Disclosed is an optical recording and reproducing apparatus comprising a light source directing a light spot toward a recording medium, a detection system detecting light reflected from the recording medium to derive an electrical signal from the reflected light, an information processing circuit modulating the intensity of the light spot according to writing pulses to record information on the recording medium and using the electrical signal to reproduce information from the recording medium, and a tracking servo circuit carrying out tracking servo operation on the basis of the electrical signal and including an extracting circuit connected to a source of extracting pulses having a pulse width at least equal to the writing pulse width so that writing pulse parts contained in the electrical signal are extracted during recording information, whereby a track offset occurring during information recording can be minimized, and the stability of the tracking servo system can be improved.
|
8. A method of optical recording and reproduction including the steps of directing a light spot toward a recording medium, modulating the intensity of said light spot according to writing pulses to record information on said recording medium, and detecting light reflected from said recording medium to reproduce information from said recording medium, said method comprising the step of carrying out a tracking servo operation on the basis of an electrical signal detected from said reflected light and including applying extracting pulses having a pulse width at least equal to greater than that of said writing pulses so that time-wise portions of said electrical signal corresponding to the writing pulses during recording of information are not utilized for the tracking servo operation when the extracting pulses are present.
5. An optical disk apparatus comprising:
a light source;
an optical system guiding light emitted from said light source toward a recording medium on a disk plate;
an information detection circuit separating light reflected from said recording medium on said disk plate from said optical system and photoelectrically converting said reflected light into an electrical signal;
an information processing circuit recording and reproducing information on and from said recording medium on said disk plate; and
means connected to said information detection circuit for applying extracting pulses having a pulse width at least equal to greater than that of writing pulses for recording of information to said information detection circuit so that time-wise portions of said electrical signal corresponding to the writing pulses during recording of information are not utilized for a tracking servo operation of a tracking servo circuit when the extracting pulses are present.
1. An optical recording and reproducing apparatus comprising:
light illuminating means for illuminating a light spot toward a recording medium;
a detection system detecting light reflected from said recording medium to derive an electrical signal from said reflected light;
an information processing circuit modulating the intensity of said light spot according to writing pulses to record information on said recording medium and using said electrical signal to reproduce information from said recording medium; and
a tracking servo circuit carrying out a tracking servo operation on the basis of said electrical signal, said tracking servo circuit including an extracting circuit for extracting time-wise portions of said electrical signal, and means for applying extracting pulses having a pulse width at least equal to greater than the writing pulse width to said extracting circuit so that time-wise portions of said electrical signal corresponding to the writing pulses during recording of information are not utilized for the tracking servo operation when the extracting pulses are present.
2. An optical recording and reproducing apparatus according to
3. An optical recording and reproducing apparatus according to
4. An optical recording and reproducing apparatus according to
6. An optical disk apparatus according to
7. An optical disk apparatus according to
9. A method of optical recording and reproduction according to
10. A method of optical recording and reproduction according to
11. A method of optical recording and reproduction according to
|
This invention relates to a method and apparatus using a light spot for recording and reproducing information on and from a track on a recording medium, and more particularly to an optical information retrieving system which minimizes an adverse effect of a track offset that may occur during recording and improves the characteristics of a tracking servo system at the time of recording. The present invention is preferably applicable to a write-once-read-many type optical disk apparatus capable of additional recording of information.
Such a write-once-read-many type optical disk apparatus can record a large amount of information on an optical disk by directing a light spot from an optical head toward the optical disk and locally fusing a recording film by the heat of the light spot thereby forming pits in the recording film. However, the write-once-read-many type optical disk apparatus has such a problem that, depending on the characteristics of the optical head and optical disk, information cannot be normally recorded when a track offset occurs during recording information.
As a tracking method applicable to such an optical disk apparatus, there is a push-pull method which attains tracking utilizing light reflected and diffracted from a track guide groove (a pre-groove). It is known that, when this push-pull method is used, tracking operation tends to become unstable if a track offset occurs due to inclination of an optical disk or movement of a light beam. Provision of correction marks such as mirror marks in each track guide groove so as to prevent the unstable tracking operation is described in U.S. Pat. No. 4,663,751 and U.S. patent application Ser. No. 870,944 now U.S. Pat. No. 4,751,695. Also, provision of correction marks such as prewobbled pits in each track guide groove is described in U.S. patent application Ser. No. 845,340 now U.S. Pat. No. 4,748,609. These methods intend to stabilize the tracking control by detecting a track offset component from the correction marks such as the mirror marks or prewobbled pits and adding or subtracting the detected track offset component to or from an output signal of a guide-groove-based tracking servo signal thereby correcting the tracking error. Further, U.S. patent application Ser. No. 071,183 now U.S. Pat. No. 4,807,210 proposes a method in which a tracking error attributable to a track offset component detected from correction marks such as mirror marks or prewobbled pits is corrected in the read mode only, and, in the write mode or erase mode, the correction marks are used for detection of a track offset component, and the recording operation and erasing operation are controlled depending on the output level of the track offset component so as to prevent erroneous recording of information or erroneous erasing or insufficient erasing of data recorded already.
However, none of the prior art disclosures described above refers to the problem of occurrence of a track offset attributable to a pulse-like increase in the intensity of the light spot emitted during recording information.
It is an object of the present invention to provide an optical recording and reproducing method and apparatus in which a track offset occurring during recording information on an optical disk is minimized so as to improve the stability of a tracking servo system.
According to the present invention which attains the above object, writing pulse parts contained in a tracking servo signal detected during recording information are extracted by means of extracting pulses having a pulse width corresponding to that of writing pulses.
When the push-pull method is used for detecting a tracking servo signal at the time of information recording, a track offset appears when an optical head or an optical disk has not satisfactory characteristics. That is, such a track offset occurs when an unbalance occurs in writing pulse parts reflected from the optical disk at the time of information recording. Therefore, when the reflected unbalanced writing pulse parts contained in the tracking servo signal at the time of information recording are extracted, with the timing of writing pulses, by means of extracting pulses having a pulse width at least equal to that of the writing pulses or a pulse width determined while taking into account the frequency characteristics of the tracking servo signal, the track offset appearing at the time of information recording can be minimized, and the performance of the tracking servo system can be greatly improved.
FIGS. 3(a) to 3(f) are waveform diagrams for illustrating the operation of the apparatus of the present invention.
A preferred embodiment of the present invention will now be described with reference to FIG. 1.
For the purpose of recording information, a writing pulse signal is generated from a signal processing circuit 9 provided for management and modulation/demodulation of data to be recorded. The writing pulse signal is applied to a laser driver 10, and the laser driver 10 causes high power oscillation of the laser diode 1 in a pulsating fashion. The heat of the laser beam emitted from the laser diode 1 acts to locally fuse the recording medium 7 to form pits in the recording medium 7 thereby recording the information on the optical disk.
The light reflected from the recording medium 7 passes through the focusing lens 6 and the galvano mirror 5 again and passes then through the quarter wave plate 4 to be turned into linearly polarized light from circularly polarized light. Then, the optical path of the light is diverted by the polarization prism 3. After passing through a lens 11, the diverted light is divided into two light beams by a half prism 12. The light beam reflected by half prism 12 is incident on a first light detector 13 disposed on the upstream side of the focal point of the lens 11, while the light beam transmitted through the half prism 12 is incident on a second light detector 14 disposed on the downstream side of the focal point of the lens 11. The first and second light detectors 13 and 14 have the same shape.
When the disk plate 8 tilts in the vertical direction, and out-of-focus or de-focus results, the light beams of shapes different from each other depending on the direction of the de-focus are incident on the first and second light detectors 13 and 14, and these light detectors 13 and 14 receive different quantities of light respectively.
The operation of the focusing servo in the apparatus of the present invention is such that, after the outputs of the light detecting elements A1 and A2 of each of the first and second light detectors 13 and 14 are added, the resultant outputs of the first and second light detectors 13 and 14 are applied to a differential amplifier 15 to derive an AF error signal from the differential amplifier 15, and the AF error signal is applied to an AF driver circuit 16, so that the focusing lens 6 mounted on the voice coil motor can follow up the vertical tilting movement of the disk plate 8.
The information reproducing operation in the apparatus of the present invention is such that the outputs of the light detecting elements T1 and T2 of the second light detector 14 are added to obtain a reproduced signal representing the quantities of light reflected from the recording medium 7 depending on the presence or absence of pits on the recording medium 7, and, after amplifying the reproduced signal by an amplifier 17, the output signal of the amplifier 17 is applied to the signal processing circuit 9 in which the signal is converted into a pulse signal so as to demodulate the recorded data.
In the tracking servo employed in the apparatus of the present invention, the push-pull method is used for the purpose of tracking error detection. Basically, the light detecting elements T1 and T2 of the first light detector 13 are disposed in such a relation that a track (a guide groove) formed on the disk plate 8 is located between the light detecting elements T1 and T2. An unbalance occurs in the diffracted light beam when the light spot deviates from the center of the track, and the difference between the outputs of the light detecting elements T1 and T2 in such a case is detected by a second differential amplifier 22 to obtain a tracking servo signal. This tracking servo signal is applied to a TR driver circuit 23 which drives the glavano mirror 5, so that the light spot can follow up the center of the track.
However, in the case of an on-land recording method in which information is recorded on a land between the guide grooves (pre-grooves) previously formed on the disk plate 8, an unbalance dependent upon the characteristics of the optical head and optical disk occurs in the writing pulse parts contained in the reflected light incident on the light detecting elements T1 and T2 during information recording, and such a problem arises in which the recording operation cannot be normally carried out due to an offset occurred in the tracking servo signal.
The state of writing pulse parts contained in reflected light during information recording will be described with reference to
It will be understood from the foregoing description of the present invention that, in the write mode, writing pulse parts are extracted from the TR detection system for a period of time corresponding to the writing pulse width, so that the track servo performance can be greatly improved.
Maeda, Takeshi, Sugiyama, Hisataka, Shigematsu, Kazuo, Kaku, Toshimitsu, Takasago, Masahiro
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4408314, | Feb 29 1980 | Tokyo Shibaura Denki Kabushiki Kaisha | Record/playback track tracking servo |
4503324, | Jun 18 1981 | Tokyo Shibaura Denki Kabushiki Kaisha | Automatic focusing device |
4651314, | Sep 14 1984 | Olympus Optical Co., Ltd. | Optical recording and reproducing equipment |
4742505, | Nov 21 1984 | Olympus Optical Company Limited | Optical information recording and reproducing memory system |
4748609, | Mar 29 1985 | Hitachi, Ltd. | Method and apparatus for composite tracking servo system with track offset correction and rotary optical disc having at least one correction mark for correcting track offset |
4751695, | Jun 05 1985 | Hitachi, Ltd. | Method and apparatus for tracking servo system |
4774698, | Jan 29 1985 | Sony Corporation | Optical disc recording and reproducing apparatus with improved servo control |
4785442, | Jul 11 1986 | Hitachi, Ltd. | Light spot position control system and method by sampling servo |
4807210, | Jul 09 1986 | Hitachi, Ltd. | Optical information processing apparatus |
4819220, | Sep 12 1986 | Olympus Optical Co., Ltd. | Optical information recording and reproducing apparatus |
JP57208642, | |||
JP59157877, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 05 2003 | Hitachi, Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Mar 14 2009 | 4 years fee payment window open |
Sep 14 2009 | 6 months grace period start (w surcharge) |
Mar 14 2010 | patent expiry (for year 4) |
Mar 14 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 14 2013 | 8 years fee payment window open |
Sep 14 2013 | 6 months grace period start (w surcharge) |
Mar 14 2014 | patent expiry (for year 8) |
Mar 14 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 14 2017 | 12 years fee payment window open |
Sep 14 2017 | 6 months grace period start (w surcharge) |
Mar 14 2018 | patent expiry (for year 12) |
Mar 14 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |