Single horizontal wells drilled through heterogeneous reservoirs are capable of greater oil productivity than vertical wells, often with lower produced GOR and WOR. Multiple drainholes tied-in to a vertical cased well are even more beneficial. Completion of such drainholes in many sandy reservoirs must use cemented liners. Well configurations comprising multiple drainholes liners, each of them tied-in to a vertical casing by pressure-tight connections require novel technologies making use of some novel downhole equipment, tools and procedures for drilling, tie-in and completion of such wells. These may be for newly-drilled wells or may be obtained by re-entry into an existing vertical cased well. Specific equipment, including novel casing joints, whipstocks, intermediate liners and tubing completion assembly components applicable to new wells are described herein. Equipment comprising novel casing inserts and patches applicable to re-entry wells, and the corresponding tubing completion assembly components for a variety of well exploitation modes are also described, together with the required tools and procedures. The liners of the drainholes are such that known well logging and cleaning tools may be used throughout the well's life. The various tubing completion assemblies can all be run-in and installed in a single trip. They allow either commingled flow from all drainholes or selective injection into some drainholes while others are under production. They are adapted to a variety of reservoir pressure conditions and of oil types, including heavy oil produced by sequential “huff and puff” steam injection.

Patent
   RE39141
Priority
Jan 04 1993
Filed
Sep 21 2001
Issued
Jun 27 2006
Expiry
Jan 04 2013

TERM.DISCL.
Assg.orig
Entity
Large
1
123
all paid
0. 2. Apparatus for completing a multi-branch cased well for oil recovery by sequential cyclic steam injection methods and for petroleum production from non-uniformly-pressured heterogeneous reservoirs through medium curvature, liner equipped, horizontal drainholes;
said apparatus includes downhole equipment, tools and devices for making casing/liner and liner/tubing sealed connections and individual liner/drainhole flow connections, comprising:
a) a special steel cylindrical casing joint presenting an elliptical side window machined at a prescribed small downwards kick-off angle and covered by a drillable metal plate shaped to conform with the outer surface of said casing joint which is also equipped with a drillable orientation device comprising a vertical key or groove,
b) a drillable support and packer affixed in said casing joint by slips below said window,
c) a retrievable single-channel whipstock tool set within said packer in accordance with a matching orientation device;
said whipstock presents at least one guiding groove on its slanted surface and at least one latching recess on its cylindrical surface,
d) a short intermediate steel liner of a diameter slightly smaller than said window's short axis, allowing its insertion into a kicked-off hole, through the window and wherein the upper end of said intermediate liner is equipped with a pressure-sealing gasketed drillable collar shaped to conform both with the inner surface of the casing joint along the edge of the window and with said guiding groove in the whipstock, so that said gasketed end, when pressed against the inner surface of the casing joint, provides a permanent high-temperature seal in addition to thermal cement around said intermediate liner,
e) an overshot tool, equipped internally with at least one spring-loaded hook to latch into the whipstock's latching recess or key and pull it out; said tool also presents at its lower end some milling cutters, for surfacing the liner's drillable collar and for drilling-out the packer slips and support, and said tool includes a latching device, for pulling-out the drilled-out packer,
f) a selectively perforated drainhole steel liner inserted in a drainhole drilled through such intermediate liner, hung from above as well as from below and cemented in the lower part of said intermediate liner, and having the annular space between intermediate liner and drainhole liner sealed with an inflatable packer,
g) a tubing completion assembly conveying production fluids from a drainhole to the surface and steam from the surface to a drainhole, wherein said tubing completion is terminated at its lower end by a heat-resistant, pressure-tight, multiple-breakable-sealed connecting device wherein several articulated connector steel tubes are each inserted into the upper part of the intermediate liner of a drainhole, and the annular space between the inner surface of said intermediate liner and said connector tube is sealced by an inflatable thermal packer,
h) a hydraulically-operated slot-cutting tool for selectively perforating the uncemented lower part of each drainhole liner.
0. 1. Apparatus for completing a multi-branch cased well for oil recovery by sequential cyclic steam injection methods and for petroleum products from non-uniformly-pressured heterogeneous reservoirs through medium curvature, liner-equipped, horizontal drainholes;
said apparatus includes downhole equipment, tools and devices for making casing/liner and liner tubing sealed connections and individual liner/drainhole flow connections, comprising:
a) a special steel casing joint equipped with a hard metal multi-channel whipstock permanently affixed to and sealed in said casing joint by means of an upper guide plate presenting at least two small feed-through vertical holes, one of which terminated at both ends by threaded connections, and two larger vertical holes, each leading to a slanted cylindrical curved channel partly filled with a cement plug and each said channel leading to an elliptical window machined in a direction slanted downwards at a pre-selected kick-off angle into the wall of said casing joint and plugged by a drillable plate conforming with the outer surface of said casing joint,
b) a retrievable wedge-type top whipstock tool whose base presents at least two alignment pins or prongs fitting into said guide plate small holes, in which they are held by releaseable latches, said top whipstock's outer lateral surface presenting at least one latching recess for its removal using an overshot tool,
c) an overshot tool equipped with releaseable hooks to pull out, re-orient and reset said top whipstock, in the same trip,
d) a steel liner inserted in a drainhole drilled through each said whipstock channel, said liner hung with devices resisting liner weight and thermal expansion forces applied to said liner from above as well as from below and said liner permanently sealed into said channel by a pressure-sealing device including a heat-resistant seal, in addition to thermal cement,
e) a tubing completion assembly conveying production fluids from a drainhole to the surface and steam from the surface of a drainhole; wherein said tubing completion assembly is terminated, at its lower end, by a heat-resistant, pressure-tight, multiple-breakable-sealed connecting device wherein two pairs of vertical tubular connector prongs, equipped with releasable high-temperature-sealing devices, respectively fit into the two larger holes and into the two smaller holes in the guide plate of said special casing joint, to respectively convey production fluids from a drainhole to said tubing assembly and steam from a known three-way valve to the other drainhole,
f) a hydraulically-operated slot-cutting tool for selectively perforating said drainhole liner to establish a flow connection between a surrounding oil reservoir and said liner in its uncemented lower part.
0. 3. Apparatus for completing a multi-branch cased well for oil recovery by sequential cyclic steam injection methods and for petroleum products from non-uniformly-pressured heterogeneous reservoirs through medium curvature, liner-equipped, horizontal drainholes;
said apparatus includes downhole equipment, tool and devices for making multiple casing/liner and liner/tubing sealed connections and individual liner/drainhole flow connections, comprising:
at least one special casing joint in the casing string of a vertical hole, opposite a reamed interval straddling the kick-off points of one or more drainholes, said joint presenting one or more elliptical windows oriented downwards and facing pre-selected kick-off directions at various depths,
b) a telescopic steel liner stub closed at its lower end by a drillable metal plate plugging each window, and machined at both ends to conform respectively with the outer surface of the casing window for the lower end and with the inner surface of the casing window for the upper end,
c) two drillable metal guide cages supporting said stub, inclined at the kick-off angle, with one of the two guide cages affixed inside the casting joint by drillable fasteners while the other, freely inserted into the stub, is mobile and can slide within said fixed guide over an interval equal to a fraction of the sub length,
d) a drillable gasketed collar affixed to the stub's upper end to prevent said telescopic stub's upper end from popping out through the window into the reamed cavity when the stub is extended by increasing the hydraulic pressure in the casing with respect to that of the annulus during cementation of the casing string and of each extended stub, with a cement slurry displaced behind the casing and wherein said gasketed collar presents at least one guiding key or groove sliding along a bar of the fixed guide cage, to prevent any rotation of the stub around its axis,
e) a steel liner inserted in a drainhole drilled through such a liner stub, permanently hung by a dual hanger's opposing slips into said stub and sealed with a high-temperature pressure-sealing device, in addition to thermal cement,
f) a tubing completion assembly, conveying production fluids from a drainhole to the surface and steam from the surface to a drainhole, having at its lower end a heat-resistant, pressure-tight, multiple-breakable-sealed connecting device wherein telescopic connector steel tubes inclined at the kick-off angle are facing each window, with the tube's lower end equipped with a high-temperature sealing device insertable into the upper part of the window's stub and set when said connector tube is in its extended position, whereas the upper end of said tube is equipped with a movable sliding seal remaining within a cylindrical cavity of said tubing completion assembly,
g) a hydraulically-operated slot-cutting tool for selectively perforating the uncemented lower part of each drainhole liner.
0. 18. A method for sealing the intersection between a primary borehole and a branch borehole comprising the steps of:
simultaneously installing a casing and a deformable sealing apparatus at an intersection to be formed between a primary borehole and branch borehole prior to drilling of said branch borehole;
drilling said branch borehole;
deforming the sealing apparatus to seal the intersection between said primary borehole and said branch borehole; and
installing a liner in said branch borehole.
0. 8. A method for sealing the intersection between a primary borehole and a branch borehole comprising the steps of:
simultaneously installing a casing and a deformable sealing apparatus at an intersection to be formed between a primary borehole and branch borehole prior to drilling of said branch borehole;
forming an opening in said casing at the site of the intersection to be formed between said primary borehole and said branch borehole, said opening being formed in said casing prior to installation of said casing in said primary borehole;
drilling said branch borehole; and
deforming the sealing apparatus to seal the intersection between said primary borehole and said branched borehole.
0. 20. A method for sealing the intersection between a primary borehole and a branch borehole comprising the steps of:
positioning a collapsible/expandable assembly of an intersection to be formed between a primary borehole and a branch borehole, said assembly including a primary liner having an opening therethrough and a secondary liner attached to said primary liner and communicating with said opening, said secondary liner being adapted to expand from said primary liner;
placing said secondary liner in a collapsed position within said primary liner prior to positioning said collapsible/expandable assembly at said intersection;
expanding said second liner outwardly from said primary liner when said assembly is positioned at said intersection; and
delivering drilling equipment through said primary liner and said second liner and drilling said branch borehole.
0. 19. A method for sealing the intersection between a primary borehole and a branch borehole comprising the steps of:
simultaneously installing a casing and a deformable sealing apparatus at an intersection to be formed between a primary borehole and branch borehole prior to drilling of said branch borehole, wherein said deformable sealing apparatus comprises a collapsible/expandable assembly comprising a primary liner having an opening therethrough and a secondary liner attached to said primary liner and communicating with said opening, said secondary liner being adapted to expand angularly from said primary liner;
placing said secondary liner in a collapsible position within said primary liner prior to positioning said deformable sealing apparatus at said intersection;
drilling said branch borehole;
deforming the sealing apparatus to seal the intersection between said primary borehole and said branch borehole; and
expanding said secondary liner.
0. 21. A method for sealing the intersection between a primary borehole with a casing and a branch borehole comprising the step of:
forming an opening in said casing at the site of the intersection to be formed between said primary borehole and said branch borehole, said opening being formed in said casing prior to installation of said casing in said primary borehole;
positioning said casing and a flanged liner at the intersection to be formed between a primary borehole and a branch borehole, said flanged liner terminating at a flange;
installing said flanged liner so that the flange is adjacent to the periphery of said opening in said casing;
delivering a deforming tool to said flange to deform said flange and form a seal between said flange and the periphery of said opening in said casing, to seal the intersection between said primary borehole and said branch borehole; and,
delivering drilling equipment through the flanged liner and drilling the branch borehole.
0. 24. A method for sealing the intersection between a primary borehole and a branch borehole comprising the steps of:
installing casing in said primary borehole at an intersection to be formed between said primary borehole aid said branch borehole, said casing having an opening and said opening being formed in said casing prior to installation of said casing in said primary borehole;
positioning a collapsible/expandable assembly at said intersection to be formed between a primary borehole and a branch borehole, said assembly including a primary liner having an opening therethrough and a secondary liner attached to said primary liner and communicating with said opening, said secondary liner being adapted to expand from said primary liner;
placing said secondary liner in a collapsed position within said primary liner prior to positioning said collapsible/expandable assembly at said intersection; and
expanding said secondary liner outwardly from said primary liner when said assembly is positioned at said intersection.
0. 4. The apparatus for completing a multi-branch cased well of claims 1, 2 or 3 wherein the hydraulically-operated slot-cutting tool comprises:
a) a cylindrically tool body inserted into said drainhole liner wherein a plurality of cutting wheels, each one mounted on a perpendicular axis to that of said body, at the end of an hydraulically-operated articulated arm, are periodically pressed into the inner surface of said liner wall, which they penetrate, by large forces applied only when the arms are extended by the displacement of a spring-loaded hydraulic piston sliding in a pressurized liquid-filler cylinder,
b) a source of periodic hydraulic fluid pressure at the surface,
c) a coiled tubing of smaller diameter than that of said drainhole liner, connecting said cylindrical body to said pressure source and providing a mechanical link to the surface, to insert and pull-out the tool body through the liner, thus causing each cutting wheel to cut a slot into the liner wall, substantially parallel to the axis of said liner, while the arms are kept in their extended position, but leaving the liner wall intact when the arms are brought into their retracted position along the tool body.
0. 5. The apparatus for completing a multi-branch cased well of claim 3, wherein the tubing completion assembly comprises a multiple-breakable-sealed connecting device presenting at least two slightly inclined fixed branches, each one terminated by a connector tube assembly equipped at its end-with a known sealing device, taken from a list comprising: thermal packings, O rings and metal/metal seals, to provide a breakable pressure-seal against the inner surfaces of said casing/liner's connecting device;
said computer tube assembly comprises:
a) a cylindrical body with its upper end connected to a tubing and forming with said tubing an angle equal to that formed by the casing/liner connecting device and the casing, and said upper end equipped with anchoring means to fasten it to the inner surface of the casing,
b) a connector steel tube sliding through said cylindrical body under the surface-controlled pressure of a hydraulic fluid which also compresses a spring against an arrestor ring, to provide a spring-loaded, high-temperature end seal of said connector tube when in its extended position,
c) a wireline-releaseable mechanical latch maintaining said spring under compression after the hydraulic pressure has been released.
d) means for latching a suitable retrieval wireline tool to the tail end of said connector tube to retract it and to latch it into said body in its retracted position, in the event that the whole tubing completion assembly has to be pulled out for inspection or repairs,
e) a packing-type, high-temperature lateral seal in the annulus between said cylindrical body and the tube within said connector tube assembly, providing a breakable pressure-sealed flow connection between said liner and said tubing.
f) a packing-type, heat-resistant seal around said connector tube, above said end seal, providing an additional pressure-seal against the inner surface of the casing/liner connecting device in which the connector tube is inserted.
0. 6. The apparatus for completing a multi-branch cased well according to claims 1, 2 or 3 further comprising a downhole pump and means for preventing pump cavitation and gas lock in the tubing completion assemblies, when they convey gassy or boiling production fluids to the surface;
said means comprising:
1) a vertical sump, clocked at its top by a conventional multi-string tubing/casing packer and connected to said multiple drainholes, and wherein the absolute flowing pressure of said produced fluids, at the point of highest elevation in the flow path from the drainholes to said sump, may drop below the bubble point absolute pressure of said fluids, a situation resulting in gases being evolved or coming out of solution to form a gas pocket which interrupts the flow of liquids from said drainholes into the sump pump,
2) a wireline-retrievable gas-purging device suitable for latching into the short string of the multi-string packer located at the top of the sump, wherein said device is taken from a downhole equipment list comprising:
a) a normally closed subsurface valve whose opening is controlled by a fluid level sensor at the top of said oil sump to periodically purge into the compartment above said packer any gas phase accumulating above a predetermined fluid level depth,
b) a wireline-retrievable plug in said packer, comprising a permselective membrane permeable to diffusing gas but impervious to liquid flow, for continuously purging of said gas phase, under a gas pressure gradient,
c) a venturi in the pump-discharged liquid production stream flowing through a string adjacent to said plug in said multi-stringent packer, at its exit into an enlarged flow cross section above said packer, which is equipped with a gas flow connection between the side of said venturi and the upper face of said membrane, to create said gas pressure gradient.
0. 7. A method for drilling and completing a multi-branch cased well for oil recovery by sequential cyclic steam injection methods and for petroleum production from non-uniformly pressured heterogeneous reservoirs through medium-curvature, liner-equipped, horizontal drainholes, wherein casing/liner connections are permanently-sealed, wherein liner/tubing are connected by breakable-seals, and comprises the following steps:
a) drilling a pair of short deviated boreholes through the bottom of said vertical well casing,
b) inserting in said pair of drainholes two short intermediate steel liners using a work string ended with an inverted Y nipple joint, two articulated nipple joints, each one equipped with a rubber cementing seal cup, and holding said intermediate liner with a releaseable latch,
c) stab-in cementing of said two short intermediate liners using said work string as cementing string, with sufficient overlap of a special high-temperature resin cement in the casing to provide a permanent gas-tight thermal tie-in of the casing with each intermediate liner,
d) drilling successively each drainhole through each intermediate liner,
e) running a coiled-tubing steel liner through each said intermediate liner into said drilled drainhole, affixing it to the intermediate liner with a dual hanger's opposing slips and with a high-temperature pressure-sealing device prior to cementing its upper end to the intermediate liner's lower end, with a known thermal cement,
f) connecting the upper part of each intermediate liner to the lower end of a tubing assembly equipped with a heat-resistant pressure-tight, multiple-breakable-sealed connecting device,
g) selectively perforating the uncemented lower part of said coiled tubing liner “in situ” using a hydraulically-operated slot-cutting tool at the end of a smaller-diameter coiled-tubing run-in from the surface and inserted through said tubing assembly and intermediate liner into said drainhole liner.
0. 9. The method of claim 8, wherein the primary borehole has preexisting casing and including the steps of removing a portion of said preexisting casing.
0. 10. The method of claim 8, wherein the step of drilling said branch borehole comprises drilling said branch borehole at said opening.
0. 11. The method of claim 10 including the step of installing a liner in said branch borehole.
0. 12. The method of claim 8 wherein said deformable sealing apparatus comprises an inflatable member and said deforming step further includes inflating said inflatable member; and delivering hardenable material to said inflatable member to seal the intersection.
0. 13. The method of claim 8 wherein said deformable sealing apparatus comprises a collapsible/expandable assembly.
0. 14. The method of claim 13 wherein said collapsible/expandable assembly comprises a primary liner having an opening therethrough; and a secondary liner attached to said primary liner and communicating with said opening, said secondary liner being adapted to expand angularly from said primary liner.
0. 15. The method of claim 14 wherein said secondary liner comprises a cylindrical conduit, when fully expanded.
0. 16. The method of claim 8, wherein said deformable sealing apparatus comprises a flanged liner installed in said branch borehole through said opening, said flanged liner terminating at flange and said flanged liner being installed so that said flange is adjacent to the periphery of said opening in said casing and wherein said deforming step comprises:
delivering a deforming tool to said flange to deform said flange and form a seal between said flange and the periphery of said opening in said casing.
0. 17. The method of claim 16 including the step of:
coating said flange with a sealing material for improving the seal between said deformed flange and the periphery of said opening in said casing.
0. 22. The method of claim 21 including the step of installing a production liner in said branch borehole.
0. 23. The method of claim 21 including the step of installing a third liner in the branch borehole.
0. 25. The method of claim 24 including the step of delivering drilling equipment through said primary liner and said secondary liner and drilling said branch borehole.
0. 26. The method of claim 25 including the step of installing a production liner in said branch borehole.

1Case 3 includes a special casing joint equipped with a drillable packer and retrievable whipstock for drilling and completion of a side-tracked hole. In Case 3, a vertical well is drilled, with its lower 50 ft deviated at the angle required to kick-off a horizontal drainhole and oriented in the direction selected for the drainholes. A special casing string is made-up, run-in and cemented by known techniques into the vertical and deviated portions of the hole. It consists of a shoe, a float collar and a special casing joint (FIG. 3) , see FIGS. 3a-3c, located at a depth slight above that of the start of the hole deviation. This casing joint presents an elliptical window machined into the casing with a downward orientation of a few degrees from the vertical. The As previously shown in FIG. 1, the window (1) is again plugged off with a drillable plate (2) made, for instance, of a soft metal and shaped to generally conform with the casing surfaces. The plug is firmly attached to the casing by means of drillable fasteners (29) . Its orientation is also indicated by a vertical drillable key or groove (30) in the casing joint inner surface at or near its lower end.

After displacing the cement slurry behind the casing, the string is rotated to orient the plugged window in the direction opposite to that of the deviated portion of the hole. This is done by marking the window direction on all the uphole joints of the casing, up to the rig floor. After the cement has set, a whipstock drillable packer (31) is run-in and set below the spacial casing joint at a predetermined depth. A retrievable whipstock (32) is then oriented towards the plugged window, using the casting joint's orientation key or groove, fitted in a matching groove or key in the whipstock's outer cylindrical surface. The oriented whipstock presents a curved guiding surface which matches the depth, width and orientation of the window, so that a side-tracked hole (33) of diameter smaller than the casing ID may be kicked-off by drilling the window plug. The hollowed curve of the whipstock also presents a central alignment groove (34) corresponding to the lowest point of the elliptical window (1). The base of the whipstock is preferably equipped with a rubber cup for catching excess cement during later operations.

After drilling out the plug and drilling a side-tracked hole through the window, to a depth of about 60 ft, an intermediate liner is run-in through the window and cemented by known techniques. The upper end of the liner has been machined as shown on FIG. 3a so as to conform with the inner edge of the window (1) and its edge is equipped with an elliptical collar (35) made of drillable metal, which conforms with the inner surface of the casing at the window's edge. The outer surface of the collar is covered with a rubber gasket or plastic sealing material (36) and the lowest part of the collar presents a key (37) which matches the central alignment groove (34) in the retrievable whipstock, so that the intermediate liner end may be oriented and guided to provide a closely fitting contact between the drillable elliptical collar and the casing window's edge. The intermediate liner is equipped with a cementing shoe and latched to a liner releasing tool equipped with a tailpipe and a cup-type packer for cementing by the same technique as in Case 2. After displacement of the center slurry behind the liner, a ball or plug is dropped to close the shoe and casing mud pressure is increased to firmly apply the drillable collar against the inner surface of the casing, while reverse circulation is established through the tailpipe to remove any excess cement.

After the cement has set and the cementing string has been pulled out, the outer saw-tooth grooves (38) of the whipstock are latched into an overshot tool equipped with a milling edge to drill out the elliptical collar (35) and the whipstock is pulled out. The supporting whipstock packer (31) is also drilled out and pulled out with the overshot milling tool, which also is equipped at its lower end with a suitable packer-latching device. These operations leave full openings in both the deviated casing and the side-tracked intermediate liner. Both of them provide a relatively large deviated casing a slightly smaller liner to be used as the respective starting points of two drainholes, in the same way as in Case 2, but the drainhole diameters and that of their respective liners may be greater than that of Cases 1 or 2.

Liner gravel packing, cementation and liner hanging respectively in the deviated casing and in the side-tracked intermediate liner may be done either as in Case 1 or as in Case 2, depending upon the drainhole diameter.

Well completion is done as in Case 2, except that the tie-in of the articulated connector tubes may be obtained either with packers, as in Case 2 or with polished bore receptacles, and seals as in Case 1.

In Case 4 the drainholes are stacked, one above the other, so that the full diameter of the casing is available as a starting point for each drainhole. Here again, a special casing joint (or joints) now presenting two elliptical windows at two different depths and oriented with opposite bearings, is included in the casing string during make-up to provide the starting points of the drainholes.

In a first embodiment (FIG. 4), the drillable plugs closing the windows during run-in are located at the ends of telescopic liner stubs (39) oriented downward at the kick-off angle (typically 2 degrees). Each plugged stub is later hydraulically extended into an under-reamed portion (40) of the vertical hole filled with cement slurry during the casing cementation, to serve as guide for a bit driven by a downhole motor connected to a bent sub in a conventional drilling assembly. Each of these two stubs is supported during run-in and guided during its outwards extension by two tubular guides or cages made of drillable metal. One of them (41) is fixed, it is attached to the casing by drillable metal fasteners. The other (42) is mobile and sides within the fixed cage (41) over only half of the stub extension, while providing a cantilevered sliding internal support to the extended stub. The upper end of the stub is terminated by a drillable collar (35) and gasket (37) as in Case 3.

For 7 in. OD liner stubs at a 2 degree angle in a 9⅝ in. OD casing the elliptical casing window would be 200.6 in. by 7 in. For a 30 in. ID reamed cavity, the total stub extension length is abut 286.6 in. and the stub maximum length is about 487.2 in. This is because both ends of the stub are machined to conform with the elliptical window, leaving in the middle a length of about 86 in. of tubular segment. This length is sufficient to provide tie-in both with the cemented drainhole liner and also with a connector tube linked to the tubing. With the vertical casing and extended stubs cemented, drilling of the extension guides and other internals two 78 in. OD stubs as pockets from which to start drilling the drainholes, using the usual bent stub and downhole motor assembly including the navigation system for angle build up and directional control. The first step is to drill out the stub's end plug. After reaching total measured depth, a liner assembly is made-up and run-in through the stub. Gravel packing and cementing of the uphole liner proceed as in Case 1. The upper end of the liner is centered and hung into the lower part of the stub. It is also terminated by the female part of a polished bore receptacle. The work string is disconnected from the polished bore receptacle and pulled out. The same operations are repeated for the second drainhole, leaving the well ready for tubing completion.

The tubing completion assembly, shown in FIG. 4a, again includes a tubing hanger (14), an inverted Y nipple joint (13), two spherical seal union joints (21), each terminated by a connector tube stringer equipped with the chevron seals (12). A bow spring (28) between the two stingers facilitates their entry into the stubs where they are mated with their respective polished bore receptacle (10). After leak testing of the connection, the tubing hanger is set and the well head nippled up, as in Case 3. The bow spring may be compressed during run-in and released by a suitable wireless tool when reaching the proper insertion depth for the connector tubes. This provision is especially useful when simultaneously connecting more than two connector tubes. In another embodiment, shown on FIG. 4b, connection of the tubing to the drainholes is by means of telescopic connector tubes (43). These are located in cylindrical cavities (44), connected to the two vertical lower branches of the inverted Y nipple joint (13) at the kick-off angle. The lower end of each connector tube (43) is equipped with chevron seals (12), supplemented in some cases by an end to end spherical metal/metal seal (45). A spring (47) triggered from the surface connector tube's spherical end against a corresponding spherical cavity forming the bottom of the polished bore receptacle (10) to provide this metal/metal seal. In FIG. 4c, the connector tube is locked into its extended position, but may be retracted inside the cylinder body by shearing off the latch pins (46) with a wireless tool as shown in FIG. 4d, when it is necessary to disconnect and pull out the tubing for a well work-over. The upper end of the body (44) is equipped with dogs which bite into the inner surface of the casing when the telescopic connector tube is fully extended and pressed against the bottom of the polished bore receptacle. It will be apparent to those skilled in the art that this is only one of many possible ways of achieving both a spring-loaded metal/metal seal and anchoring in the extended position of the telescopic tube while providing means for its eventual retraction and pull out. The invention is not limited to the example described herein.

In yet another embodiment, the casing includes two special joints of the type used in Case 3, located one above the other, separated by an interval sufficient for setting a packer and the two plugged windows oriented in opposite directions. Again, as in Case 3, a drillable whipstock packer is set below one of the windows. The retrievable whipstock is latched into the packer and drilling of the window and side-tracked hole proceeds. A short intermediate liner, as in Case 3, is run-in through the window and cemented. The procedure, repeated for both windows, leaves two side-tracked intermediate liners from which the drainholes are drilled, and their liners are hung and cemented. After drilling out the drillable elliptical collar of each cemented intermediate liner, the entire casing space is available for installing the tubing completion assembly.

The previous embodiments which leave full access to the stacked drainholes also allow to drill, gravel-pack, and tie-in any number of drainholes, equipped with cemented liners, one above the other, by using as many stubs or intermediate liners as there are drainholes.

The commingled production from all drainholes may be discharged into an oil sump formed by the casing below a production packer and pumped to the surface through a single production tubing. The pump location in the tubing may be above the packer, or below it in a tailpipe tubing extension. With such a simple tubing completion assembly, the access into each of the drainholes of logging or cleaning tools is obtained by means of a suitable kick-over tool of known design.

The tubing completion assembly may also be the same as in Cases 2 and 3, which provide a continuous path from the surface to each of two drainholes, and greater operational flexibility.

The types of tubing completion assemblies including telescopic connector tubes or articulated connector tubes, described above for two stacked drainholes, are also applicable to more than two stacked drainholes. If the drainholes are grouped by pairs, connected to a single production tubing, the number of parallel tubes in the casing at any depth is reduced to only three, as shown in FIG. 4e. These are:

the two tubings connected to the lower branches of the inverted Y nipple joint (13), for a given pair of drainholes,

the production tubing extension (48) leading to the other drainhole pairs below the first one.

This number may be increased to four if the hydraulic or jet pump is located below the top pair of drainholes and if the tubing carrying the power fluid to the pump is parallel with the production tubing, but the number of possible stacked drainholes, which is only limited by the casing length, may be much greater.

In all previous cases, it was assumed that reservoir pressure and produced gas expansion are sufficient to convey the production stream to the surface, or at least up the curved portion of each drainhole (up to 500 ft high) without excessive reduction of the total pressure draw down, so that a single artificial lift system providing suction at the base of the production tubing can be used for both drainholes. This may be a conventional gas-lift valve supplied with compressed gas through the casing/tubing annulus. Conversely, the production stream may be conveyed to the surface through the annulus while lift gas is supplied through the tubing. In that event, a packer must be added to the tubing hanger, a diverter valve must be included in the tubing above the packer to convey the production stream to the annulus and a plug must be located in the tubing between the open diverter valve and the bottom gas-lift valve.

Similarly, the commingled production stream from both drainholes may be pumped to the surface through the tubing or through the annulus using known types of pumps. These can be mechanically actuated by sucking rods, by rotating rods (progressive cavity pumps) or they can be actuated hydraulically driven submersible pumps. Pump selection criteria and the importance of an optimum depth of the pump in the well are well known from those skilled in the art. The pump may be anchored either in the tubing or in the annulus, depending upon reservoir and well conditions, including the need to handle gas or sand production.

It is one of the main advantages of connecting two or more drainholes to a single vertical well to allow the possibilty of using a single pump (49) as in FIG. 5a for all the drainholes, thus reducing capital and operating costs of pumping the production stream.

It will be shown later that this possibility is, however, limited in the case of some under-pressured reservoirs. Well completion equipment and novel assembly procedures have been developed to extend the possibility of using a single pump by locating it, as in FIG. 5b, below the drainholes kick-off points. Finally, special equipment and methods are described for the installation and use of a pump in each drainhole, if necessary, as in FIG. 5c.

These considerations on artificial lift are equally applicable to new wells and to the re-entry into an existing casing, to vertical as well as to deviated cased wells.

In under-pressured reservoirs containing low GOR oil, reservoir energy may be insufficient to convey the production stream up to a pump or gas lift valve located above the kick-off points of the drainholes. The difference in elevation between such a pump and the fluids entry points in the horizontal part of the drainholes is greater than the drainholes radius of curvature, which may be up to 500 ft. In addition, there are significant friction pressure drops through the horizontal and curved portions of small-diameter liners, which may reduce the calculated net flowing fluid head at the pump (49) inlet to a value below the required minimum NPSH of the pump. This indicates that cavitation is likely to occur in the pump, with highly detrimental erosion effects and a reduced flowrate. To alleviate this problem, flow from each drainhole may be directed to an oil sump (50), with the pump taking suction at or near the bottom of the sump. See FIG. 6b. The top of the sump is closed by a packet (51) a short distance above the highest kick-off point. It constitutes the apex of a kind of syphon (see FIG. 6 FIG. 6b) for each drainhole. For very low GOR oil, frequently present in underpressured mature reservoirs, the flowing pressure at that point may still be well above the bubble point of the production stream, so that the risk of cavitation and break-up of the de-celerating liquid stream at that point is much less than it would be in a pump at the same location. The flowing pressure at the apex, plus the liquid head in the sump, provide a pump suction pressure exceeding the minimum NPSH required, thus eliminating the risk of cavitation in the bottom pump.

Instead of a pump, an intermittent flow gas lift system may also be used for the same purpose. In this known system, a gas piston lifts an oil slug up the tubing after the standing valve at the bottom has closed. This is equivalent to a beam pump, but more tolerant of sand production.

The drilling and tie-in equipment and procedures are the same as in Cases 1, 2, and 4, except that a sump is drilled and cased vertically below the lowest kick-off point. In Cases 1 and 4, that sump may be created by placing the special casing joint well above the casing shoe.

For the Case 1 configuration, the casing joint shown previously on FIG. 1 is modified as follows:

1) The threaded small holes (7) in the bottom twin whipstock of Case 1 is extended below with a tailpipe which is used first to bring the cement slurry to the shoe, during casing cementation. The bottom part of the tail pipe also includes a pump latching nipple joint.

The threaded small hole is also extended above with the female part of a polished bore receptacle to a later receive a tubing stringer equipped with chevron seals, so as to extend the tailpipe upwards by a production tubing through a sealing connection.

2) The smooth bore second small hole is drilled through the bottom whipstock, to provide a flow path for the produced fluids into the oil sump below it. It may be supplemented with other small holes to provide a sufficiently large cross section for the low velocity liquid flow in the downward leg of the syphon.

The polished bore receptacles terminating the cemented drainhole liners may be omitted, the large vertical holes providing a natural guide for inserting logging or cleaning tools into the liners.

In addition, the tubing completion assembly is modified to consist of:

a) a production tubing,

b) a dual string production packer, with a retrievable plug in its short string. The main purpose of that string is to provide eventual access to the sump for inserting logging or cleaning tools into the drainholes below the packer. A secondary purpose of the short string is to provide a pump by-pass flow path which may be periodically opened to let any gas accumulation below the packer escape upwards by buoyancy, while re-filling the sump with de-gassed liquid from above the packer to maintain continuity of the liquid stream through the syphon. Periodic gas purging operations may be automatically controlled from the surface. For that purpose, the retrievable plug in the short string is in fact a conventional wireline retrievable subsurface safety valve (FIG. 6a), in a normally closed position but operated by known hydraulic or electrical means whenever the presence of a small gas cap id detected below the packer. Detection means may be direct, using known liquid level sensors or indirect, by continuous monitoring of the pump efficiency. Continuous gas purging may otherwise be obtained by using a wireline plug including a permselective membrane (52), which allows continuous diffusional gas migration upwards, under a gas pressure gradient across the membrane, created by a retrievable venturi (53), located at the exit of the production tubing into the larger cross section of the casing annular space. The membrane also prevents liquid flow downwards (see FIG. 6b). In this system, the energy supplied to the pump serves three purposes:

1) to bring the gas-free liquid stream from the pump to a point above the packer, and

2) to operate a sort of gas ejector pump to re-mix the produced gas with the liquid stream in the casing/tubing annulus, above the packer.

3) to lift the mixed liquid and gas stream up the casing/tubing annulus to the separator.

Suitable permselective plug materials include, but are not limited to: charcoal, agglomerated carbon black, compressed powdered mineral adsorbents, asbestos, asbestos felt, etc. . .

The long string, in the dual string packer, extends below the packer with a stringer equipped with chevron seals which is stabbed into the polished bore receptacle threaded into the top of the small hole (7) of the modified novel casing joint, thus providing a connection from the production tubing to the tailpipe, in which a pump is set.

A rod string or a power fluid tubing string is then inserted from the surface within the production tubing and connected to the pump.

In this configuration, the flow from both drainholes is discharged into the sump below the packer and flows downwards through one or several holes in the whipstock, to reach the pump inlet at the bottom of the tailpipe, to be discharged, at a higher pressure, into the production tubing and from it to the casing annulus leading to the surface.

In cases where the cased well effluent flows into a very low pressure separator, the packer may be omitted if the production tubing extends to the surface, so that any gas coming out of solution at the apex of the syphon freely accumulates in the casing/tubing annulus, forming a low pressure gas cap extending up to the casing head. Gas purging of the casing to maintain the gas cap at the required low pressure is then accomplished through a conventional gas re-mixing valve at the surface, upstream of the low pressure separator inlet.

In the configuration of Case 2, after drilling and tie-in of the twin drainholes, a third hole is drilled vertically and its liner is cemented to provide the oil sump. The tubing completion assembly now consists only of a production tubing, a dual string packer with its short string again closed with a retrievable gas-purging plug and the production tubing and pump extending below the packer for insertion into the sump.

In the configuration of Case 4, the casing now extends below the special joint (or joints) to form the oil sump. The tubing completion assembly is the same as above: a production tubing, a dual string packer with its short string temporarily plugged off and the production tubing extending below the packer, with a bottom pump.

In low pressure reservoirs containing relatively high GOR oil, the risk of cavitation at the apex of the syphon may be too great, so that the use of a syphon is no longer possible. In some very heterogeneous reservoirs, it is also possible that the productivity indices of the two drainholes are widely different. In those cases, it is preferably to equip each drainhole with its own pump sized to maximize total oil production. The same is true if one of the drainholes is more prone to gas coning or water coning than the other.

Progressive cavity pumps driven by rotating rods and hydraulic or jet pumps driven by power fluid operate satisfactorily in highly deviated wells. A pump anchor nipple joint is included in the liner string, at the selected depth in the curved portion of each drainhole. The production tubing diameter must be increased to provide space inside it for the power fluid tubing strings or for the rotating rod strings. Another alternative is to insert the power fluid tubing or the rotating rod string into the drainhole liner through a side entry in each of the lower branches of the inverted Y nipple joint. In that case (see FIG. 7), a short conduit (54) leads from the top of the tubing hanger (or packer) to the side entry point to facilitate the insertion of the power fluid tubing or rod string form the annulus space into the drainhole liner. This requires corresponding modifications of the Y nipple joint (13) and of the tubing hanger (14), or packer (51).

In heavy oil reservoirs, it is advantageous to operate the twin drainholes in sequential “huff and puff” steam injection, in which one drainhole is under injection while the other is under production. For surface-generated steam, the production tubing may be replaced by an insulated steam tubing. A downhole three-way retrievable valve of the type described and claimed in U.S. Pat. No. 5,052,482 is required in each lower tubing branch below the inverted Y nipple joint. This is done (FIG. 8 and 8a) by adding a valve nipple joint (55) in each branch with its control hydraulic line (56), strapped on the other surface of the insulated steam tubing (57). In its axial full opening position, the valve conveys steam from the tubing to the corresponding drainhole. In its side opening position, the valve discharges the production stream from the drainhole liner into the casing annulus space. From there, the produced fluid may be pumped to the surface or gas-lifted.

The same well completion type is also applicable to reservoirs subjected to “huff and puff” injection of solvent gases, such as CO2, which are known to also reduce oil viscosity, but to a lesser degree than steam injection. In such cases, artificial lift of the produced fluids may be unnecessary.

If the reservoir pressure and/or produced GOR are sufficient to bring the oil up to the kick-off point of each drainhole, the pump is hung in the annulus casing/steam tubing, above the kick-off points.

If, however, the heavy oil reservoir is also under-pressure, as, for instance in California's Midway Sunset field, the pump may be located at the bottom of an oil sump as in Case 6 or it may be located within each drainhole liner as in Case 7. The tubing completion will be modified accordingly, as will be shown later. The type of pump used in that case must allow easy disconnection from its seat, when the drainhole is switched from the production mode to the injection mode. For this reason, jet pumps, hydraulic pumps and progressive cavity pumps are preferred in that case.

For under-pressured heavy oil reservoirs in which the drainhole production flows through a syphon (Case 6), the tubing completion assembly in which telescopic or articulated connector tubes are used to connect the steam tubing to the drainholes, the packer may be a three or four string packer, depending upon the location of the inverted Y nipple joint with respect to the packer. With the Y nipple joint below the packer, only three strings are connected to the bottom face of the packer the upper branch of the Y, the production tubing extending into the oil sump and the short string with its retrievable plug. To increase the packer depth, and, correspondingly that of the apex of the syphon, the inverted Y nipple joint is located above a four string packer, in which two of the strings are connected to the lower branches of the inverted Y, the third string is connected to the production tubing extending into the oil sump and the fourth string is the temporarily plugged-off pump by-pass. The production tubing may end just above the packer without reaching the surface, if the production stream flows through the casing/steam tubing annulus.

With steam generated downhole, together with permanent gases (CH4, H2) using the equipment described and claimed in U.S. Pat. No. 5,052,482, it is preferable to inject the steam and gases through the side opening of the downhole three-way valve into one drainhole, while conveying the production stream from the other drainhole to the central production tubing through the axial full opening of its downhole valve. The equipment and procedures for drilling, gravel packing, cementation, tie-in of multiple drainholes and for their tubing completion, previously described, and also applicable with some minor modifications which will be indicated later.

It will be apparent to those skilled in the art of oil well design that it is not possible to cover all the situations encountered in all reservoirs, because of their infinite diversity, but that the equipment and procedures described herein lend themselves to a very large number of combinations and permutations, which are capable of addressing most situations in which multiple horizontal drainholes may be advantageously used. Such combinations and permutations, which are obvious to those skilled in the art, do not detract from the spirit of the present invention and are included in it.

The cost of drilling and cementing the vertical cased well is a large portion of the total cost of a well presenting the general configurations described above. Re-entry into an existing cased well for drilling, gravel-packing, cementation and liner tie-in of multiple drainholes is a cost-effective way of increasing productivity.

If the existing cased well already presents a suitable deviation for the use of Case 3 procedures, the absence of a pre-established window in the casing string may be remedied by milling a side-track window using available tapered mills guided by the novel retrievable whipstock latched in a drillable whipstock packer set slightly above the deviation depth. The procedures and equipment, other than the special casing joint, are then the same as in Case 3, provided that known downhole orientation surveying methods are used to remedy the absence of pre-determined alignment keys or grooves in the casing.

In most fields, however, the existing casing will be essentially vertical, so Cases 1, 2, 4, 6, 7 and 8 will be more relevant.

The procedures of Case 1 may be used if a twin whipstock insert of diameter less than the drift diameter of the existing casing is run-in, hung in the casing and cemented at the selected depth above a plug permanently set in the casing. The oriented insert (FIG. 9), is held by a known packet/hanger (58) set hydraulically or by wireline tools. The hanger's slips are preferably located in the lower part of the insert below the drainholes so as to avoid any interference with them. Here again, elliptical windows will be milled in the existing casing using tapered mills guided by the twin whipstock (3).

In another embodiment (FIG. 9c), the hanger slips are located above the twin whipstock, so that the casing may be entirely milled over the depth interval of the windows, covered by the twin whipstock (3).

The plugged casing is milled over an interval sufficient to drill the sidetracked starting holes of Case 2 (FIG. 9a). Starting of the holes with a bent sub/downhole motor assembly may again be facilitated by first under-reaming that interval. Following these preliminary operations, the work proceeds as in Case 2, using the same equipment, tools and procedures. It will be apparent to those skilled in the art that the use of coiled tubings as liners and their subsequent in-situ mechanical slotting are equally applicable to any other case.

The existing casing is milled out and the hole is under-reamed to a diameter of about 30 in. over the depth intervals corresponding respectively to each drainhole start. A casing patch is then run-in and fastened to the casing by means of hanger slips (59) above and below the lower milled-out interval. This embodiment is shown on FIG. 10.

The casing patch presents close similarities with the special casing joint of Case 4, except that its outside diameter must be less than the drift diameter of the existing casing and that its outer surface, opposite the plugged telescopic stub (39) is now covered by an external rubber packer (60), which, when inflated with cement slurry entirely fills the reamed cavity. A suitable device including shearing disks also allows to inject the cement slurry in the two overlap (61) annular spaces between casing and casing patch hangers (14) above and below the cement-filled bladder, during the hydraulically-controlled extension of the stub into the slurry filling the rubber bladder. As in Case 4, the stub (39) is supported and guided during its extension by a fixed guiding cage (41) and a mobile inner guide (42) which penetrates only half way outside the casing. Added support and guidance is also provided by several cables (62) attached to the rubber wall and pulled under hydraulically-controlled tension from a drillable drum (63) through inclined holes (64) in the casing patch wall, at various locations around the machined edge of the elliptical window (1) through which the stub is extended.

With the rubber bladder fully inflated and pressed against the reamed cavity wall (40), the taught cables provide additional guidance and support to the stub (39) in its fully extended position. The drillable guides and the tail-end drillable collar (35) of the stub are drilled-out after the cement has set. This restores the vertical cased well to a diameter equal to that of the casing patch drift diameter.

A second casing patch is run-in, oriented, hung and cemented, with full extension of the second stub into the upper reamed interval, thus providing the start for the second drainhole.

Drilling, gravel packing, liner hanging and cementing procedures for both drainholes are identical with those of Case 4. The tubing completion assembly equipment and procedures are also the same.

The embodiment of Case 4 in which tie-in of the drainholes is by means of intermediate liners inserted and cemented in side-tracked holes drilled through elliptical windows by guiding the bit with a retrievable whipstock set in a drillable whipstock packer may also be adapted. The absence of pre-established windows plugged with drillable metal may be remedied in several ways.

The first method calls for milling each elliptical window into the existing casing with a tapered mill guided by a suitable retrievable whipstock. The whipstock required to mill the lowest window and to drill and complete the lowest drainhole is set and oriented in a packer, as in Case 2a. The whipstocks used to mill the other windows may then be stacked, each into the adjacent lower whipstock and oriented with respect to it by inserting into it multiple prongs, in a way similar to that used for the top whipstock of Case 1. The order in which stacked holes are drilled and completed may be either from the bottom up or from the top down. In an alternative procedure, the supporting packer is released after completion of each hole or drainhole and successively reset and re-oriented at a different depth for each of the other holes or drainholes. Again the whipstocks are handled by appropriate overshot latching tools, preferably equipped with end milling cutters to remove any protruding obstruction.

The second method again uses a special casing patch, shown on FIG. 11, with an open elliptical window (65). The casing patch is set in the casing by slips above and below an interval over which the casing was milled out. The casing patch includes a pre-oriented whipstock packer (31) in its lower part. It may also be run-in with the retrievable whipstock (32) already in place. After setting the hanger slips (14), the drilling bit and drill string, guided by the whipstock through the open elliptical window, are used to drill the side-tracked hole and operation continue as in Case 4.

This is the preferred embodiment for deep wells, because it provides the largest diameter drainholes, for the minimum casting diameter, provided that cementation problems are not likely in the type of formation existing at the drainholes kick-off points.

The existing casting, with its perforations plugged off, constitutes the oil sump required as the downwards leg of the syphon (see FIG. 11). The production tubing must extend to the bottom of the sump, where the pump is located, as in Case 6.

Drilling, gravel packing, tie-in and cementing of the drainholes may be obtained by any of the methods described in Cases 1a, 2a, and 4a.

For instance, the twin whipstock used in Case 1a includes a flow-through hole connected to a tail pipe (66) equipped with a pump receiver nipple joint (67) at the bottom. The upper face of the hole also serves to receive one of the alignment pins (8) of the retrievable top whipstock. This hole is also terminated by a polished bore receptacle (10) in which the production tubing stinger, equipped with chevron seals, will be stabbed prior to setting the packer, as in Case 6.

The only difference is that a casting patch is now used instead of a special casing joint. Hangers (14) are used instead of threaded connections.

The tubing completion assembly and its installation procedures are identical with those of Case 6.

Using the drainhole drilling and tie-in method of Case 2a, the only modification required is the drilling of a vertical hole through the cement and drillable casing plug after cementation of the two intermediate liners, to provide access into the oil sump through which the production tubing will be inserted. The tubing completion assembly of Case 6 is simplified because the tail pipe terminated with its pump anchoring nipple joint is threaded directly into the bottom face of the dual string packer.

The drainhole drilling and tie-in procedures of Case 4a remain unchanged, but the tubing completion assembly is the same as in Case 6.

The production tubing assembly is the same as in Case 7. It can be used with any of the well configurations resulting from the drainhole drilling and tie-in methods of Cases 1a, 2a and 4a.

The tubing completion assembly is similar to that in Case 8, (see FIG. 12). In principle, all the drilling and tie-in methods of Cases 1a, 2a and 4a are applicable, provided that the inside diameter of the insert or casing patch is sufficient to accommodate two drainhole tubing strings below the packer, when the pump is located above the packer, and three tubing strings when pumping is through a syphon.

With the two drainholes operated in “huff and puff” known downhole wireline retrievable three-way valves are also included in the tubings in a valve nipple joint. The valve nipple joints (55), connected to the lower branches of the Y are then below the hanger, so their hydraulic control lines (56) also pass through and extend below the hanger (14).

If dual pumps located in the drainholes are used (see FIG. 13), the one located in the injection drainhole is pulled out of its seat (e. g. a progressive cavity pump) or pumped out (e. g. a casing-free type jet pumped) prior to switching the drainhole to the injection mode. Each type of pump is actuated through its own side entry conduit. The side entry of the rod string or that of the power fluid tubing is always located below the valve nipple, so as not to interfere with the valve operation while unseating the pump.

The pumped production stream in the annulus between liner and rod string is discharged through the side port of the valve into the casing/injection tubing annulus. A casing packer is no longer required, but a 3 or 4 string hanger (69) is used instead. When the Y nipple joint is below the hanger, three strings are required, respectively connected to:—the upper branch of the Y,

both of the side-entry conduits (68) through which the rotating rod strings (70) driving progressive cavity pumps are inserted.

When hydraulic or jet pumps are used, the power fluid, pumped from the surface through a single tubing stabbed into a receptacle above the hanger is also fed to the pumps in all drainhole liners by means of twin conduits leading respectively to each of the two side entry points. It is through those conduits that smaller power fluid tubings are inserted into the drainhole liners, with a pump linked to each of them. The production stream from each drainhole, mixed with the spent powder fluid is then discharged into the annulus between liner and power fluid tubing to ultimately reach the casing annulus where it is commingled with that of other drainholes and conveyed to the surface.

When the the Y nipple joint is above the hanger, the valve nipples may then also be above the hanger, together with their control lines. On the other hand, the two lower branches of the Y and the corresponding two side entry conduits require that a 4 string hanger be used.

In all cases, however, the tubing completion assembly may be run-in and set in the casing in a single trip, even in the most complex configurations of Cases 8 or 8a.

Gondouin, Michel

Patent Priority Assignee Title
8505622, Sep 09 2010 Conical deflection wedge system for oil and gas wells and the method of use thereof
Patent Priority Assignee Title
1507717,
1520737,
1734033,
1735012,
1804819,
1816260,
1900163,
1900164,
1901454,
1923448,
2032509,
2043225,
2058327,
2118650,
2147537,
2155129,
2164266,
2171416,
2173035,
2198016,
2205119,
2211803,
2271005,
2281414,
2281801,
2297029,
2324682,
2331293,
2383496,
2386514,
2397070,
2404341,
2434239,
2452920,
2456331,
2492079,
2504462,
2642267,
2669430,
2696264,
2707997,
2726847,
2740476,
2788956,
2797893,
2804926,
2821362,
2857002,
2858107,
3064729,
3120268,
3159214,
3223158,
3285335,
3301337,
3330349,
3330360,
3419089,
3587743,
3690380,
3842912,
3918522,
3938592, Mar 23 1970 Rock-exploitation method based on thermodynamic cycles utilizing in-situ energy source
4007797, Jun 04 1974 Texas Dynamatics, Inc. Device for drilling a hole in the side wall of a bore hole
4022279, Jul 09 1974 BAZA ZA AVTOMATIZACIA NA NAUCHNIA EXPERIMENT, A INSTITUTE OF BULGARIA Formation conditioning process and system
4068729, Jun 14 1976 Amoco Corporation Apparatus for multiple wells through a single caisson
4099783, Dec 05 1975 Method for thermoshaft oil production
4153109, May 19 1977 Baker International Corporation Method and apparatus for anchoring whipstocks in well bores
4160481, Feb 07 1977 The HOP Corporation Method for recovering subsurface earth substances
4182423, Mar 02 1978 Burton/Hawks Inc. Whipstock and method for directional well drilling
4222611, Aug 16 1979 United States of America as represented by the Secretary of the Interior In-situ leach mining method using branched single well for input and output
4249777, Jul 24 1979 The United States of America as represented by the Secretary of the Method of in situ mining
4258800, May 03 1979 Petro-Drive, Inc. Hinged conductor casing for deviated driving and method therefor
4279301, Dec 13 1979 Texaco Inc. Method for improving the effective permeability of formations
4285399, Jul 21 1980 Baker International Corporation Apparatus for setting and orienting a whipstock in a well conduit
4304299, Jul 21 1980 Baker International Corporation Method for setting and orienting a whipstock in a well conduit
4317492, Feb 26 1980 The Curators of the University of Missouri Method and apparatus for drilling horizontal holes in geological structures from a vertical bore
4396075, Jun 23 1981 MAURER ENGINEERING, INC Multiple branch completion with common drilling and casing template
4396230, Jun 23 1981 BECFIELD HORIZONTAL DRILLING SERVICES COMPANY, A TEXAS PARTNERSHIP Multiple branch well containing one producer and one injector well
4397355, May 29 1981 SMITH INTERNATIONAL, INC A DELAWARE CORPORATION Whipstock setting method and apparatus
4397360, Jul 06 1981 Atlantic Richfield Company Method for forming drain holes from a cased well
4402551, Sep 10 1981 BECHTEL INVESTMENTS, INC Method and apparatus to complete horizontal drain holes
4415205, Jul 10 1981 BECFIELD HORIZONTAL DRILLING SERVICES COMPANY, A TEXAS PARTNERSHIP Triple branch completion with separate drilling and completion templates
4436165, Sep 02 1982 Atlantic Richfield Company Drain hole drilling
4444276, Nov 24 1980 Cities Service Company Underground radial pipe network
4489782, Dec 12 1983 Atlantic Richfield Company Viscous oil production using electrical current heating and lateral drain holes
4519463, Mar 19 1984 Atlantic Richfield Company Drainhole drilling
4523652, Jul 01 1983 Atlantic Richfield Company Drainhole drilling assembly and method
4550781, Jun 06 1984 SMITH INTERNATIONAL, INC A DELAWARE CORPORATION Method of and apparatus for cutting and recovering of submarine surface casing
4554982, Aug 03 1984 Hydril Company LP Apparatus for forming boreholes
4573540, Nov 19 1984 Mobil Oil Corporation Method for drilling deviated wellbores
4573541, Aug 31 1983 Societe Nationale Elf Aquitaine Multi-drain drilling and petroleum production start-up device
4601353, Oct 05 1984 Atlantic Richfield Company Method for drilling drainholes within producing zone
4605076, Aug 03 1984 Hydril Company LP Method for forming boreholes
4646836, Aug 03 1984 Hydril Company LP Tertiary recovery method using inverted deviated holes
4696345, Aug 21 1986 Chevron Research Company Hasdrive with multiple offset producers
4714117, Apr 20 1987 Atlantic Richfield Company Drainhole well completion
4742871, Jul 31 1985 Societe Nationale Elf Aquitaine (Production) Device for positioning a tool within a wellbore flow string
4771830, May 01 1987 Schlumberger Technology Corp. Apparatus for positioning well tools in deviated well bores
4807704, Sep 28 1987 Atlantic Richfield Company System and method for providing multiple wells from a single wellbore
4852666, Apr 07 1988 HORIZONTAL PRODUCTION SYSTEMS, INC Apparatus for and a method of drilling offset wells for producing hydrocarbons
4928767, Mar 28 1988 BAROID TECHNOLOGY, INC Method and apparatus for setting and retrieving a deflection tool
5012877, Nov 30 1989 Amoco Corporation Apparatus for deflecting a drill string
5052482, Apr 18 1990 S-Cal Research Corp. Catalytic downhole reactor and steam generator
5085275, Apr 23 1990 S-Cal Research Corporation Process for conserving steam quality in deep steam injection wells
5109924, Dec 22 1989 BAKER HUGHES INCORPORATED, 3900 ESSEX LANE, SUITE 1200, HOUSTON, TX 77027 A CORP OF DE One trip window cutting tool method and apparatus
5115872, Oct 19 1990 HORIZONTAL PRODUCTION SYSTEMS, INC Directional drilling system and method for drilling precise offset wellbores from a main wellbore
5127457, Feb 20 1990 Shell Oil Company Method and well system for producing hydrocarbons
5148877, May 09 1990 Apparatus for lateral drain hole drilling in oil and gas wells
5224556, Sep 16 1991 ConocoPhillips Company Downhole activated process and apparatus for deep perforation of the formation in a wellbore
5289876, Jul 28 1992 Halliburton Energy Services, Inc Completing wells in incompetent formations
5301760, Sep 10 1992 Halliburton Energy Services, Inc Completing horizontal drain holes from a vertical well
5318121, Aug 07 1992 Baker Hughes Incorporated Method and apparatus for locating and re-entering one or more horizontal wells using whipstock with sealable bores
5318122, Aug 07 1992 Baker Hughes, Inc Method and apparatus for sealing the juncture between a vertical well and one or more horizontal wells using deformable sealing means
5322127, Aug 07 1992 Baker Hughes, Inc Method and apparatus for sealing the juncture between a vertical well and one or more horizontal wells
5325924, Aug 07 1992 Baker Hughes Incorporated; Baker Hughes, Inc Method and apparatus for locating and re-entering one or more horizontal wells using mandrel means
5337808, Nov 20 1992 Halliburton Energy Services, Inc Technique and apparatus for selective multi-zone vertical and/or horizontal completions
5353876, Aug 07 1992 Baker Hughes, Inc Method and apparatus for sealing the juncture between a verticle well and one or more horizontal wells using mandrel means
5388648, Oct 08 1993 Baker Hughes Incorporated Method and apparatus for sealing the juncture between a vertical well and one or more horizontal wells using deformable sealing means
702006,
GB2282835,
GB2295840,
SU787611,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 21 2001HALLIBURTON ENERGY SERVICES(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 19 2006PMFP: Petition Related to Maintenance Fees Filed.
Jan 17 2007PMFG: Petition Related to Maintenance Fees Granted.
Feb 13 2007M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jun 27 20094 years fee payment window open
Dec 27 20096 months grace period start (w surcharge)
Jun 27 2010patent expiry (for year 4)
Jun 27 20122 years to revive unintentionally abandoned end. (for year 4)
Jun 27 20138 years fee payment window open
Dec 27 20136 months grace period start (w surcharge)
Jun 27 2014patent expiry (for year 8)
Jun 27 20162 years to revive unintentionally abandoned end. (for year 8)
Jun 27 201712 years fee payment window open
Dec 27 20176 months grace period start (w surcharge)
Jun 27 2018patent expiry (for year 12)
Jun 27 20202 years to revive unintentionally abandoned end. (for year 12)