11529514, Jan 28 2011 LivaNova USA, Inc. Obstructive sleep apnea treatment devices, systems and methods
11547852, Jan 20 2016 SetPoint Medical Corporation Control of vagal stimulation
11707619, Nov 22 2013 Lungpacer Medical Inc. Apparatus and methods for assisted breathing by transvascular nerve stimulation
11717673, Nov 08 2018 Lungpacer Medical Inc. Stimulation systems and related user interfaces
11771900, Jun 12 2019 LUNGPACER MEDICAL INC Circuitry for medical stimulation systems
11806537, Oct 01 2008 INSPIRE MEDICAL SYSTEMS, INC. Transvenous method of treating sleep apnea
11857788, Sep 25 2018 The Feinstein Institutes for Medical Research Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation
11865333, Feb 07 2008 ZOLL RESPICARDIA, INC. Transvascular medical lead
11883658, Jun 30 2017 Lungpacer Medical Inc. Devices and methods for prevention, moderation, and/or treatment of cognitive injury
11883659, Sep 10 2009 ZOLL RESPICARDIA, INC. Systems for treating disordered breathing by comparing stimulated and unstimulated breathing
11890462, Nov 08 2018 LUNGPACER MEDICAL INC Stimulation systems and related user interfaces
11890471, Aug 14 2017 SetPoint Medical Corporation Vagus nerve stimulation pre-screening test
6976487, Aug 17 1995 University of Florida Research Foundation, Inc. Ventilatory method utilizing body length-based parameter calculations
7142910, Aug 26 1997 Emory University Methods of indirectly stimulating the vagus nerve with an electrical field
7184828, Sep 26 2000 Medtronic, Inc. Method and system for spinal cord stimulation prior to and during a medical procedure
7184829, Apr 30 1996 Medtronic, Inc. Method and system for nerve stimulation prior to and during a medical procedure
7225019, Apr 30 1996 Medtronic, Inc Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure
7269457, Apr 30 1996 Medtronic, Inc Method and system for vagal nerve stimulation with multi-site cardiac pacing
7310552, Aug 26 1997 Apparatus for indirectly stimulating the vagus nerve with an electrical field
7321793, Jun 13 2003 Medtronic, Inc Vagal stimulation for atrial fibrillation therapy
7340299, Aug 26 1997 Methods of indirectly stimulating the vagus nerve to achieve controlled asystole
7346398, Aug 31 2001 Medtronic, Inc Electrode assembly for nerve control
7460906, Dec 24 2003 Cardiac Pacemakers, Inc Baroreflex stimulation to treat acute myocardial infarction
7486991, Dec 24 2003 Cardiac Pacemakers, Inc Baroreflex modulation to gradually decrease blood pressure
7499748, Apr 11 2005 Cardiac Pacemakers, Inc. Transvascular neural stimulation device
7555341, Apr 05 2005 Cardiac Pacemakers, Inc System to treat AV-conducted ventricular tachyarrhythmia
7561922, Dec 22 2004 Medtronic, Inc Construction of electrode assembly for nerve control
7615015, Jan 19 2000 Medtronic, Inc. Focused ultrasound ablation devices having selectively actuatable emitting elements and methods of using the same
7616990, Oct 24 2005 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
7617003, May 16 2005 Cardiac Pacemakers, Inc System for selective activation of a nerve trunk using a transvascular reshaping lead
7627384, Nov 15 2004 Medtronic, Inc Techniques for nerve stimulation
7634317, Aug 31 2001 Medtronic, Inc Techniques for applying, calibrating, and controlling nerve fiber stimulation
7643875, Dec 24 2003 Cardiac Pacemakers, Inc Baroreflex stimulation system to reduce hypertension
7644714, May 27 2005 LivaNova USA, Inc Devices and methods for treating sleep disorders
7647114, Dec 24 2003 Cardiac Pacemakers, Inc. Baroreflex modulation based on monitored cardiovascular parameter
7657312, Nov 03 2003 Cardiac Pacemakers, Inc Multi-site ventricular pacing therapy with parasympathetic stimulation
7706882, Jan 19 2000 Medtronic, Inc Methods of using high intensity focused ultrasound to form an ablated tissue area
7734355, Aug 31 2001 Medtronic, Inc Treatment of disorders by unidirectional nerve stimulation
7778703, Aug 31 2001 Medtronic, Inc Selective nerve fiber stimulation for treating heart conditions
7778711, Aug 31 2001 Medtronic, Inc Reduction of heart rate variability by parasympathetic stimulation
7809442, Oct 13 2006 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
7840278, Jun 25 1999 Devices and methods for vagus nerve stimulation
7844346, May 23 2002 Medtronic, Inc Electrode assembly for nerve control
7869881, Dec 24 2003 Cardiac Pacemakers, Inc Baroreflex stimulator with integrated pressure sensor
7885709, Sep 23 2004 Medtronic, Inc Nerve stimulation for treating disorders
7885711, Jun 13 2003 Medtronic, Inc Vagal stimulation for anti-embolic therapy
7890185, Aug 31 2001 Medtronic, Inc Treatment of disorders by unidirectional nerve stimulation
7904176, Sep 07 2006 Medtronic, Inc Techniques for reducing pain associated with nerve stimulation
7917230, Jan 30 2007 Cardiac Pacemakers, Inc. Neurostimulating lead having a stent-like anchor
7925352, Mar 27 2009 NuXcel2, LLC System and method for transvascularly stimulating contents of the carotid sheath
7949409, Jan 30 2007 Cardiac Pacemakers, Inc. Dual spiral lead configurations
7974693, Aug 31 2001 Medtronic, Inc Techniques for applying, configuring, and coordinating nerve fiber stimulation
7979141, May 16 2005 Cardiac Pacemakers, Inc. Transvascular reshaping lead system
8024050, Dec 24 2003 Cardiac Pacemakers, Inc Lead for stimulating the baroreceptors in the pulmonary artery
8036741, Apr 30 1996 Medtronic, Inc. Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure
8060197, May 23 2003 Medtronic, Inc Parasympathetic stimulation for termination of non-sinus atrial tachycardia
8116883, Jun 04 2003 NuXcel2, LLC Intravascular device for neuromodulation
8121693, Dec 24 2003 Cardiac Pacemakers, Inc. Baroreflex stimulation to treat acute myocardial infarction
8126560, Dec 24 2003 Cardiac Pacemakers, Inc Stimulation lead for stimulating the baroreceptors in the pulmonary artery
8126561, Oct 24 2005 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
8131362, Mar 11 2005 Cardiac Pacemakers, Inc. Combined neural stimulation and cardiac resynchronization therapy
8170668, Jul 14 2006 Cardiac Pacemakers, Inc. Baroreflex sensitivity monitoring and trending for tachyarrhythmia detection and therapy
8190257, Apr 05 2005 Cardiac Pacemakers, Inc. System to treat AV-conducted ventricular tachyarrhythmia
8195289, Dec 24 2003 Cardiac Pacemakers, Inc. Baroreflex stimulation system to reduce hypertension
8200331, Nov 04 2004 Cardiac Pacemakers, Inc. System and method for filtering neural stimulation
8200332, Nov 04 2004 Cardiac Pacemakers, Inc. System and method for filtering neural stimulation
8204591, May 23 2002 Medtronic, Inc Techniques for prevention of atrial fibrillation
8221402, Jan 19 2000 Medtronic, Inc Method for guiding a medical device
8233987, Sep 10 2009 ZOLL RESPICARDIA, INC Respiratory rectification
8244359, Nov 18 2005 ZOLL RESPICARDIA, INC System and method to modulate phrenic nerve to prevent sleep apnea
8244378, Jan 30 2007 Cardiac Pacemakers, Inc. Spiral configurations for intravascular lead stability
8249705, Mar 20 2007 CVRX, INC Devices, systems, and methods for improving left ventricular structure and function using baroreflex activation therapy
8311645, Oct 13 2006 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
8311647, Jan 30 2007 Cardiac Pacemakers, Inc. Direct delivery system for transvascular lead
8315702, Oct 24 2005 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
8321023, Dec 24 2003 Cardiac Pacemakers, Inc. Baroreflex modulation to gradually decrease blood pressure
8326438, Nov 15 2004 Medtronic, Inc Techniques for nerve stimulation
8369954, Mar 27 2008 NuXcel2, LLC System and method for transvascularly stimulating contents of the carotid sheath
8386046, Jan 28 2011 Cyberonics, Inc Screening devices and methods for obstructive sleep apnea therapy
8386056, Aug 31 2001 Medtronic, Inc Parasympathetic stimulation for treating atrial arrhythmia and heart failure
8391970, Aug 27 2007 The Feinstein Institutes for Medical Research Devices and methods for inhibiting granulocyte activation by neural stimulation
8406868, Apr 29 2010 Medtronic, Inc.; Medtronic, Inc Therapy using perturbation and effect of physiological systems
8406877, Mar 19 2007 Cardiac Pacemakers, Inc Selective nerve stimulation with optionally closed-loop capabilities
8412338, Nov 18 2008 SetPoint Medical Corporation Devices and methods for optimizing electrode placement for anti-inflamatory stimulation
8412350, Jan 30 2007 Cardiac Pacemakers, Inc. Neurostimulating lead having a stent-like anchor
8417343, Oct 13 2006 LivaNova USA, Inc Obstructive sleep apnea treatment devices, systems and methods
8423134, Apr 29 2010 Medtronic, Inc.; Medtronic, Inc Therapy using perturbation and effect of physiological systems
8428727, Oct 13 2006 LivaNova USA, Inc Obstructive sleep apnea treatment devices, systems and methods
8433412, Feb 07 2008 ZOLL RESPICARDIA, INC Muscle and nerve stimulation
8442640, Dec 24 2003 Cardiac Pacemakers, Inc. Neural stimulation modulation based on monitored cardiovascular parameter
8457746, Dec 24 2003 Cardiac Pacemakers, Inc. Implantable systems and devices for providing cardiac defibrillation and apnea therapy
8473076, Dec 24 2003 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
8494655, May 23 2002 Medtronic, Inc Electrode devices with resistive elements
8498712, Oct 13 2006 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
8541232, Mar 08 2006 KWALATA TRADING LIMITED Composition comprising a progenitor/precursor cell population
8565896, Nov 22 2010 Medtronic, Inc Electrode cuff with recesses
8571651, Sep 07 2006 Medtronic, Inc Techniques for reducing pain associated with nerve stimulation
8571653, Aug 31 2001 Medtronic, Inc Nerve stimulation techniques
8571655, Nov 03 2003 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
8609082, Jan 25 2005 Medtronic, Inc Administering bone marrow progenitor cells or myoblasts followed by application of an electrical current for cardiac repair, increasing blood supply or enhancing angiogenesis
8612002, Dec 23 2009 SetPoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
8615294, Aug 13 2008 Medtronic, Inc Electrode devices for nerve stimulation and cardiac sensing
8620425, Apr 29 2010 Medtronic, Inc Nerve signal differentiation in cardiac therapy
8626282, Dec 24 2003 Cardiac Pacemakers, Inc. Baroreflex modulation to gradually change a physiological parameter
8626301, Dec 24 2003 Cardiac Pacemakers, Inc. Automatic baroreflex modulation based on cardiac activity
8626304, Oct 13 2006 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
8634921, Oct 24 2005 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
8639322, Dec 24 2003 Cardiac Pacemakers, Inc. System and method for delivering myocardial and autonomic neural stimulation
8639327, Apr 29 2010 Medtronic, Inc Nerve signal differentiation in cardiac therapy
8639354, Oct 13 2006 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
8660648, Oct 24 2005 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
8685724, Jun 01 2004 KWALATA TRADING LIMITED In vitro techniques for use with stem cells
8706223, Jan 19 2011 Medtronic, Inc.; Medtronic, Inc Preventative vagal stimulation
8718763, Jan 19 2011 Medtronic, Inc.; Medtronic, Inc Vagal stimulation
8718783, Oct 13 2006 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
8718791, May 23 2003 Medtronic, Inc Electrode cuffs
8725259, Jan 19 2011 Medtronic, Inc.; Medtronic, Inc Vagal stimulation
8725271, May 23 2002 Medtronic, Inc Electrode device with elongated electrode
8729129, Mar 25 2004 The Feinstein Institutes for Medical Research Neural tourniquet
8744589, Oct 13 2006 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
8768462, Nov 04 2004 Cardiac Pacemakers, Inc. System and method for filtering neural stimulation
8781582, Jan 19 2011 Medtronic, Inc.; Medtronic, Inc Vagal stimulation
8781583, Jan 19 2011 Medtronic, Inc. Vagal stimulation
8788034, May 09 2011 SetPoint Medical Corporation Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
8805501, Dec 24 2003 Cardiac Pacemakers, Inc. Baroreflex stimulation to treat acute myocardial infarction
8805513, Dec 24 2003 Cardiac Pacemakers, Inc. Neural stimulation modulation based on monitored cardiovascular parameter
8855767, Dec 23 2009 SetPoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
8855771, Jan 28 2011 Cyberonics, Inc Screening devices and methods for obstructive sleep apnea therapy
8880192, Apr 02 2012 Medtronic, Inc Electrode cuffs
8886339, Jun 09 2009 SetPoint Medical Corporation Nerve cuff with pocket for leadless stimulator
8888699, Apr 29 2010 Medtronic, Inc.; Medtronic, Inc Therapy using perturbation and effect of physiological systems
8909337, Apr 05 2005 Cardiac Pacemakers, Inc. System to treat AV-conducted ventricular tachyarrhythmia
8909341, Jan 22 2007 ZOLL RESPICARDIA, INC Device and method for the treatment of breathing disorders and cardiac disorders
8909355, Nov 15 2004 Medtronic, Inc Techniques for nerve stimulation
8914114, May 23 2000 The Feinstein Institutes for Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
8929990, Apr 11 2005 Cardiac Pacemakers, Inc. Transvascular neural stimulation device and method for treating hypertension
8983611, Sep 27 2011 Cardiac Pacemakers, Inc Neural control of central sleep apnea
8996116, Oct 30 2009 SetPoint Medical Corporation Modulation of the cholinergic anti-inflammatory pathway to treat pain or addiction
9067071, Jul 11 2011 NuXcel2, LLC System and method for neuromodulation
9113838, Jan 28 2011 LivaNova USA, Inc Screening devices and methods for obstructive sleep apnea therapy
9126048, Apr 28 2011 NuXcel2, LLC Neuromodulation systems and methods for treating acute heart failure syndromes
9155893, Jan 19 2011 Medtronic, Inc. Use of preventative vagal stimulation in treatment of acute myocardial infarction or ischemia
9162064, Dec 23 2009 SetPoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
9174041, Jun 09 2009 SetPoint Medical Corporation Nerve cuff with pocket for leadless stimulator
9186511, Oct 13 2006 LivaNova USA, Inc Obstructive sleep apnea treatment devices, systems and methods
9199085, Apr 25 2005 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
9205262, Oct 03 2011 LivaNova USA, Inc Devices and methods for sleep apnea treatment
9211409, Mar 31 2008 The Feinstein Institutes for Medical Research Methods and systems for reducing inflammation by neuromodulation of T-cell activity
9211410, May 09 2011 SetPoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
9211413, Jan 19 2011 Medtronic, Inc. Preventing use of vagal stimulation parameters
9227088, May 25 2006 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
9234173, Mar 08 2006 Kwalata Trading Ltd. Regulating stem cells
9295846, Feb 07 2008 ZOLL RESPICARDIA, INC Muscle and nerve stimulation
9370660, Mar 29 2013 RAINBOW MEDICAL LTD. Independently-controlled bidirectional nerve stimulation
9415225, Apr 25 2005 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
9439598, Apr 12 2012 RECOR MEDICAL, INC Mapping and ablation of nerves within arteries and tissues
9440078, Dec 24 2003 Cardiac Pacemakers, Inc. Neural stimulation modulation based on monitored cardiovascular parameter
9446240, Jul 11 2011 NuXcel2, LLC System and method for neuromodulation
9468764, Apr 29 2010 Medtronic, Inc. Nerve signal differentiation in cardiac therapy
9555247, Jan 28 2011 LivaNova USA, Inc Screening devices and methods for obstructive sleep apnea therapy
9572983, Mar 26 2012 SetPoint Medical Corporation Devices and methods for modulation of bone erosion
9649495, Apr 25 2005 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
9662490, Mar 31 2008 The Feinstein Institutes for Medical Research Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug
9700716, Jun 09 2009 SetPoint Medical Corporation Nerve cuff with pocket for leadless stimulator
9724119, May 25 2006 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
9744351, Jan 22 2007 ZOLL RESPICARDIA, INC Device and method for the treatment of breathing disorders and cardiac disorders
9744354, Dec 31 2008 Cyberonics, Inc Obstructive sleep apnea treatment devices, systems and methods
9757564, Oct 03 2011 LivaNova USA, Inc Devices and methods for sleep apnea treatment
9833621, Sep 23 2011 SetPoint Medical Corporation Modulation of sirtuins by vagus nerve stimulation
9849286, May 09 2011 SetPoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
9884182, Jul 11 2011 NuXcel2, LLC Catheter system for acute neuromodulation
9889299, Oct 01 2008 INSPIRE MEDICAL SYSTEMS, INC Transvenous method of treating sleep apnea
9913982, Jan 28 2011 LivaNova USA, Inc Obstructive sleep apnea treatment devices, systems and methods
9931134, May 25 2006 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
9987488, Jun 27 2007 ZOLL RESPICARDIA, INC Detecting and treating disordered breathing
9987492, May 23 2000 The Feinstein Institutes for Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
9993651, Dec 23 2009 SetPoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
9999768, Sep 10 2009 ZOLL RESPICARDIA, INC Respiratory rectification
RE48024, Oct 13 2006 LivaNova USA, Inc Obstructive sleep apnea treatment devices, systems and methods
RE48025, Oct 13 2006 LivaNova USA, Inc Obstructive sleep apnea treatment devices, systems and methods
Patent Priority Assignee Title
5014698, Oct 06 1987 Medtronic, Inc Method of and system for monitoring and treating a malfunctioning heart
5056519, May 14 1990 Unilateral diaphragmatic pacer
5199428, Mar 22 1991 Medtronic, Inc. Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload
5203326, Dec 18 1991 Pacesetter, Inc Antiarrhythmia pacer using antiarrhythmia pacing and autonomic nerve stimulation therapy
5243980, Jun 30 1992 Medtronic, Inc. Method and apparatus for discrimination of ventricular and supraventricular tachycardia
5330507, Apr 24 1992 Medtronic, Inc. Implantable electrical vagal stimulation for prevention or interruption of life threatening arrhythmias
5334221, Jun 30 1992 Medtronic, Inc. Method and apparatus for treatment of angina same
5354318, Apr 30 1993 Medtronic, Inc.; DUTHLER, REED A Method and apparatus for monitoring brain hemodynamics
5356425, Jun 30 1992 Medtronic, Inc. Method and apparatus for treatment of atrial fibrillation and flutter
5458625, May 04 1994 Transcutaneous nerve stimulation device and method for using same
5507784, Sep 23 1993 Medtronic, Inc. Method and apparatus for control of A-V interval
5549655, Sep 21 1994 INSPIRE MEDICAL SYSTEMS, INC Method and apparatus for synchronized treatment of obstructive sleep apnea
5578061, Oct 03 1995 Pacesetter AB Method and apparatus for cardiac therapy by stimulation of a physiological representative of the parasympathetic nervous system
5651378, Feb 20 1996 Maquet Cardiovascular, LLC Method of using vagal nerve stimulation in surgery
5913876, Feb 20 1996 Maquet Cardiovascular, LLC Method and apparatus for using vagus nerve stimulation in surgery
5916239, Mar 29 1996 LivaNova USA, Inc Method and apparatus using vagal stimulation for control of ventricular rate during atrial fibrillation
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 15 2001Medtronic, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Jul 21 2004ASPN: Payor Number Assigned.
May 17 2007M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
May 23 2011M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Feb 22 20084 years fee payment window open
Aug 22 20086 months grace period start (w surcharge)
Feb 22 2009patent expiry (for year 4)
Feb 22 20112 years to revive unintentionally abandoned end. (for year 4)
Feb 22 20128 years fee payment window open
Aug 22 20126 months grace period start (w surcharge)
Feb 22 2013patent expiry (for year 8)
Feb 22 20152 years to revive unintentionally abandoned end. (for year 8)
Feb 22 201612 years fee payment window open
Aug 22 20166 months grace period start (w surcharge)
Feb 22 2017patent expiry (for year 12)
Feb 22 20192 years to revive unintentionally abandoned end. (for year 12)