optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the “ladder” experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
|
0. 77. A method, comprising:
causing generation of a plurality of optical beams to carry information of a plurality of input electrical signals;
causing the optical beams to transmit through different optical paths that go through a plurality of birefringent segments;
causing polarization states of the optical beams upon entry of the plurality of birefringent segments to be controlled to produce different optical delays on the different optical beams upon exiting the plurality of birefringent segments; and
subsequently causing different optical beams to be converted into a plurality of electrical output signals that represent the input electrical signals with different delays.
0. 72. A method, comprising:
causing generation of an optical beam to carry information of an input electrical signal;
causing the optical beam to be expanded to allow for different parts of the optical beam to transmit through different optical paths that go through a plurality of birefringent segments;
causing polarization states of the different parts of the expanded optical beam upon entry of the plurality of birefringent segments to be controlled to produce different optical delays on the different parts of the expanded optical beam upon exiting the plurality of birefringent segments; and
causing different parts of the expanded optical beam to be converted into a plurality of electrical output signals.
0. 56. A method for producing a variable optical delay in an optical beam, comprising:
causing the optical beam to transmit through a plurality of birefringent segments along an optical path;
causing polarization states of the optical beam upon respective entries of the plurality of birefringent segments to be controlled at a first set of polarization states, respectively, to produce a first optical delay in the optical beam upon exiting the plurality of birefringent segments; and
causing a polarization state of the optical beam upon entry of at least one of the plurality of birefringent segments to be changed to produce a second, different optical delay in the optical beam upon exiting the plurality of birefringent segments.
0. 49. A variable optical delay device, comprising a plurality of variable optical delay units arranged relative to one another to form an optical path through which an optical beam is directed, each variable optical delay unit comprising:
a polarization rotator operable to control a polarization of received light in response to a unit control signal;
a pm fiber segment located in said optical path to receive output light from said polarization rotator and to transmit received light along said optical path; and
a unit control element, coupled to said polarization rotator to supply said unit control signal, to control light received by said pm fiber segment in a first polarization state to cause a first optical delay in light output by said pm fiber segment and in a second polarization state to cause a second, different optical delay in light output by said pm fiber segment.
0. 31. A variable optical delay device, comprising a plurality of variable optical delay units cascaded to form an optical path through which an optical beam is directed, each variable optical delay unit producing a variable optical delay and comprising:
a polarization rotator operable to control a polarization of received light in response to a unit control signal;
a birefringent segment formed of a birefringent material and located in said optical path to receive output light from said polarization rotator and to transmit received light along said optical path; and
a unit control element, coupled to said polarization rotator to supply said unit control signal, to control light received by said birefringent segment in a first polarization state to cause a first optical delay in light output by said birefringent segment and in a second polarization state to cause a second, different optical delay in light output by said birefringent segment.
0. 64. A device having a variable optical delay mechanism, comprising:
a plurality of variable optical delay units cascaded to form a plurality of parallel optical paths, each variable optical delay unit comprising (1) a polarization rotator array of a plurality of polarization rotators respectively located in said parallel optical paths, and (2) a birefringent segment formed of a birefringent material and located in said parallel optical paths to receive and transmit output light from said polarization rotator array, wherein each polarization rotator is operable to control a polarization of received light in a first polarization state to cause a first optical delay in light output by said birefringent segment and in a second polarization state to cause a second, different optical delay in light output by said birefringent segment; and
a detector array of a plurality of optical detectors respectively located in said parallel optical paths to receive output beams output from said plurality of variable optical delay units to produce a plurality of detector signals corresponding to said output beams of said parallel optical paths.
0. 1. An index-switched optical variable delay device for varying a path length of an optical beam, comprising:
A slab of birefringent crystal having a first birefringent axis and a second birefringent axis, a first array of corner reflectors being placed at a first side of said slab, a second array of corner reflectors being placed at an opposite side of said slab, and a multiple of polarization rotators each independently operable to rotate a first polarization state of an input light beam to a second polarization state which is substantially orthogonal to the first polarization state when being activated and leave the first polarization state unaffected when being de-activated; said two corner reflector arrays being such arranged that the optical beam entering from the first side of the slab towards the opposite side is reflected back by a first corner reflector on the opposite side towards a second corner reflector at the first side; the beam being reflected again by the second corner reflector towards a third corner reflector on the opposite side, and continuing being reflected back and forth across the slab by successive corner reflectors until exiting; the polarization rotators each being placed between the slab and a selected corner reflector.
0. 2. The index-switched optical variable delay device of
0. 3. The index-switched optical variable delay device of
0. 4. The index-switched optical variable delay device of
0. 5. A method of changing an optical path length of an optical beam comprising the steps of:
placing in a path of said optical beam a first polarization rotator operable to rotate a first polarization state of said optical beam to a second polarization state which is substantially orthogonal to the first polarization state when being activated and leave the first polarization state unaffected when being de-activated,
after said first polarization rotator, placing a first birefringent crystal segment having a first birefringent axis and a second birefringent axis;
making said optical beam propagate in said first birefringent crystal segment substantially perpendicularly to said first and second birefringent axis,
de-activating said polarization rotator so that said optical beam experiences a first refractive index,
activating said polarization rotator to rotate said first polarization state to said second polarization state to make said optical beam experience a second refractive index,
connecting multiple birefringent crystal segments with one another, with a polarization rotator sandwiched between any two adjacent crystal segments;
activating and de-activating each polarization rotator independently to make said optical beam experience different refractive indices in each birefringent crystal segment, thereby varying the path length of said optical beam passing through all said birefringent crystal segments.
0. 6. The method of
0. 7. An optical delay device to vary a path length of an optical beam, said delay device comprising:
a first polarization rotator configured to rotate the optical beam to a first polarization state when active and a second polarization state when inactive; and
a first birefringent crystal segment having a first end coupled with the first polarization rotator, said first birefringent crystal segment including a first birefringent axis substantially aligned with the first polarization state and a second birefringent axis substantially aligned with the second polarization state.
0. 8. The optical delay device of
0. 9. The optical delay device of
0. 10. The optical delay device of
0. 11. The optical delay device of
0. 12. The optical delay device of
0. 13. The optical delay device of
a first external polarization rotator placed between the first polarization beamsplitter and the first birefringent crystal segment;
a second polarization beamsplitter coupled with an output end of the second birefringent crystal segment; and
a second external polarization rotator placed between the second polarization beamsplitter and the second birefringent crystal.
0. 14. The optical delay device of
0. 15. A multi-channel optical device to independently control path lengths for a plurality of optical beams, the multi-channel optical device comprising:
a first polarization rotator array having at least two polarization rotation elements, each polarization rotation element configured to rotate a corresponding optical beam in the plurality of optical beams to a first polarization state when active and to rotate the corresponding optical beam to a second polarization state when inactive, and
a first birefringent crystal segment having a first end coupled with the first polarization rotator array, said first birefringent crystal segment including a first birefringent axis substantially aligned with the first polarization state and a second birefringent axis substantially aligned with the second polarization state.
0. 16. The multi-channel optical delay device of
0. 17. The multi-channel optical delay device of
0. 18. The multi-channel optical device of
0. 19. The multi-channel optical device of
0. 20. The multi-channel optical device of
0. 21. The multi-channel optical device of
a photodetector array having multiple photodetectors each operable to convert an optical signal to an electrical signal;
an electrical signal combiner having multiple input ports and operable to combine the electrical signals from the multiple photodetectors;
said photodetector array being coupled to an output end of the second birefringent crystal segment with each photodetector receiving an optical signal from each channel;
said electrical signal combiner with each input port being coupled to a corresponding photodetector on the photodetector array.
0. 22. The multi-channel optical delay device of
a first polarization beamsplitter coupled with an input end of the optical delay device;
a first external polarization rotator array placed between the first polarization beamsplitter and the input end of the optical delay device;
a second polarization beamsplitter coupled with an output end of the second birefringent crystal segment; and
a second external polarization rotator array placed between the second polarization beamsplitter and the second birefringent crystal segment.
0. 23. The multi-channel optical device of
A pair of electrodes being placed across said first birefringent crystal segment for applying a voltage in a predetermined direction.
0. 24. The multi-channel optical device of
0. 25. A method of changing an optical path length of an optical beam comprising the steps of:
receiving the optical beam in a first polarization rotator;
adjusting the first polarization rotator to polarize the optical beam to a first desired polarization, and transmitting the output of said first polarization rotator through a first segment of birefringent crystal having a first birefringent axis and a second birefringent axis;
inputting the optical beam output by said first segment of birefringent crystal into a second polarization rotator;
adjusting the second polarization rotator to polarize the optical beam to a second desired polarization, and transmitting the output of said second polarization rotator through a second segment of birefringent crystal having a first birefringent axis and a second birefringent axis.
0. 26. The method of
0. 27. The method of
determining the desired optical path length;
applying a first activation signal to set the first polarization rotator and a second activation signal to set the second polarization rotator; said first and second activation signals determined by desired optical path lengths calculated in the determining step.
0. 28. The method of
0. 29. The method of
0. 30. An optical delay device for varying a path length of an optical beam comprising:
a birefringent crystal including a first birefringent axis and a second birefringent axis;
a first corner reflector coupled to a first side of the birefringent crystal at a first position;
a polarization rotator coupled to the birefringent crystal and positioned to receive the optical beam from the first corner reflector, the polarization rotator configured to switch the polarization of the optical beam between a first polarization state and a second polarization state;
a second corner reflector positioned to reflect the optical beam output by the polarization rotator back into said birefringent crystal.
0. 32. The device as in
0. 33. The device as in
0. 34. The device as in
0. 35. The device as in
0. 36. The device as in
0. 37. The device as in
0. 38. The device as in
0. 39. The device as in
0. 40. The device as in
0. 41. The device as in
0. 42. The device as in
0. 43. The device as in
0. 44. The device as in
0. 45. The device as in
a plurality of ladder units stacked over one another to form a first optical path along which said output beam is received and a second optical path along which said output beam is exported to produce an additional variable optical delay; and
a common corner reflector coupled to said plurality of ladder units to reflect transmitted light from said first optical path to said second optical path,
wherein each ladder unit comprises:
a first polarization beamsplitter located in said first optical path to transmit light in a transmitting polarization and to reflect light in a reflecting polarization orthogonal to said transmitting polarization;
a second polarization beamsplitter located in said second optical path and coupled to said first polarization beamsplitter to receive light reflected from said first polarization beamsplitter and to direct received light to said second optical path, said first and said second polarization beamsplitters forming a polarization-sensitive corner reflector which transmits light of said transmitting polarization along said first optical path towards said common corner reflector and directs light of said reflecting polarization along said second optical path away from said common corner reflector;
a first polarization rotator in said first optical path and adjacent to said first polarization beamsplitter to control a polarization of light entering said first polarization beam splitter to vary an optical delay of said light when exiting said ladder-structured optical module;
a second polarization rotator in said second optical path and adjacent to said second polarization beamsplitter to control a polarization of light exiting said second polarization beam splitter in a manner identical to said first polarization rotator; and
a control unit coupled to control said first and said second polarization rotators.
0. 46. The device as in
0. 47. The device as in
0. 48. The device as in
0. 50. The device as in
0. 51. The device as in
0. 52. The device as in
0. 53. The device as in
0. 54. The device as in
0. 55. The device as in
0. 57. The method as in
0. 58. The method as in
0. 59. The method as in
0. 60. The method as in
causing at least one birefringent segment to include a birefringent material that changes a refractive index in response to an index control signal; and
causing the index control signal to be applied to the birefringent material to modify the second optical delay.
0. 61. The method as in
0. 62. The method as in
0. 63. The method as in
0. 65. The device as in
0. 66. The device as in
0. 67. The device as in
0. 68. The device as in
0. 69. The device as in
a laser driven by an electrical signal to produce a laser beam that carries information in said electrical signal; and
a lens located between said laser and said plurality of variable optical delay units to expand said laser beam and to direct said expanded laser beam to cover said parallel optical paths formed by said plurality of variable optical delay units, wherein different parts of said expanded laser beam undergo different optical delays through said plurality of variable optical delay units and said detector signals are replica of said electrical signal with different delays.
0. 70. The device as in
0. 71. The device as in
0. 73. The method as in
0. 74. The method as in
0. 75. The method as in
0. 76. The method as in
0. 78. The method as in
0. 79. The method as in
0. 80. The method as in
|
This invention was made with Government support under a Contract awarded by NASA, and is subject to the provisions of Public Law 96-517 (35 U.S.C 202) in which the inventor is granted right to retain title. The government has certain rights in this invention.
where n and h are the refractive index and height of the basic building block respectively. The smallest delay increment is thus.
Δl=2nh (2)
Because the delay unit closely assembles a ladder, the structure of the delay unit is referred to as “ladder” construction. This structure is more compact than that of the conventional path switched delay shown in FIG. 1. The ladder structure is more suited for mass production and therefore less expensive to manufacture.
To minimize the number of basic building blocks used in a ladder-structured variable delay device, the basic building blocks can be arranged in a binary fashion such that the distance between two consecutive blocks increases by a factor of 2, as shown in FIG. 3B. Let M be the total number of the blocks used (or bits), then the maximum value of the delay generated is:
ΔLmax=(20+21+22+. . . 2M−1)Δl=(2M−1)Δl (3)
where Δl=2nh is the smallest delay increment. By properly adjusting the polarization state of the light beam in each block, any time delay in the range from Δl to ΔLmax can be obtained with a resolution (or delay increment) of Δl.
The ladder-structured variable delay device can be made to operate bidirectionally by placing an external polarization beamsplitter 38L at left end of the device, another external polarization beamsplitter 38R at right end of the device, and an external large area polarization rotator 36 covering both the left and right ends, as shown in FIG. 3C. For left to right operation, an optical beam 20 having a horizontal polarization 30A enters the device from left external polarization beamsplitter 38L. External polarization rotator 36 is de-activated to allow optical beam 20 passing through left external polarization beamsplitter 38L and entering the delay device. On the other hand, for right to left operation, an optical beam 20A having a perpendicular polarization 30B enters the device by reflecting off right external polarization beamsplitter 38R. External polarization rotator 36 is activated to rotate perpendicular polarization 30B to horizontal polarization 30A before entering the device. When optical beam 20B reaches the left side of the delay device, external polarization rotator 36 automatically rotates horizontal polarization 30A back to perpendicular polarization 30B so that optical beam 20A exits the delay device by reflecting off left external polarization beamsplitter 38L.
Accordingly, the ladder construction of this invention provides compactness and high packing density. The basic building block is simple and the complete unit consists of many basic building blocks that are stacked together. In addition, two or more units can be cascaded to further increase delay range. Because liquid crystals are used to control the relative delay of each channel, both control voltage and power consumption are low. By injection molding the structure of the device with glass or plastic, the fabrication cost can be greatly reduced. Because the passing states and the reflecting states have orthogonal polarizations, high delay isolation (defined as the optical power of wanted delay divided by the optical power of unwanted delay) is readily achievable with the insertion of polarizers. Finally, the optical loss of the device is low.
The delay resolution of the path switched delay described above is not fine enough for millimeter waves applications, where the delay resolution must be much less than 1 mm. The following describes an index switched variable delay device for achieving high delay resolution for mm wave and other applications where high delay resolution is required.
A delay line can be constructed by putting many such crystal segments together in a linear array, as shown in
To minimize the number of polarization rotators in the device, the lengths of the crystal segments
Let M be the total number of crystal segments (or bits), then the maximum value of the delay generated is:
By properly adjusting the polarization state of the light beam in each segment 40, any optical path delay in the range from Δl to ΔLmax can be obtained with a resolution (or delay increment) of Δl. Because the length of each crystal segment 40 can be tightly controlled, the accuracy of the device can be very high.
Several delay lines of the design described above can be densely packed in two dimensions to form a compact variable delay device. However, instead of cutting crystal into narrow strips, large area crystal segments 40 and polarzation rotator arrays 22 (spatial light modulators) are used to construct the multiple channel delay device, as shown in FIG. 6. Here polarization rotators in all polarization rotator arrays are aligned element by element and the size of each channel is determined by the size of the rotators. For 2 mm channel spacing, the packing density of the device is 25/cm2. Such a channel spacing is easily attainable in practice, considering that a 1.4 mm diameter Gaussian beam with 1 μm wavelength has a Rayleigh range of 1.54 meters.
In
The index switched delay device can be used for both transmitting and receiving operations. As shown in
In
When in the transmitting mode, left external polarization rotator array 68L is inactive. However, right external polarization rotator array 68R is such programmed that it always brings the polarization of light beams in each channel back to be in the plane of the paper after the delay device. This assures that light beams of all channels will pass PBS 38R and be received by right photodetector array 76. A left focusing lens array 74 is placed before left photodetector array 76 to focus light of each individual channel to a corresponding detector on left photodetector array 76. When in the receiving mode, right external polarization rotator array 68R is inactive. However, left polarization rotator array 68L is such programmed that it always brings the polarization of light beam in each channel back to be perpendicular to the plane of paper after the delay device. This assures that all channels will reflect off PBS 38L and be received by a detector array 72, as in
The same concept can also be used to make phase shifters for phased array antennas with narrow bandwidth where true time delay is not necessary. For example, an 8. GHz (X-band) carrier has a wavelength of 3.75 cm. To obtain a total phase shift of 2π for such a carrier, a total length of only 13 cm of Rutile crystal per channel is required. For a Ka band carrier of wavelength of 0.75 cm (40 GHz), only 2.6 cm Rutile crystal per channel is required.
TABLE I
ng − no = Δl/l
Crystal for 1 cm delay
Orpiment (As2S3)
0.4
2.5
cm
Geikelite (MgTiO3)
0.36
2.78
cm
Tellurito (TiO2)
0.35
2.86
cm
Prousite
0.29
3.45
cm
Rutile (TiO2)
0.287
3.48
cm
Ag5AsS3
0.28
3.57
cm
Calcite
−0.172
5.81
cm
LiNbO3
−0.086
11.63
cm
Quartz
0.0091
110
cm
PM Fiber
˜6 × 10−4
˜1667
cm
Table I listed lists the birefringence of potential birefringent materials for fabricating the proposed delay lines. Note that different crystals may be used together to construct a delay line: a crystal with small birefringence can be used to make segments of small delays (less significant bits) and a crystal with large birefringence can be used to make segments of large delays (more significant bits).
The maximum delay ΔLmax required of a beam forming network of a phased array antenna with N×N elements is
where θmax is the maximum beam scanning angle, λ is the wavelength of the carrier (microwave) signal of the phased array, and dmax≡λ/(1+sin |θmax|) is the maximum array spacing allowed before higher order diffraction degrade the antenna gain.
To achieve an angular beam scanning resolution of Δθ, the delay resolution or the minimum path delay between the two adjacent elements Δl is required to be
Table II lists the values of required maximum delay ΔLmax and delay resolution Δl for a phased array with λ=0.75 cm (40 GHz), N=64, and Δθ=1°. The corresponding crystal lengths for the maximum and the minimum delays are also listed. For example, for the case of θmax=30°, LiNbO3 crystal of length 0.87 mm can be used to make the segment of the smallest delay of 76.5 μm and the Rutile crystal of the total length of about 55 cm can be used to make other larger delay segments that have a total delay of 15.75 cm. In the table, the number of bits M is calculated using M=log2(1+ΔLmax/Δl).
TABLE II
θmax = 5°
θmax = 10°
θmax = 30°
θmax = 60°
ΔLmax
3.78 cm
7 cm
15.75 cm
21.93 cm
or 5.04 λ
or 9.33 λ
or 21 λ
or 29.24 λ
Lmax
13.48 cm
24.4 cm
55 cm
76.4 cm
(Rutile)
Δl
0.12 mm
0.11 m
0.0756 mm
0.035 m
l
1.4 mm
1.3 mm
0.87 mm
0.41 mm
(LiNbO3)
M
7
8
11
12
No. of bits
It should be noted that Rutile has excellent optical and physical properties: it is transparent to light from 500 nm to 5 μm and its birefringence (ne−no) remains almost unchanged from 430 nm to 4 μm. It has a density of 4.26 g/cm3, a melting point of 2093° K., and a solubility in water less than 0.001.
To reduce the cost and to extend the delay range, the index-changing delay elements may be cascaded with a ladder structured path-switching delay device described previously, as shown in FIG. 8. The birefringent crystal segments are used for the less significant bits of high delay resolution and the path switching concept is used for the more significant bits of large delays. This cascaded construction combines the advantages of both techniques and avoids their short comings. The total length of the crystal segments per channel is now reduced to few centimeters.
In stead of cutting crystals into many segments, the index-switching time delay unit may also be constructed using slabs of crystal, as shown in FIG. 9. Such a unit consists of slabs of birefringent crystal 92, a upper layer of polarization rotators 90A (which may be individually and independently controlled), an optional lower layer polarization rotators 90B, a upper row of corner reflectors 86A, a lower row of corner reflectors 86B, an optional upper lens array 88A, and an optional lower lens array 88B.
Finally, to obtain even finer delay tuning, electrodes 44 can be attached across each crystal slab to apply an electrical field 94 and change the refractive index of the crystal via the electro-optic (or Pockel's) effect of the birefringent crystals, as shown in FIG. 9 and FIG. 10C. The two electrodes on each face of crystal slab 92 can be separated by an insulation layer 98.
In summary, the index switched photonic variable delay device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device can be much less than a femtosecond (one micron in space) and its total delay exceeds 1 nanosecond. The delay accuracy achievable is high, and is only limited by the length accuracy of each crystal segment. The device can also be digitally programmed with low switching power (microwatts per switch or per bit). Such a device is ideal for a beam forming network of a phased array operating at Ka band (˜40 GHz) and above frequencies and for millimeter wave transversal filters. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving. Finally, this index-switched variable delay device can be cascaded with a ladder-structured variable device to form a new device which combines the advantages of the two individual devices.
Although the description above contains many specificaties, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents, rather than by the examples given.
Patent | Priority | Assignee | Title |
7224860, | Oct 09 2003 | AGILTRON, INC | Multi-port optical switches |
7522785, | Dec 01 2004 | Luna Innovations Incorporated | Measurements of polarization-dependent loss (PDL) and degree of polarization (DOP) using optical polarization controllers |
7602336, | Jun 11 2007 | The Aerospace Corporation | Coherently combining antennas |
7693419, | Nov 23 2005 | Luna Innovations Incorporated | Optical spectrum analysis using optical interferometry |
7723670, | Mar 26 2007 | Luna Innovations Incorporated | Optical differential group delay module with folded optical path |
7724435, | Jan 22 2002 | Luna Innovations Incorporated | Importance sampling techniques based on adjustable differential group delay (DGD) elements |
7777931, | Feb 26 2007 | Seiko Epson Corporation | Electro-optic element and scanning optical device |
7796894, | Jul 30 2003 | Luna Innovations Incorporated | Reduction of noise and polarization mode dispersion (PMD) based on optical polarization stabilizer in fiber transmission |
7817325, | Feb 26 2007 | Seiko Epson Corporation | Electro-optic element and scanning optical device |
7945130, | Nov 15 2007 | Luna Innovations Incorporated | Mode scrambling apparatus for multimode fiber |
7952711, | Mar 26 2007 | Luna Innovations Incorporated | Waveplate analyzer based on multiple tunable optical polarization rotators |
8000610, | Mar 12 2003 | Luna Innovations Incorporated | Monitoring mechanisms for optical systems |
8059335, | Sep 19 2008 | National Chiao Tung University | Adjustable optical signal delay module and method thereof |
8073326, | Dec 06 2006 | Luna Innovations Incorporated | Optical polarization division multiplexing in optical communication |
8164831, | Apr 18 2002 | Luna Innovations Incorporated | Optical depolarizers and DGD generators based on optical delay |
8345238, | Feb 04 2008 | Luna Innovations Incorporated | Measuring optical spectral property of light based on polarization analysis |
8422882, | Feb 04 2008 | Luna Innovations Incorporated | Monitoring polarization-mode dispersion and signal-to-noise ratio in optical signals based on polarization analysis |
8780433, | Sep 28 2011 | Luna Innovations Incorporated | Polarization scrambling based on cascaded optical polarization devices having modulated optical retardation |
8787755, | Feb 04 2008 | Luna Innovations Incorporated | Monitoring polarization-mode dispersion and signal-to-noise ratio in optical signals based on polarization analysis |
8885985, | Oct 24 2006 | II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC | Systems and methods for polarization mode dispersion mitigation |
9397397, | Oct 03 2011 | UNIVSERSITEIT TWENTE | Electronically-steered Ku-band phased array antenna comprising an integrated photonic beamformer |
Patent | Priority | Assignee | Title |
3302028, | |||
3684350, | |||
3719414, | |||
4094581, | Jan 31 1977 | Westinghouse Electric Corp. | Electro-optic modulator with compensation of thermally induced birefringence |
4461543, | Mar 26 1982 | Sperry Corporation | Electro optic switch |
5251057, | Oct 13 1989 | Xerox Corporation | Multiple beam optical modulation system |
5317445, | Dec 16 1992 | General Electric Company | Optical device with spatial light modulators for switching polarized light |
5373393, | Jun 01 1993 | General Electric Company | Opical interferometric device with spatial light modulators for switching substantially coherent light |
5381250, | Nov 06 1992 | Displaytech, Inc. | Electro-optical switch with 4 port modules with electro-optic polarization rotators |
5475525, | Mar 29 1991 | Thales | Transverse electrical filter operating optically |
5867291, | Oct 29 1996 | EZCONN Corporation | Programmable wavelength router |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 02 2001 | General Photonics Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 18 2007 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Jun 18 2007 | M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity. |
Sep 07 2010 | ASPN: Payor Number Assigned. |
Date | Maintenance Schedule |
Oct 04 2008 | 4 years fee payment window open |
Apr 04 2009 | 6 months grace period start (w surcharge) |
Oct 04 2009 | patent expiry (for year 4) |
Oct 04 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 04 2012 | 8 years fee payment window open |
Apr 04 2013 | 6 months grace period start (w surcharge) |
Oct 04 2013 | patent expiry (for year 8) |
Oct 04 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 04 2016 | 12 years fee payment window open |
Apr 04 2017 | 6 months grace period start (w surcharge) |
Oct 04 2017 | patent expiry (for year 12) |
Oct 04 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |