Text and graphics elements may be alpha blended in a way to reduce flicker when the text or graphics are display by a processor-based television receiver. The alpha values are used to intelligently smooth pixels adjacent the element to create television text and graphics.
|
0. 19. A method comprising:
acquiring a graphics primitive to be displayed; and
selectively adjusting the transparency of portions of the primitive relative to a background to reduce flicker when the primitive is displayed by smoothing horizontal edges of the primitive based on the color of the element and the color of the background.
1. A method comprising:
acquiring a graphics primitive to be displayed on a television receiver; and
selectively adjusting the transparency of portions of the primitive relative to a background to reduce flicker when the primitive is displayed on a television receiver by smoothing the horizontal edges of the primitive based on the color of the primitive and the color of the background.
0. 27. An article comprising a medium for storing instructions that cause a processor-based system to:
acquire a graphics primitive to be displayed; and
selectively adjust the transparency of the primitive relative to background to reduce flicker when said primitive is displayed by smoothing horizontal edges of the primitive based on the color of the element and the color of the background.
0. 32. An apparatus to reduce flicker compromising:
a processor;
a storage coupled to said processor, said storage storing instructions to cause a graphics primitive to be acquired for display and to selectively adjust the transparency of the primitive relative to a background to reduce flicker by smoothing horizontal edges of the primitive based on the color of the element and the color of the background.
14. An apparatus to reduce flicker comprising:
a processor; and
a storage coupled to said processor, said storage storing instructions to enable a graphics primitive to be acquired for display on a television receiver and to selectively adjust the transparency of the primitive relative to the background to reduce flicker by smoothing the horizontal edges of the primitive based on the color of the primitive and the color of the background.
9. An article comprising a medium for storing instructions that enable a processor-based system to:
acquire a graphics primitive to be displayed on a television receiver; and
selectively adjust the transparency of the primitive relative to a background to reduce flicker when said primitive is displayed on a television receiver by smoothing the horizontal edges of the primitive based on the color of the primitive and the color of the background.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
10. The article of
11. The article of
12. The article of
13. The article of
17. The apparatus of
18. The apparatus of
0. 20. The method of
0. 21. The method of
0. 22. The method of
0. 23. The method of
0. 24. The method of
0. 25. The method of
0. 26. The method of
0. 28. The article of
0. 29. The article of
0. 30. The article of
0. 31. The article of
0. 33. The apparatus of
0. 34. The apparatus of
0. 35. The apparatus of
0. 36. The apparatus of
|
The present invention relates generally to techniques for displaying computer information on televisions.
In a number of applications, users may wish to display computer information on a conventional television receiver. Using a television receiver (which the user may already have) instead of a computer monitor may result in cost savings. In addition, some users may wish to have a computer system which doubles as a television receiver. Thus, the user may watch conventional television programs using a tuner card in the computer system to tune to the desired programs. In devices known as set top computers, a computer system may be mounted atop a conventional television to implement combined television receiving and conventional computer functions. For example, such systems advantageously implement electronic programming guides for computer control of television program access.
Interlacing contributes to the inferior quality of images developed by computer systems that are displayed on television monitors. Interlacing is a technique by which a complete television picture is developed in two passes from top to bottom on the television screen. With interlacing, the first pass paints all the “odd” lines and the second pass paints the “even” lines.
Flicker may occur when the images in the odd lines are very different from the images in the even lines. As the odd and even lines are alternately displayed, the eye may perceive the quick appearing and disappearing of visual information. Flicker is especially noticeable when viewing thin horizontal lines that only take up a single odd or even row. The same objectionable phenomenon occurs at the horizontal boundaries of text.
A flicker filter may be used to reduce such flickering. A flicker filter is generally a 3 or 5 tap finite impulse response (FIR) filter. An N-tap filter uses N multiplications and N-1 additions per color component of each output pixel. An equation representing the calculation implemented by a 3-tap filter is as follows:
Pout=T1*P1+T2*P2+T3*P3
T1, T2 and T3 are the tap values and P1, P2 and P3 are the values of adjacent pixels. Thus, flicker filters are quite computationally intensive.
Some flicker filters work by altering the information in the odd and even lines of a television picture so that the alternating lines are more similar to each other. In this way, when the lines appear and disappear in the interlacing process, the flicker is less noticeable. The more similar the lines are made to appear, the less flicker is visible. Other flicker filters reduce flicker by completely discarding every other line of the image, and displaying two successive passes of the remaining lines. Because the interlaced lines are now identical, flicker is less visible. In either case, vertical resolution is sacrificed. The obvious trade-off is that as flicker is reduced, more and more information is altered or lost from the original picture. Thin, horizontal lines may disappear. Small text may become unreadable.
The quality of flicker filters may vary based on design and cost. Low end flicker filters apply their techniques to the entire screen indiscriminately or blindly. These types of flicker filters may cause undesirable results, when only a small portion of the screen needs filtering, by adversely altering regions that were unnecessarily filtered.
Thus, there is a continuing need for ways to economically improve the display of information from processor-based systems on televisions.
In accordance with one aspect, a method includes acquiring a graphics primitive to be displayed on a television receiver. The transparency of portions of the primitive are selectively adjusted relative to a background to reduce flicker when the primitive is displayed on a television receiver.
Other aspects are set forth in the accompanying detailed description and claims.
Referring to
A processor 11 is coupled to a host bridge hub 12, such as an Intel® 82810 graphics and memory controller hub, in one embodiment of the invention. The host bridge hub 12 may include a memory controller for accessing a main memory 14 (e.g. synchronous dynamic random access memory (“SDRAM”)), and graphics controller 13 with motion compensation video capabilities. The graphics controller 13 may also include a digital video output port which couples (via an external video encoder 16) to the analog television receiver 18.
As will be explained below, font and graphics libraries may be used in one embodiment of the invention for rendering fonts and lines in a manner that flicker is reduced. In some embodiments flicker may be reduced with less processing than conventional flicker filters.
The host bridge hub 12 may also couple an input/output (“I/O”) controller hub 20, such as an Intel® 82801 I/O hub in one embodiment of the invention. The I/O controller hub 20 may be an integrated multifunctional I/O controller hub that provides the interface to a bus 22, a multifunction I/O controller 24, and a firmware hub 26 and may integrate other functions, such as an enhanced direct memory access (“DMA”) controller, an interrupt controller, a timer, an integrated drive electronics (“IDE”) controller for providing IDE ports, and a universal serial bus (“USB”) host controller, as examples. Four IDE devices, such as a hard disk drive 28, a compact disk read only memory (“CD-ROM”) drive 30, and a DVD drive 32 may be coupled to the hub 20. A television tuner/capture card 49 may also be coupled to the hub 20.
The I/O controller hub 20 may support two codecs such as the audio codec 36 and modem codec 38. The audio codec 36 may be coupled to a speaker 40 and the modem codec 38 may be coupled to a network 41, such as a telecommunications, satellite or cable network.
The multifunction I/O controller 24 typically includes a number of functions, such as a floppy disk drive controller for coupling a floppy disk drive 42, a keyboard controller for connecting to a keyboard 44 and a pointing device 46, a serial communications controller for providing at least one serial port 48, and a parallel port interface for providing at least one parallel port 50. In one embodiment of the invention, the keyboard 44 and pointing device 46 are coupled via an infrared transmitter/receiver 52 for wireless communications.
Referring to
More specifically, in a display driver architecture 70, in accordance with one embodiment of the invention, a display driver 76 is a dynamic link library (“DLL”) that translates device-independent commands from a graphics device interface (“GDI”) 78 into commands and actions that the graphics controller 13 may use to draw graphics on the receiver 18. GDI commands may include as examples, bitmap operations, managing graphics objects, managing color palettes, and drawing lines, curves, filled shapes, and text. The device independent commands originate from a software application, such as a drawing program, slide show program, movie program, game program or other application. The display driver 76 may also supply information to the operating system regarding the display hardware (e.g. receiver 18), such as color resolution, graphics capabilities, screen size and resolution, and other display features. The fonts and graphics are rendered into a frame buffer 80.
To take advantage of special features of the graphics controller 13, a display minidriver may be provided in one embodiment of the invention. To take advantage of the font and graphics libraries, the display driver 76 may contain program code to render font and graphics elements according to special alpha blending values embedded with font and graphic elements. The graphics elements may include text, characters, lines, shapes and other graphics primitives. Alpha blending uses pre-defined values, called alpha values, to control the way graphics information is displayed, such as the level of transparency or opacity of graphics primitives. Thus, pixel colors may be blended in varying proportion with the color of the primitive being drawn. The proportion is the transparency or alpha value.
Instead of using the alpha values to create visual effects, the alpha values may be assigned to overcome flickering. That is, by smoothing the edges of horizontal features, the amount of flickering which results may be reduced. Thus, by assigning alpha values which cause background colors to blend with graphics primitives along horizontal lines, the flickering which results from display on analog television receivers may be decreased without the need for computationally complex FIR filtering.
By focusing on the horizontal components which cause filtering, vertical components of graphics primitives need not be affected. Thus, compared to other filtering techniques which are applied indiscriminately to all of the features on the display, the use of alpha blending techniques may be adapted, in some embodiments of the invention, to only adjust the display of horizontal features.
Referring now to
A font and graphics primitive may have at least one associated alpha value. The alpha value instructs the display driver 76 how to smooth (i.e. how much transparency to implement for) the graphics primitive to reduce flicker. Progressive smoothing may be applied in one or many more stages. For example, the letter “T” may have two alpha values applied in one embodiment of the invention. A first value (0.5) in a first stage is applied to pixels adjacent (once removed) the horizontal sections of the “T” and a second value (0.25) is applied in a second stage to pixels twice removed from the horizontal sections.
The alpha (α) blended pixels may take into account the color of the background (Poverlay) and foreground (font or graphics) (Pin) to smooth out horizontal primitive edges between the overlay or background and the primitive:
Pout32 α*Poverlay+(1−α)* Pin
or this may reduce to
Pout=α(Poverlay−Pin)+Pin
Referring next to
The pixels of a video display include three color components such as red, green and blue in an RGB tricolor space. The color values of the three color components are added together to produce a displayed color having a color value.
Using the hypothetical example illustrated in
Assuming a black letter (Pin=1 in grey scale) on a white background (Poverlay=0 in grey scale), P2,9=0.5*0+0.5* 1. Broken down into its color components Pout yields:
PRED=0.5*0h+0.5*FFh=7Fh
PGREEN=0.5*0h+0.5*FFh=7Fh
PBLUE=0.5*0h+0.5*FFh=7Fh
Taken together the color components yield a relatively dark grey scale pixel next to the black pixel P2,8.
For pixel P2,10 the color components are:
PRED=0.25*0h+0.75*FFh=BDh
PGREEN=0.25*0h+0.75*FFh=BDh
PBLUE=0.25*0h+0.75*FFh=BDh
Taken together the color components yield a lighter grey scale pixel.
Thus, in the example, the black character overlaid on a white background was smoothed with darker gray scale and lighter gray scale blending on the horizontal edges. This blending at horizontal edges reduces the flickering that results from the use the television receiver 18 as a display.
The smoothing can be distributed over a number of pixels outwardly from the horizontal edge by varying the number of alpha blending stages. For example, a value of 0.5 may be used for a single pixel row of smoothing while values of 0.75, 0.5 and 0.25 may be used for three pixel rows of smoothing. Additionally, since the alpha values may be stored as part of font or graphics primitives, individual elements may differ in the number of stages and the alpha values in each stage that are desirable for adequate smoothing. For example, as a hypothetical example, the letter “T” may smooth better with 0.5 and 0.25 alpha values and the letter “R” may smooth best with a single alpha value of 0.4. Graphics primitives, such as horizontal lines may have yet another set of alpha values.
Because the alpha blending may be selectively applied to the horizontal portions of text and graphics in one embodiment of the invention, the flicker filtering of the overall display may be reduced as compared to the use of the prior N-tap flicker filters alone. Moreover, on a pixel to pixel comparison, the use of alpha blending may involve less mathematical processing than the N-tap method. Comparatively, per output pixel color component, a 3-tap filter uses 3 multiplications and 2 additions versus the alpha blending method described above on the “T” which may use one multiplication, one addition and one subtract operation. Therefore, embodiments using alpha blending may provide a more intelligent flicker reduction technique.
In some embodiments alpha blending may be used together with flicker filters, for example using N-tap flicker filters. In some embodiments, less computationally complex FIR filters may be used because of the use of alpha blending. In other embodiments, flicker filters may be eliminated.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
Patent | Priority | Assignee | Title |
10142703, | Mar 28 2000 | Sony Corporation | Communication service method and communication apparatus thereof |
10671153, | Mar 28 2000 | Sony Corporation | Communication service method and communication apparatus thereof |
7526139, | Sep 16 2005 | 138 EAST LCD ADVANCEMENTS LIMITED | Image processing for improving character readability of characters disposed on an image |
7561208, | Jun 23 2003 | DYNAMIC DATA TECHNOLOGIES LLC | Method and decoder for composing a scene |
8156014, | Mar 28 2000 | Sony Corporation | Communication service method and communication apparatus thereof for transmitting advertisements in a private communication environment |
8358379, | Jul 31 2009 | PIXELWORKS SEMICONDUCTOR TECHNOLOGY SHANGHAI CO , LTD | Post processing displays with on-screen displays |
8621039, | Mar 28 2000 | Sony Corporation | Communication service method and communication apparatus thereof |
9430780, | Mar 28 2000 | Sony Corporation | Communication service method and communication apparatus thereof |
Patent | Priority | Assignee | Title |
4580158, | May 17 1982 | Telediffusion de France | Video signal combining system |
4763120, | Sep 03 1985 | International Business Machines Corporation | Interlaced color cathode ray tube display with reduced flicker |
4827253, | May 18 1987 | Discovision Associates | Video compositing using a software linear keyer |
4827344, | Feb 28 1985 | Intel Corporation | Apparatus for inserting part of one video image into another video image |
5134667, | Aug 11 1989 | FUJI XEROX CO , LTD , A CORP OF JAPAN | Area discriminating system for an image processing system |
5442462, | Jun 10 1992 | D V P TECHNOLOGIES LTD 18 HATZOUK STREET | Apparatus and method for smoothing images |
5644333, | Dec 12 1994 | CREATIVE TECHNOLOGY LTD | Color key detection scheme for multimedia systems |
5663772, | Mar 29 1994 | Matsushita Electric Industrial Co., Ltd. | Gray-level image processing with weighting factors to reduce flicker |
5696527, | Dec 12 1994 | CREATIVE TECHNOLOGY LTD | Multimedia overlay system for graphics and video |
5894330, | Jan 23 1997 | HANGER SOLUTIONS, LLC | Adaptive anti-flicker method for VGA to TV data conversion |
5953076, | Jun 16 1995 | DISNEY ENTERPRISES, INC | System and method of real time insertions into video using adaptive occlusion with a synthetic reference image |
5963262, | Jun 30 1997 | Cirrus Logic, Inc. | System and method for scaling images and reducing flicker in interlaced television images converted from non-interlaced computer graphics data |
6023302, | Mar 07 1996 | TECH 5 SAS | Blending of video images in a home communications terminal |
6055340, | Feb 28 1997 | FUJIFILM Corporation | Method and apparatus for processing digital images to suppress their noise and enhancing their sharpness |
6094226, | Jun 30 1997 | Cirrus Logic, Inc. | System and method for utilizing a two-dimensional adaptive filter for reducing flicker in interlaced television images converted from non-interlaced computer graphics data |
6115498, | Apr 17 1997 | LG Electronics Inc | Character image generating apparatus and method therefor |
6229550, | Sep 04 1998 | SPORTSMEDIA TECHNOLOGY CORPORATION | Blending a graphic |
6266100, | Sep 04 1998 | SPORTSMEDIA TECHNOLOGY CORPORATION | System for enhancing a video presentation of a live event |
6373992, | Feb 27 1998 | FUJIFILM Corporation | Method and apparatus for image processing |
6377269, | May 29 1998 | Automated generation of masks for photo-compositing |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 19 2003 | Intel Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 06 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 25 2006 | REM: Maintenance Fee Reminder Mailed. |
Sep 30 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 25 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 01 2009 | 4 years fee payment window open |
Feb 01 2010 | 6 months grace period start (w surcharge) |
Aug 01 2010 | patent expiry (for year 4) |
Aug 01 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 01 2013 | 8 years fee payment window open |
Feb 01 2014 | 6 months grace period start (w surcharge) |
Aug 01 2014 | patent expiry (for year 8) |
Aug 01 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 01 2017 | 12 years fee payment window open |
Feb 01 2018 | 6 months grace period start (w surcharge) |
Aug 01 2018 | patent expiry (for year 12) |
Aug 01 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |