A luminal stent is a tubular body formed by knitting a sole yarn of a bioresorbable polymer fiber, such as fiber of polylactic acid, polyglycol acid or a polylactic acid—polyglycol acid copolymer. When introduced into and attached to the inside of the vessel by a catheter fitted with a balloon, the tubular member may retain its shape for several weeks to several months after attachment and subsequently disappears by being absorbed into the living tissue. In this manner, the luminal stent is not left as a foreign matter semi-permanently in the living body without producing inflammation or hypertrophy in the vessel. There is also provided a method for attaching the luminal stent in the vessel.

Patent
   RE38711
Priority
Mar 08 1991
Filed
Nov 05 2002
Issued
Mar 15 2005
Expiry
Nov 20 2011

TERM.DISCL.
Assg.orig
Entity
Small
53
5
all paid
1. A luminal stent, which is to be inserted into a vessel of a living body, consisting of a homogeneous tubular member produced by knitting a sole bioresorbable polymer fiber.
12. A luminal stent, which is to be inserted into a vessel of a living body, consisting of a homogeneous heat-set tubular member produced by knitting a sole bioresorbable polymer fiber.
13. A luminal stent, which is to be inserted into a vessel of a living body, consisting of a homogeneous double heat-set tubular member produced by knitting a sole bioresorbable polymer fiber.
2. The luminal stent as defined in claim 1 wherein the bioresorbable polymer is polylactic acid (PLA).
3. The luminal stent as defined in claim 1 wherein the bioresorbable polymer is polyglycolic acid (PGA).
4. The luminal stent as defined in claim 1 wherein the bioresorable polymer is a mixture of polylactic acid (PLA) and polyglycolic acid (PGA).
5. The luminal stent as defined in claim 1 wherein the bioresorbable polymer is one or more of polyglactin (PGA-PLA copolymer), polydioxanone, polyglyconate (copolymer of trimethylene carbonate and glycolide) and copolymer of polyglycolic acid or polylactic acid with epsilon-caprolactone.
6. The luminal stent as defined in claim 1 wherein the cross-sectional shape of the sole bioresorbable polymer fiber is substantially circular, hollow or profiled.
7. The luminal stent as defined in claim 1 wherein the sole surface of the bioresorbable polymer fiber has irregularities or grooves.
8. The luminal stent as defined in claim 1 wherein the sole bioresorbable polymer fiber is admixed with one or more of X-ray impermeable agent, carcinostatics and anti-thrombotic agent.
9. The luminal stent as defined in claim 1 wherein the one or more of X-ray impermeable agents, carcinostatics and anti-thrombotic agents or cells of a living body are affixed to the surface of the sole bioresorbable polymer fiber.
10. The luminal stent as defined in claim 1 wherein a tubular body formed by knitting a sole bioresorbable polymer fiber is heat-set.
11. The luminal stent holding structure comprising the luminal stent as defined in claim 1 accommodated in a tube of a smaller inside diameter.

This application is a continuation of Application Ser. No. 08/794,396 filed Feb. 5, 1997, Experiment 1

Plural luminal stents formed by knitting a yarn of polylactic acid fibers admixed with barium sulfate were introduced and attached in the coronary of a test animal in a tubular state of 4 mm in diameter and 20 mm in length by using a catheter fitted with a balloon, and the state of attachment was observed by irradiation of X-rays. It was seen that the stents substantially maintained their shape until after about three to six months. It was seen that the stents disappeared by being absorbed into living tissue in about 6 to 12 months. During this time, no abnormalities such as inflammation or hypertrophy of the intima of the blood vessel were observed.

Plural luminal stents formed by knitting a yarn of polyglycolic acid fibers admixed with barium sulfate were introduced and attached in the femoral artery of a test animal in a tubular state of 4 mm in diameter and 20 mm din length and the state of attachment was observed by irradiation of X-rays. It was seen that the stents substantially maintained their shape until after about two to three weeks and were absorbed into the living tissue in about two to three months. The shape retention period and the period of existence in the living body attained in Experiment 2 are thought to be more safe than the corresponding periods attained in Experiment 1. Meanwhile, no inflammation or hypertrophy of the intima of the blood vessel was observed during these periods.

Tamai, Hideo, Igaki, Keiji

Patent Priority Assignee Title
10004511, Mar 25 2011 Covidien LP Vascular remodeling device
10470902, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
10478194, Sep 23 2015 Covidien LP Occlusive devices
10736758, Mar 15 2013 Covidien LP Occlusive device
10828182, Sep 29 2011 Covidien LP Vascular remodeling device
11147563, Mar 25 2011 Covidien LP Vascular remodeling device
11207448, Nov 26 2015 JAPAN MEDICAL DEVICE TECHNOLOGY CO., LTD.; National University Corporation Kumamoto University Bioabsorbable stent
11357510, Sep 23 2015 Covidien LP Occlusive devices
11389309, Mar 15 2013 Covidien LP Occlusive device
11406405, Nov 06 2012 Covidien LP Multi-pivot thrombectomy device
11654037, Sep 29 2011 Covidien LP Vascular remodeling device
11707371, May 13 2008 Covidien LP Braid implant delivery systems
11844528, Apr 21 2008 Covidien LP Multiple layer filamentary devices for treatment of vascular defects
7780641, Jun 14 2007 Cedars-Sinai Medical Center Transcecal ileostomy set
7927529, Jan 06 2006 Cordis Corporation Method of forming bioabsorbable drug delivery devices
7972373, Dec 19 2007 CARDINAL HEALTH SWITZERLAND 515 GMBH Balloon expandable bioabsorbable stent with a single stress concentration region interconnecting adjacent struts
8088060, Mar 15 2000 ORBUSNEICH MEDICAL PTE LTD Progenitor endothelial cell capturing with a drug eluting implantable medical device
8414635, Feb 01 1999 IDev Technologies, Inc. Plain woven stents
8419788, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
8460367, Mar 15 2000 ORBUSNEICH MEDICAL PTE LTD Progenitor endothelial cell capturing with a drug eluting implantable medical device
8739382, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
8747597, Apr 21 2008 NFOCUS LLC; Covidien LP Methods for making braid-ball occlusion devices
8784465, Oct 11 2002 Boston Scientific Scimed, Inc.; University of Connecticut Implantable medical devices
8858520, Apr 22 2008 CONVATEC TECHNOLOGIES INC Temporary ostomy appliance
8876880, Feb 01 1999 Board of Regents, The University of Texas System Plain woven stents
8876881, Oct 22 2006 IDEV TECHNOLOGIES, INC Devices for stent advancement
8926681, Jan 28 2010 Covidien LP Vascular remodeling device
8966733, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
8974516, Feb 01 1999 Board of Regents, The University of Texas System Plain woven stents
9023095, May 27 2010 IDEV TECHNOLOGIES, INC Stent delivery system with pusher assembly
9039726, Apr 21 2008 NFOCUS LLC; Covidien LP Filamentary devices for treatment of vascular defects
9060886, Sep 29 2011 Covidien LP Vascular remodeling device
9089332, Mar 25 2011 Covidien LP Vascular remodeling device
9095342, Nov 09 2009 NFOCUS LLC; Covidien LP Braid ball embolic device features
9115245, Jul 18 2002 Boston Scientific Scimed, Inc. Implantable medical devices
9149374, Oct 22 2006 IDEV TECHNOLOGIES, INC Methods for manufacturing secured strand end devices
9179918, Jul 22 2008 Covidien LP Vascular remodeling device
9295571, Jan 17 2013 Covidien LP Methods and apparatus for luminal stenting
9314248, Nov 06 2012 Covidien LP Multi-pivot thrombectomy device
9320837, May 12 2006 CARDINAL HEALTH SWITZERLAND 515 GMBH Balloon expandable bioabsorbable drug eluting flexible stent
9393022, Feb 11 2011 Covidien LP Two-stage deployment aneurysm embolization devices
9408729, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
9408730, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
9463105, Mar 14 2013 Covidien LP Methods and apparatus for luminal stenting
9468442, Jan 28 2010 Covidien LP Vascular remodeling device
9522217, Mar 15 2000 ORBUSNEICH MEDICAL PTE LTD Medical device with coating for capturing genetically-altered cells and methods for using same
9585669, Apr 21 2008 NFOCUS LLC; Covidien LP Multiple layer filamentary devices for treatment of vascular defects
9585776, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
9629736, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
9895242, Oct 22 2006 IDEV TECHNOLOGIES, INC Secured strand end devices
9901472, Jan 17 2013 Covidien LP Methods and apparatus for luminal stenting
9924959, Nov 06 2012 Covidien LP Multi-pivot thrombectomy device
9925074, Feb 01 1999 Plain woven stents
Patent Priority Assignee Title
4950227, Nov 07 1988 Boston Scientific Scimed, Inc Stent delivery system
5085629, Oct 06 1988 Cabot Technology Corporation Biodegradable stent
5147399, Feb 01 1988 SYNOVIS LIFE TECHNOLOGIES, INC Method of treating nerve defects through use of a bioabsorbable surgical device
5195984, Oct 04 1988 CARDINAL HEALTH SWITZERLAND 515 GMBH Expandable intraluminal graft
5274074, Dec 17 1987 UNITED STATES SURGICAL CORP Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 05 2002Kabushikikaisha Igaki Iryo Sekkei(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 12 2007M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Oct 20 2011M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Mar 15 20084 years fee payment window open
Sep 15 20086 months grace period start (w surcharge)
Mar 15 2009patent expiry (for year 4)
Mar 15 20112 years to revive unintentionally abandoned end. (for year 4)
Mar 15 20128 years fee payment window open
Sep 15 20126 months grace period start (w surcharge)
Mar 15 2013patent expiry (for year 8)
Mar 15 20152 years to revive unintentionally abandoned end. (for year 8)
Mar 15 201612 years fee payment window open
Sep 15 20166 months grace period start (w surcharge)
Mar 15 2017patent expiry (for year 12)
Mar 15 20192 years to revive unintentionally abandoned end. (for year 12)