A consolidated monitoring cable arrangement allows multiple cables extending between a surgical gurney, or other type of patient support platform, and a peripheral monitoring stand to be consolidated into a single cable. The present use of multiple cables has the disadvantage that the region between a gurney and a monitoring stand is cluttered. This can present a hazard to medical personnel, particularly when an emergency situation requires that concentration be focused on the needs of the patient. In a primary form, the subject cable arrangement uses two boxes, one on the gurney and another on the monitoring stand; a detachable cable connects the two boxes. Shorter cables of uniform length are used to connect a patient on the gurney and equipment on the monitoring stand to a respective box. Besides the aforementioned safety advantage, this cable arrangement reduces the expense of frequent replacement of damaged cables.
|
0. 51. A method for monitoring data collected by monitoring probes on a patient, comprising:
(a) positioning a connection box on a patient support platform;
(b) applying at least one monitoring probe to the patient, said at least one monitoring probe being positioned independently from the position of said connection box;
(c) connecting said at least one monitoring probe to said connection box; and
(d) connecting said connection box to monitoring equipment peripheral to said patient support platform to monitor or display data collected by said at least one monitoring probe.
0. 42. A patient monitoring cable arrangement comprising:
(a) a cable having one or more data paths for use in connecting one or more patient probes with one or more monitors;
(b) a base unit at one end of said cable and being connectable to said one or more monitors to connect said one or more data paths to said one or more monitors; and
(c) a satellite unit at the other end of said cable being connectable to said one or more patient probes to connect said one or more data paths with said one or more patient probes, said satellite unit being positionable independent of the positioning of said one or more patient probes.
0. 46. A patient monitoring cable arrangement comprising:
(a) a cable having one or more data paths for use in connecting one or more patient probes with one or more monitors, said cable having a first end and a second end, said first end of said cable being connectable to said one or more monitors to connect said one or more data paths to said one or more monitors; and
(b) a satellite unit at said second end of said cable being connectable to said one or more patient probes to connect said one or more data paths with said one or more patient probes, said satellite unit being positionable independent of the positioning of said one or more patient probes.
0. 38. A patient monitoring probe connection system used in conjunction with a patient support platform and remote monitoring equipment, said system comprising multiple probes each applied at one end to a patient on the patient support platform, a satellite connection bar on the platform establishing connections between opposite ends of the probes and the remote monitoring equipment, said satellite connection bar being positionable on the patient support platform independent of the positioning of said probes, said satellite connection bar comprising first external connectors for releasably receiving opposite ends of said probes over the platform; and
a consolidated connection cable having one end connected to said satellite connection bar, and means at the other end connected to said remote monitoring equipment, wherein said consolidated connection cable is directly connected to said first external connectors via internal connections in said satellite connection bar.
16. A patient monitoring probe connection system used in conjunction with a patient support platform and remote monitoring equipment, said system comprising multiple probes each applied at one end to a patient on the patient support platform, a satellite connection bar on the platform establishing connections between opposite ends of the probes and the remote monitoring equipment, said satellite connection bar being positionable on the patient support platform independent of the positioning of said probes, said satellite connection bar comprising first external connectors for releasably receiving opposite ends of said probes over the platform, a second external connector, and internal connections within the bar directly between said fist first external connectors on the one hand and said second external connector on the other hand; and
a consolidated connection cable having two ends with a connector at one end complementary to and releasably connected to said second external connector, and means at the other end connected to said remote monitoring equipment.
0. 29. A patient monitoring system comprising a patient support platform, a peripheral stand, one or more monitoring displays on the peripheral stand, monitoring probes for attachment to a patient, and a cable arrangement carrying monitoring data between the patient support platform and the one or more monitoring displays, the cable arrangement comprising:
(a) a connection box positionable on the patient support platform independent of the positioning of the monitoring probes, the box having a series of first plug receptacles, each of the first plug receptacles being formed to receive a plug from a respective patient monitoring probe; and
(b) a cable connected to the connection box, the other end of the cable being connectable to said one or more monitoring displays on the peripheral stand;
wherein all of the probes are connected to the connection box over the patient support platform, and the platform and stand are connected solely by the cable, the region between the patient support platform and the peripheral stand being thereby maintained in a less cluttered state than if each probe was independently connected to the respective display.
11. A patient monitoring system comprising a patient support platform, a peripheral stand, one or more monitoring displays on the peripheral stand, monitoring probes for attachment to a patient, and a cable arrangement carrying monitoring data between the patient support platform and the one or more monitoring displays, the cable arrangement comprising:
(a) a connection box positionable on the patient support platform independent of the positioning of the monitoring probes, the box having a series of first plug receptacles and one or more second plug receptacles, each one of a series of input lines for each first plug receptacle being directly internally connected to one of a series of input lines of the one or more second plug receptacles, each of the first plug receptacles receiving a plug from a respective patient monitoring probe; and
(b) a cable having a plug on its one end connected detachably with the one or more second plug receptacles of the connection box, the other end of the cable terminating in a series of plugs each connected to a respective monitoring display on the peripheral stand;
wherein all of the probes are connected to the connection box over the patient support platform, and the platform and stand are connected solely by the cable, the region between the patient support platform and the peripheral stand being thereby maintained in a less cluttered state than if each probe was independently connected to the respective display.
0. 18. A patient monitoring system comprising a patient support platform, a peripheral stand, one or more monitoring displays on the peripheral stand, monitoring probes for attaching to a patient and a cable arrangement carrying monitoring data between the patient support platform and the one or more monitoring displays, the cable arrangement comprising:
(a) a base unit positioned at the peripheral stand and having a series of first connection points each connected to a respective one of the one or more monitoring displays in the stand, the base unit also having one or more second connection points, each one of a series of input lines of each first connection point being internally connected directly to one of a series of input lines of the one or more second connection points;
(b) a satellite unit positioned on the patient support platform and having a series of third connection points each connected to a respective monitoring probe, said satellite unit being positionable on the patient support platform independent of the positioning of the monitoring probes, the satellite unit also having one or more fourth connection points, each one of a series of input lines of each third connection point being internally connected directly to one of a series of input lines of the one or more fourth connection points; and
(c) a cable connecting the one or more second connection points in the base unit directly to the one or more fourth connection points on the satellite unit;
wherein all of the probes are connected to the satellite unit over the patient support platform, all of the one or more monitoring displays are connected to the base unit at the peripheral stand; and the platform and stand are connected solely by said cable, the region between the patient support platform and the peripheral stand being thereby maintained in a less cluttered state than if each probe was independently connectable to the respective display.
1. A patient monitoring system comprising a patient support platform, a peripheral stand, one or more monitoring displays on the peripheral stand, monitoring probes for attaching to a patient and a cable arrangement carrying monitoring data between the patient support platform and the one or more monitoring displays, the cable arrangement comprising:
(a) a base unit positioned at the peripheral stand and having a series of first connection points each connected to a respective one of the one or more monitoring displays in the stand, the base unit also having one or more second connection points, each one of a series of input lines of each first connection point being internally connected directly to one of a series of input lines of the one or more second connection points;
(b) a satellite unit positioned on the patient support platform and having a series of third connection points each connected to a respective monitoring probe, said satellite unit being positionable on the patient support platform independent of the positioning of the monitoring probes, the satellite unit also having one or more fourth connection points, each one of a series of input lines of each third connection point being internally connected directly to one of a series of input lines of the one or more fourth connection points; and
(c) a cable connecting the one or more second connection points in the base unit directly to the one or more fourth connection points on the satellite unit, the cable being readily detachable from the one or more fourth connection points;
wherein all of the probes are connected to the satellite unit over the patient support platform, all of the one or more monitoring displays are connected to the base unit at the peripheral stand; and the platform and stand are connected solely by said cable, the region between the patient support platform and the peripheral stand being thereby maintained in a less cluttered state than if each probe was independently connectable to the respective display.
2. A cable arrangement system as in
5. A system as in
7. A system as in
8. A system as in
9. A system as in
10. A system as in
13. A system as in
14. A system as in
15. A system as in
17. A patient support platform according to system as in
0. 19. A system as in
0. 20. A system as in
0. 21. A system as in
0. 22. A system as in
0. 23. A system as in
0. 24. A system as in
0. 25. A system as in
0. 26. A system as in
0. 27. A system as in
0. 28. A system as in
0. 30. A system as in
0. 31. A system as in
0. 32. A system as in
0. 33. A system as in
0. 34. A system as in
0. 35. A system as in
0. 36. A system as in
0. 37. A system as in
0. 39. A system as in
0. 40. A system as in
0. 41. A system as in
0. 43. A patient monitoring cable arrangement as in
0. 44. A patient monitoring cable arrangement as in
0. 45. A patient monitoring cable arrangement as in
0. 47. A patient monitoring cable arrangement as in
0. 48. A patient monitoring cable arrangement as in
0. 49. A patient monitoring cable arrangement as in
0. 50. A patient monitoring cable arrangement as in
0. 52. A method as in
0. 53. A method as in
0. 54. A method as in
0. 55. A method as in
0. 56. A method as in
0. 57. A method as in
0. 58. A method as in
0. 59. A method as in
0. 60. A method as in
0. 61. A method as in
0. 62. A method as in
0. 63. A system as in
0. 64. A system as in
0. 65. A patient monitoring cable arrangement as in
0. 66. A method as in
|
The invention relates to a consolidated cable arrangement, and in particular, to an arrangement which replaces multiple cables connecting multiple devices at each of two locations into a single detachable cable connectable to a bar placed at one location or at both locations.
In operating rooms and intensive care units multiple monitoring equipment cables may extend between probes secured to a patient on a surgical gurney or bed and the respective display devices supported on a peripheral stand or trolley. If anesthesia is being administered to the patient, the cables may drape across the anaesthetic equipment and make simple manoeuvering around the gurney difficult for the anaesthetist. Doctors and nurses treating the patient may have their mobility curtailed by the cables, and that could present a serious problem during an emergency. There must also be considered the further problems of untangling multiple cables, and the high cost of replacing cables that are damaged. As specialized items manufactured in limited numbers, such cables can be very expensive to replace.
Ideally one might wish to remove all of the various forms of connecting cables between a gurney and the peripheral stand that holds monitoring display equipment. That is, however, difficult to achieve. An alternate way of alleviating the problem is to consolidate all of the separate cables into a single cable that can then be strategically positioned between the gurney and the peripheral stand so as not to interfere with the movement of persons around the gurney. The subject invention is directed to the use of such a consolidated cable in association with a ‘satellite bar’ on the gurney. The cable may be quickly connected to, or detached from, the satellite bar which also has a series of second connection points to each of which a respective monitoring probe is connectable.
Besides the previously-mentioned advantages flowing from use of a single consolidated cable, another advantage is the ease in identifying which probes are connected to the satellite bar; that results from each connection point on the bar being labelled. An associated advantage is that cables intended to extend between the normal probe points on patients and the respective connection points on the bar may be manufactured with uniform lengths; this differs from conventional cables, which have to be sufficiently long to extend between a gurney and an associated peripheral stand. If a patient is carried on the gurney between an operating theatre and a recovery room, monitoring cables can remain connected to the patient; the satellite bar is simply connected to another peripheral stand at the new location.
In one form, the cable arrangement comprises a satellite unit adapted to be positioned on a patient support platform, a base unit adapted to be positioned on a stand peripheral to the platform, and a detachable cable adapted to connect the two units. The base unit has a series of first connection points each connectable to a respective monitoring display, and that unit also has one or more second connection points. Each one of a series of input lines of each first connection point is internally connected to one of a series of input lines of the one or more second connection points. The satellite unit has a series of third connection points each connectable to a respective monitoring probe, and that unit also has one or more fourth connection points. Each one of a series of input lines of each third connection point is internally connected to one of a series of input lines of the one or more fourth connection points. The detachable cable is adapted to connect each input line of the one or more second connection points on the base unit to a respective input line of the one or more fourth connection points on the satellite unit. With this arrangement, all of the probes are connectable to the respective displays by the cable. The region between the platform and the peripheral stand is thereby maintained in a less cluttered state than if each probe was independently connectable to the respective display.
The base unit may have only a single second connection point, and the satellite unit may have only a single fourth connection point. The patient support platform may be a surgical gurney. The cable may be detachable only from the satellite unit, or from both the base unit and the satellite unit. Each of the input lines may be adapted to carry electrical signals. The satellite unit may be secured by fastening means to the surgical gurney, and may have a series of hook members extending from it; each of those hook members is adapted to support a probe cable extending between a probe and a respective one of the third connection points on the satellite unit. The probes may involve monitoring of temperature, blood pressure, oxygen level, heart electrical activity, or other vital signs.
In another form, the cable arrangement may comprise a connection box securable by fastening means to a surgical gurney, and a detachable cable connectable to the connection box. In this arrangement, the box has a series of first plug receptacles and one or more second plug receptacles. Each of a series of input lines of each first plug receptacle is internally connected to one of a series of input lines of the one or more second plug receptacles. Each of the first plug receptacles is adapted to receive a plug from a respective patient monitoring probe. The cable has a plug on its one end adapted to connect with the one or more second plug receptacles of the connection box. The other end of the cable terminates in a series of plugs each connectable to a respective monitoring display on a peripheral stand.
The invention will next be more fully described by means of two preferred embodiments, utilizing the accompanying drawings in which:
A typical existing cable arrangement between a surgical gurney and a peripheral stand supporting monitoring instrumentation is illustrated in FIG. 1. Each monitoring display on the stand has one or more cables crossing the space that separates the stand from the gurney; each cable terminates in a probe attachable to a patient lying on the gurney. In
The described cable 40 carries only electrical signal lines, but it is also possible to include in the cable thin tubing for pneumatic measurements. Above the designation ‘NIBP’ (Non-Invasive Blood Pressure) are a pair of threaded tubes, a first end of each tube being designated 47 and the other end being designated 48. The first end 47 would connect with a tube (not shown) to an arm cuff on a patient, and the other end 48 would connect with another tube which would be integrated into cable 40. Connection box 44 at monitoring stand 10 would have a similar pair of threaded tubes extending through it.
Although not shown, a protective plastic cover could be placed over that portion of cable 40 that extends across the floor.
Although the connection boxes 34 and 44 are built with receptacles corresponding to specific manufacturers' monitoring equipment, there is no difficulty in connecting the equipment of the other manufacturers by using adaptors. One of the companies that makes such adaptors is Fogg System Company, Inc. of Aurora, Colo.
As shown is
Patent | Priority | Assignee | Title |
10699811, | Mar 11 2011 | Spacelabs Healthcare L.L.C. | Methods and systems to determine multi-parameter managed alarm hierarchy during patient monitoring |
10987026, | May 30 2013 | Spacelabs Healthcare LLC | Capnography module with automatic switching between mainstream and sidestream monitoring |
11139077, | Mar 11 2011 | SPACELABS HEALTHCARE L L C | Methods and systems to determine multi-parameter managed alarm hierarchy during patient monitoring |
11562825, | Mar 11 2011 | Spacelabs Healthcare L.L.C. | Methods and systems to determine multi-parameter managed alarm hierarchy during patient monitoring |
9047747, | Nov 19 2010 | Spacelabs Healthcare LLC | Dual serial bus interface |
9131904, | Nov 19 2010 | Spacelabs Healthcare LLC | Configurable patient monitoring system |
9152765, | Mar 21 2010 | Spacelabs Healthcare LLC | Multi-display bedside monitoring system |
9298889, | Mar 09 2007 | Spacelabs Healthcare LLC | Health data collection tool |
9384652, | Nov 19 2010 | Spacelabs Healthcare, LLC | System and method for transfer of primary alarm notification on patient monitoring systems |
9604020, | Oct 16 2009 | SPACELABS HEALTHCARE, INC | Integrated, extendable anesthesia system |
9797764, | Oct 16 2009 | SPACELABS HEALTHCARE, INC | Light enhanced flow tube |
Patent | Priority | Assignee | Title |
3049688, | |||
3323514, | |||
3821496, | |||
3910257, | |||
4103985, | Feb 22 1977 | AMPHENOL CORPORATION, A CORP OF DE | Connector adapter constructions with improved connection and connector mounting arrangement |
4566666, | Jun 01 1984 | Small appliance wall bracket | |
4577917, | Dec 25 1981 | Honda Giken Kogyo Kabushiki Kaisha | Coupler connecting device |
4648682, | Jun 11 1985 | TRANS WORLD CONNECTIONS LTD , A CORP OF VIRGINIA | Modular adapter and connector cable for video equipment |
4861282, | Dec 09 1987 | Yazaki Corporation | Waterproof connecting structure for connector |
4864632, | Nov 29 1985 | Yagi; Antenna Co., Ltd. | Indoor wiring system for VHF/UHF signal lines |
4895161, | Sep 26 1986 | Marquette Electronics | Transportable data module and display unit for patient monitoring system |
4981438, | Sep 30 1986 | Universal interconnection system having interchangeable circuit boards | |
5002502, | May 22 1990 | Satellite TV system to tuner receiver main cable array wall plate assembly | |
5083238, | Feb 04 1991 | EMERSON NETWORK POWER - EMBEDDED COMPUTING, INC | High frequency electronic assembly |
5149277, | Jul 18 1988 | COMMUNICATIONS INTEGRATORS, INC | Connectivity management system |
5161997, | Oct 11 1991 | AMP Incorporated | Hardwareless panel retention for shielded connector |
5293013, | Feb 06 1992 | Supital Sangyo Co., Ltd. | Switching cable |
5343869, | Jan 29 1992 | Koninklijke Philips Electronics N V | Method and system for monitoring vital signs |
5375604, | Dec 11 1992 | Draeger Medical Systems, Inc | Transportable modular patient monitor |
5509822, | Dec 14 1993 | PLC Medical Systems, Inc. | ECG monitor system |
5566676, | Dec 11 1992 | Draeger Medical Systems, Inc | Pressure data acquisition device for a patient monitoring system |
5685314, | Dec 11 1992 | Draeger Medical Systems, Inc | Auxiliary docking station for a patient monitoring system |
5819229, | Nov 07 1995 | MEDFLEX, LLC | Surgical assistance and monitoring system |
6183417, | Dec 11 1992 | Draeger Medical Systems, Inc | Docking station for a patient monitoring system |
6221012, | Dec 11 1992 | Draeger Medical Systems, Inc | Transportable modular patient monitor with data acquisition modules |
CH524992, | |||
DE1466807, | |||
DE8908398, | |||
EP466272, | |||
FR1531413, | |||
GB1208654, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Mar 03 2008 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Oct 08 2012 | REM: Maintenance Fee Reminder Mailed. |
Feb 27 2013 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 08 2009 | 4 years fee payment window open |
Feb 08 2010 | 6 months grace period start (w surcharge) |
Aug 08 2010 | patent expiry (for year 4) |
Aug 08 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 08 2013 | 8 years fee payment window open |
Feb 08 2014 | 6 months grace period start (w surcharge) |
Aug 08 2014 | patent expiry (for year 8) |
Aug 08 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 08 2017 | 12 years fee payment window open |
Feb 08 2018 | 6 months grace period start (w surcharge) |
Aug 08 2018 | patent expiry (for year 12) |
Aug 08 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |