An audit monitoring system (10) is provided for use with any of a multiplicity of different coin operated vending machines (300). The audit monitoring system includes an interface assembly (102) for use in replacing an existing data link (330) within vending machine (300). The interface assembly (102) is coupled to an audit monitoring assembly (100) which interprets the communications signals transferred between a controller (310), coin changer (322) and bill validator (324) of vending machine (300). audit monitoring assembly (100) is powered from a power supply (302) of vending machine (300) and includes interface circuitry (110,120,130) for receipt of digital logic level signals, serial data or relay logic signals from vending machine (300). Additionally, the data retrieval terminal (20) may be removably coupled to the audit monitoring assembly (100) through either a hard wired coupling (254) through a serial interface (250) or alternately by means of infrared optical signals (12, 22) through an infrared interface circuit (260).
|
1. An audit monitor for retrofit into a coin operated vending system, the vending system having means for receiving and dispensing funds coupled to a controller by a data link, said audit system comprising:
interface means coupled to the data link for monitoring communication between the funds receiving and dispensing means and the controller,
microprocessor means coupled to an output of said interface means for (1) interpreting said monitored communications responsive to parameters selected from a plurality of predetermined parameters, said selected parameters including at least a protocol of said monitored communications and (2) discriminating and accumulating transaction data for the coin operated vending system;
memory means coupled to said microprocessor means for storing said plurality of predetermined parameters and said transaction data, said memory means being coupled to said microprocessor means by data, addressing and control signal pathways, said memory means including a circuit for (1) reading a predetermined number of said stored predetermined parameters defining said selected parameters, and (2) providing an output thereof to said microprocessor means responsive to an identification code input to said memory means therefrom from said microprocessor means;
power supply means coupled to said interface means, said microprocessor means, and said memory means for supplying an operating voltage thereto; and
input/output means removably coupled to said microprocessor means for input of said identification code to said microprocessor and output of said transaction data therefrom.
10. An audit monitoring system for addition to any of plurality of different types of existing coin operated ending systems, at least one of the types of vending systems having a currency validator and a coin changer coupled to a controller by a data link, said audit monitoring system comprising:
adapter means coupled to the currency validator, coin changer and controller of the vending system in place of the data link for accessing signals communicated therebetween;
interface means coupled to said adapter means for buffering said accessed signals;
microprocessor means coupled to an output of said interface means for monitoring said buffered accessed signals to discriminate and accumulate predetermined transaction data therefrom, said microprocessor means including means for interpreting said buffered accessed signals responsive to parameters selected from a plurality of predetermined parameters;
memory means coupled to said microprocessor means for storing said plurality of predetermined parameters and said transaction data, said memory means being coupled to said microprocessor means by data, addressing and control signal pathways, said memory means including a circuit for (1) reading a predetermined number of said stored predetermined parameters defining said selected parameters, and (2) providing an output thereof to said microprocessor means responsive to an identification code input to said memory means therefrom from said microprocessor means;
power supply means coupled to said interface means, said microprocessor means, and said memory means for supplying an operating voltage thereto; and
input/output means removably coupled to said microprocessor means for input of identification data to said microprocessor and output of said transaction data therefrom.
2. The audit monitor as recited in
3. The audit monitor as recited in
4. The audit monitor as recited in
5. The audit monitor as recited in
6. The audit monitor as recited in
7. The audit monitor as recited in
8. The audit monitor as recited in
9. The audit monitor as recited in
11. The audit monitoring system as recited in
12. The audit monitoring system as recited in
13. The audit monitoring system as recited in
14. The audit monitoring system as recited in
15. The audit monitoring system as recited in
16. The audit monitoring system as recited in
17. The audit monitoring system as recited in
18. The audit monitoring system as recited in
19. The audit monitoring system as recited in
|
1. Field of the Invention
This invention directs itself to audit monitoring systems for use with coin operated vending machines. In particular, this invention directs itself to an audit monitoring system having an interface assembly for retrofit coupling with existing vending systems of various types and manufacture. Still further, this invention directs itself to an audit monitoring system having a microprocessor controlled audit monitoring assembly coupled to an interface assembly, both being installed in an existing coin operated vending system for monitoring control signals between the vending machine's controller and its funds receiving and dispensing equipment. More in particular, this invention pertains to a microprocessor controlled audit monitoring system wherein predetermined parameters utilized for interpreting transaction data for the coin operated vending machine is output from the system's memory responsive to an identification code input thereto. Further, this invention directs itself to an audit monitoring system utilizing a clock/counter implemented within the microprocessor for such functions as timing power failures and door openings.
2. Prior Art
Audit monitoring systems are well known in the art. The best prior art known to the Applicants include U.S. Pat. Nos. 5,205,436; 5,113,351; 5,036,966; 4,369,442; and, 4,216,461.
In prior art systems such as that disclosed by U.S. Pat. Nos. 4,369,442 and 4,216,461, microprocessor controlled audit systems are incorporated in vending machines for temporarily storing transaction data of the machine and subsequently outputting such to a data collection terminal. However, such systems are adapted for interface with one particular type of machine of a single manufacturer. Such systems do not provide any means for retrofit application to existing coin operated vending systems. Further, such systems do not provide any means for utilizing identification codes for signifying a particular type of machine, and utilizing appropriate signal interpreting parameters in conjunction with such codes.
In other prior art systems, such as that disclosed by U.S. Pat. No. 5,036,966, coin validation equipment is provided for retrofit into newspaper vending racks. Such systems have the capability of recording the time and day of sale, and subsequently transferring such data by an optical communications link to a data retrieval device. However, such systems do not provide for retrofit to a multiplicity of different types of machines, made by different manufacturers. Nor, do such systems include any means for interface with a vending machine's controller and coin accepting devices.
In still other prior art systems, such as that disclosed by U.S. Pat. Nos. 5,205,436 and 5,113,351, vending systems coupled to remote processors are provided. Such remote processors are capable of monitoring the transactions of the vending systems. providing usage and inventory data to the vending system operator. However, such systems are designed to operate with a particular type of vending system from a particular manufacturer. Such audit systems are incorporated into the vending equipment at the time of manufacture, and am not capable of retrofit into any of a plurality of existing vending machines.
An audit monitoring system for use with a coin operated vending system is provided. The audit monitoring system includes an interface assembly coupled to a data link between the vending machine's controller and its funds receiving and dispensing equipment, for monitoring communication therebetween. The audit monitoring system further includes a microprocessor coupled to an output of the interface assembly for (1) interpreting the monitored communications responsive to predetermined parameters, and (2) discriminating and accumulating transaction data for the coin operated vending system. Coupled to the microprocessor, there is provided a memory array for (1) storing the predetermined parameters, (2) outputting the predetermined parameters to the microprocessor responsive to an identification code input to the memory array, and (3) storing the transaction data. A power supply coupled to the interface assembly, microprocessor and memory array is provided for supplying an operating voltage thereto. The audit monitoring system also includes an input/output assembly removably coupled to the microprocessor for input of the identification code to the microprocessor and output of the transaction data therefrom.
Referring to the Figures, them is shown, a vending machine audit monitoring system 10 for retrofit into any of a wide variety existing vending machines 300. As will be seen in following paragraphs, vending machine audit monitoring system 10 is specifically directed to the concept of providing a means of adding an audit monitoring capability to previously manufactured coin operated vending machines of various types which otherwise had none. Although not restricted to retrofit applications, vending machine audit monitoring system 10 is particularly adapted to interface with a large variety of different types of coin operated vending machines, adding an audit capability thereto. In addition to being capable of interfacing with a multitude of machine types, vending machine audit monitoring system 10 also provides the capability for interfacing with different types of data retrieval terminals, communicating through either a hard wire or infrared data link, each having a different protocol.
Referring now to
To further complicate the variety of vending machine 300 which may be encountered, it should be noted that the coded signals utilized to transmit data between the controller 310 and the equipment utilized for receiving and dispensing funds, as represented by the coin changer-bill validator 320 assembly, may differ from one manufacturer of vending machine 300 to another. Bill validators may also differ between machines of the same general type (multi vs. single price) from the same manufacturer, thereby creating many sub-categories. Thus, there has heretofore not been a single audit system capable of interfacing with other than a single and narrow class of vending machine, and that class from only a particular manufacturer.
Vending machine audit monitoring system 10 includes an interface assembly 102 which is coupled to the vending machine data link connectors for monitoring and carrying communications between the funds receiving and dispensing equipment 320 and the vending machine controller 310. The interface assembly 102 includes the appropriate conductive pathways 340 coupled on opposing ends to connectors 342 and 344 for replacing the connections made by connectors 332 and 334, respectively. The conductive pathways in the link 340 are either tapped or daisy-chained through an interface cable 346 which is terminated in a respective connector 348 for coupling with a complementary connector 14 of the audit monitor assembly 100. It is therefore only necessary that the data link 330 be removed from the vending machine 300 and replaced by the interface assembly 102, coupling the controller connector 312 to the connector 342 and the coin changer-bill validator connector 322 to the interface connector 344.
The audit monitor assembly 100 is secured within the housing of vending machine 300 and subsequently initialized utilizing the data retriever 20. Data retriever 20 is a hand-held terminal-type device which communicates with the audit monitor assembly 100. Data retriever 20 may be of a type that receives infrared signals 12 from the audit monitor assembly 100 and similarly transmits infrared signals 22 thereto. Alternately, the hand held terminal may be of the type where the data link is formed utilizing a removable hard wire connection. Obviously, the data retriever may take the form of a personal computer, lap-top, palm or pocket size computer, or a modem for coupling with a remote data processor without affecting the inventive concept of system 10. The initialization procedure includes the transmission of a code representing the type of machine being monitored. The audit monitoring assembly 100 utilizes this code for identifying predetermined parameters previously stored in memory and utilizing such in interpreting the monitored communications between the units 310 and 320.
As will be discussed in following paragraphs, subsequent to initialization, the audit monitor assembly 100 is adapted to discriminate between vending operations for items of different monetary values and accumulate a total number of operations for each of the different monetary values, as well as a total of all of the vending operations. Additionally, assembly 100 tracks how many bills are located in particular portions of the bill validator and the number of coins, and their value, which are in various portions of the coin changer, as well as the number and value of coins which have been paid out. The audit monitor assembly 100 is also capable of tracking the number of times the interior of the vending machine 300 has been accessed, as well as the time and date associated therewith, the time and date of power outages, and the time and date of data retrieval by the data retriever terminal 20.
Referring now to
Interface 102 provides the necessary conductive pathways 340 to maintain the communications data link between the controller 310 and both the coin changer 322 and bill validator 324, as well as coupling from the power supply 302 to each of those subsystems. As will be seen in following paragraphs, the interface with the vending machine data link may involve more than simple paralleling of the signal pathways to provide monitoring signals to assembly 100. Although it is rare to find vending machines without bill validators, where system 10 is to be incorporated into such a machine, obviously, that connection would be omitted from the interface assembly 102. Where it is desired to accumulate data as to the number of times the interior of the vending machine 300 had been accessed, a door switch 104 is secured to the machine such that its contacts are operated whenever the door of the vending machine is opened. It is not important to the inventive concept as to whether such contact operation is from a normally closed condition to an open condition, or from a normally open condition to a closed condition, and adaptation to the circuits of audit monitor assembly 100 to use either is well within the knowledge of those skilled in the art. A pair of conductors of a cable 347 provide electrical coupling between the door switch 104 and the connector 348, as part of the cable 346 for communicating any contact operation to audit monitor assembly 100.
The source of power for audit monitoring assembly 100 is derived from the power supply 302 of vending machine 300. The voltage supplied by power supply 302 may vary considerably, depending on the type of vending machine 300 which is to be monitored. However, the power supply voltage of a vending machine 300 will typically fall in one of two categories, either an unregulated relatively high voltage in the range of 12-16 volts, or a regulated 5 volt source suitable for use with integrated logic circuits, such as TTL logic. Interface 102 is designed such that an unregulated power supply voltage from vending machine 300 will be coupled to the appropriate pins of connector 14 for coupling the unregulated power source between the ground reference 144 and the input lead 142, through the connector 14. Input lead 142 couples the unregulated voltage to a voltage regulator 140 having an output voltage bus 146 for supplying a regulated 5 volts to all of the active devices which form the assembly 100. Although not shown, it is understood that the supply voltage VCC is coupled to all of the active devices of assembly 100 in a manner similar to that shown for microprocessor 200, such being coupled to the 5 volt bus 146 and the ground reference 144. Alternately, wherein the power supply of vending machine 300 provides the proper regulated voltage, such is coupled through the connector 14 to the input lead 152 for coupling with the DC bus 146 through an isolation diode 150 and the coupling line 154.
Where the controller 310 communicates with the coin changer 322 utilizing logic level signals on the data link 314, such are coupled through the respective connectors 348, 14 to the input bus 112 for coupling to the logic level interface 110. Logic level interface 110 buffers and/or conditions the logic level signals for coupling to microprocessor 200 by way of the coupling line 114. On the other hand, where vending machine 300 is of the type having a controller and coin changer which communicate at high voltage levels (greater than 5 volts) and/or by way of a serial data format, such are coupled through the respective connectors 348, 14 to the input lead 132, for input to the high voltage/serial interface circuit 130. The signals supplied to the input of the interface 130 are appropriately converted to logic level signals suitable for coupling to microprocessor 200 through the coupling line 134. Interface 130 may incorporate optical couplers as a means of achieving both signal isolation and voltage transformation, as is well known in the art. Where vending machine 300 includes a bill validator 324, the communications carried by data link 316 are routed through the connectors 348, 14 to the bill validator interface 120 through the coupling line 122. As will be seen in following paragraphs, bill validator interface 120 couples signals corresponding to those on line 122 input to microprocessor 200 through the coupling line 124, and outputs the appropriate signals to the controller 310 substantially simultaneously.
Referring now to
While the operational signals of vending machine 300 may be easily coupled to audit monitor assembly 100, in the aforesaid manner, to microprocessor 200, the interpretation of those signals is complicated by the fact that the sequence and timing of such signals varies from one manufacturer's vending machine 300 to another and from one manufacturer's type of machine having one type of bill validator to another of the same manufacturer's machine having a different type of bill validator. As a simplified example, one vending machine 300 may use a bill validator 324 having an escrow feature, that is, a received bill that has been determined by the validator to be valid legal tender, is held in an escrow position. From the escrow position it may be returned, if no vending selection is made, or accepted upon the user making his article selection and the machine vending the product. In such case, the validator 322 outputs a, pulse upon initial receipt of a valid bill and a second pulse when the bill is accepted and moved from the escrow position. Whereas, a non-escrowing type of bill validator accepts all valid bills, providing a refund when no vend is made through the coin changer. Thus, for the non-escrowing type of bill validator only a single pulse is output for each potential vend operation, and the coin changer will be signaled if no vend operation is carried out. Still other types of validators are multi-value devices which identify the value of the bill input thereto and signal such by output of a number of pulses representing that value. In such a system, acceptance of a five-dollar bill will be signaled by the output of a pulse train comprising five consecutive pulses. Microprocessor 200 must be able to distinguish between these different signal protocols in order to properly account for the transactions of a particular vending machine 300 to which it has been coupled.
Referring back to the block diagram of
Microprocessor 200 is coupled to a pair of output interface circuits 250, 260 by respective coupling lines 252,262. Interface circuit 250 is a serial interface for bi-directional communications to a retrieval terminal 20. Such communications being through a cable 254 which is removably engageable with an appropriate connector mounted to the housing which encloses the audit monitoring assembly 100 or a cable extending therefrom. The communications carried by the cable 254 may use an industry standard protocol known as the Direct Connect Interface Standard, although microprocessor 100 may be programmed to receive and transmit any desired protocol. Interface 260 is an optical interface for transmitting and receiving signals within the infrared portion of the electromagnetic spectrum. The protocol for data transmitted through this optical interface may also be an industry standard, or one specially tailored to a particular type of terminal 20. Like the identification codes utilized for “personalizing” audit monitoring assembly 100 to a particular vending machine 300, the output interface protocol can be similarly tailored utilizing a code input when the system is initialized, utilizing a default protocol for the initial communications. Alternately, the protocol used for transmission to assembly 100 can be identified by microprocessor 100, and then utilized for transmission of data output thereby.
Microprocessor 200 may also receive an input from the real time clock 240, by means of coupling line 244, which may be included in the system to provide time stamps in association with particular events, and thereby improve the audit capabilities of system 10. Real time clock 240 is powered from voltage supplied to the power supply input lead 242 of real time clock 240, such voltage normally being supplied from the power supply bus 146 through an isolation diode 164. However, real time clock 240 is also coupled to a backup battery 160 through an isolation diode 162. Thus, if power is interrupted to the vending machine 300, the real time clock 740 will remain energized from the battery 160, with the diode 164 preventing flow of current from battery 160 to any other device coupled to the power supply bus 146. Similarly, the diode 162 prevents any flow of current from the power supply bus 146 to the battery 160, which is desirable for applications utilizing lithium cells. However, in cases where nickel cadmium batteries are utilized, the diode 162 may be eliminated or bypassed with a current limiting resistor to providing for charging current to maintain the cells in a fully charged state between power interruptions.
Real time clock 240 provides the capability for identifying a time and date of various operations and transactions of vending machine 300 and assembly 100. Events such as door switch operations, in addition to being simply counted, may be tagged with the time and date of the occurrence, allowing a vending machine owner to identify when the vending machine was accessed to replenish the goods being vended and/or removal of cash therefrom, regardless of whether audit data is retrieved at such time. The time and date may also be stored at the restoration of power, subsequent to a power failure. This power failure data, the frequency of occurrences and their time of day/date, can be utilized in assessing whether power is being deliberately removed in order to bypass the audit function of system 10. This feature is enhanced by incorporation of the power down detection circuit 270. Detection circuit 270 outputs an interrupt to microprocessor 200 on line 276 when the power supply voltage falls below a predetermined threshold value, indicating that a power outage is imminent. Detector circuit 270 is coupled to the VCC supply by line 272 and the ground reference 144 by line 274.
Audit monitoring assembly 100 uniquely utilizes microprocessor 200 to detect a power failure, and in combination with real time clock 240 determines when the power was restored and the length of time that power was out. As will be described in following paragraphs, a clock counter is implemented in the software of microprocessor 200, which may be utilized for timing events in applications not requiring the accuracy of real time clock 240, which would be excluded from assembly 100 in such applications, as could power down detector circuit 270. In the absence of power down detector circuit 270, the internal clock counter and use of two bytes of memory provide a unique means for identifying and timing power failures without the need for additional hardware to identify a low voltage condition.
The internal clock counter is incremented at two minute intervals, with the new accumulated total stored in ROM memory 120 every hour, or any other time increment desired depending on whether memory write cycles are to be limited. Since microprocessor 200 is not provided with any battery backup, its processing stops coincident with a loss of power, and upon power restoration must reinitialize variables, counters and the like. Thus, whenever power is restored, the internal clock counter is reset to the last value that was stored in ROM 220. Power failures are identified by the state of a pair of bytes of memory on reinitialization of microprocessor 200. Part of the initial start-up processing is to store a known bit pattern in each of two bytes of memory. When the system is reinitialized after a power outage, those two bytes will contain random bit patterns, thereby indicating that a power failure had occurred. Responsive to identification of such an abnormal condition, microprocessor 200 increments a power outage count stored in ROM 220, and reads the real time clock 240, if such is present, to identify the time and date of power restoration, and stores such data in non-volatile memory 220. If real time clock 240 is not present,, microprocessor 200 uses the last internal clock counter accumulation which had been stored in non-volatile memory 220 for the power failure time stamp, which represents, on average, the nearest half hour time period prior to the power failure. The difference between that last time period established by the internal clock counter and the time-of-day read from the real time clock 240 establishes the approximate length of time that power was out. Such is more accurately determined where the occurrence of a power failure is identified by the power down detection circuit 270. Obviously, the frequency of power outages, the time that they occur and length of such occurrence provides important security data to the owner of vending machine 300.
Referring now to the flow charts of
Once the identification codes for vending machine 300 have been received, or if such had previously been entered, flow passes from decision block 412 to decision block 416. Decision block 416 tests whether a power failure had occurred since the last time through the main processing loop. As was previously described, whether a power failure had occurred or not is determined by the state of the internal clock/counter in combination with the state of audit data retrieval (whether such has just occurred). If a power failure has been identified, the flow passes from decision block 416 to block 418, wherein power failure housekeeping is performed, such as storing the time and date of the power failure, reading the last stored output of the internal clock/counter, and determining the duration of the power outage determined and storing that determination. From block 418 flow passes to decision block 420, as does the flow from decision block 416 if no power failure is detected. In block 420, it is determined from the previously entered I.D. codes whether vending machine 300 is a vending machine where audit data is supplied by the coin changer.
If the vending machine 300 is of the type where the changer supplies audit data, the flow passes to decision block 424, wherein the vending machine interface is tested to determine whether an audit message (communication relative to operations of the vending machine which are accumulated by the audit system) has been received from the vending machine hardware through the interface circuitry of assembly 100. If such audit message was received, flow passes from block 424 to block 426 wherein the sub-routine for handling the audit message and processing the data is called. From block 426 the flow loops back to decision block 402. If no audit message is currently being received, flow passes from block 424 to decision block 428, wherein it is tested whether the vending machine door has been opened, by monitoring the installed door switch, as has previously been described. If the door switch has operated, flow passes to block 430, wherein the door switch sub-routine is called. From block 430, the flow passes to block 432, wherein the time and date from the real time clock is read and stored in the non-volatile memory. From block 432, flow passes back to decision block 402. If the door has not been opened, flow passes to decision an block 434. Decision block 434 tests to determine when the last time the internal clock counter state had been saved. If this time period is less than two minutes, the flow passes from block 434 back to decision block 402. However, if the time period is not less than two minutes, the flow passes from block 434 to block 436, wherein the accumulated count of the internal clock/counter is saved in non-volatile memory. From block 436 the flow passes back to block 402.
If in decision block 420 it is determined that audit data is not provided by the coin changer, the flow passes through connector 422 to the bill validator initialization routine indicated by block 438 of
From block 452, flow passes to block 454, wherein it is tested whether activity between the controller 310 and the coin changer 322 or bill validator 324 has occurred. If no activity has occurred, flow passes from block 454 back to block 442. However, where activity is detected, flow passes from block 454 to block 458 of
It can thus be seen, system 10 provides a unique ability to interface with a wide variety of existing vending machines to provide a retrofit audit capability not previously available with a single audit monitoring assembly. Audit monitoring assembly 100 in combination with interface assembly 102 permits adaptability of one system 10 to vending machines from different manufacturers and of different configurations, from the same or different manufacturers. An identification code entered to identify the machine type and configuration is utilized by microprocessor 200 to select the appropriate parameters for decoding the signals received and output by the controller 310 of the vending machine 300. With proper decoding of the signals utilized by the vending machine 300, the audit monitoring assembly 100 can properly store the transactions of the particular machine to which it is connected. Periodically, a data retriever 20 will be coupled to monitoring assembly 100, through either a hard wire or optical interface, to recover the audit data therefrom. The terminal 20 will read the data stored in non-volatile memory 220, through interface with microprocessor 200, and transfer to the microprocessor and time and date of the transaction from the terminal's internal clock. If the nonvolatile memory 220 is to be erased subsequent to reading data therefrom, the transfer of the time and date from the terminal will proceed subsequent to such erasure, and the time and date from the real time clock 240 may also be stored at that time in order to provide a correlation between the terminal's clock and the time-of-day data provided by the real time clock 240. Thus, in combination, the alternative interfaces, both input and output, as well as the use of software to provide adaptive configurability, affords system 10 its unique and novel features which overcome the disadvantages and deficiencies of prior art systems.
Although this invention has been described in connection with specific forms and embodiments thereof, it will be appreciated that various modifications other than those discussed above may be resorted to without departing from the spirit or scope of the invention. For example, equivalent elements may be substituted for those specifically shown and described, certain features may be used independently of other features, and in certain cases, particular locations of elements may be reversed or interposed, all without departing from the spirit or scope of the invention as defined in the appended claims.
Ostendorf, Eugene G., Cowles, John C., Morris, Irwin D., Smith, Gerald W.
Patent | Priority | Assignee | Title |
10485452, | Feb 25 2015 | SOPHIC MEDICAL, LLC | Fall detection systems and methods |
7912577, | Dec 21 2006 | Gilbarco Inc. | Dispenser programming authorization system and method for fraud prevention |
8863934, | Apr 15 1997 | Nova Resolution Industries, Inc. | Data generating device for bulk vending machines |
8965569, | Dec 21 2006 | Gilbarco Inc. | Dispenser programming authorization system and method for fraud prevention |
Patent | Priority | Assignee | Title |
4216461, | Sep 06 1977 | KASPER WIRE WORKS, INC | Code controlled microcontroller readout from coin operated machine |
4369442, | Sep 06 1977 | KASPER WIRE WORKS, INC | Code controlled microcontroller readout from coin operated machine |
4498570, | Jan 29 1982 | The Coca-Cola Company | Multiple purchase discount module for a single price vending machine |
4598378, | Feb 07 1983 | H.R. Electronics Company | Management information system and associated vending control device |
5029098, | Jan 27 1989 | Coin Acceptors, Inc. | Vend space allocation monitor means and method |
5036966, | Jun 12 1989 | Kaspar Wire Works, Inc. | Newspaper vending rack coin box incorporating a retrofit electronic coin mechanism |
5113351, | Mar 29 1989 | DELPHI TECHNOLOGY, INC , A GA CORP | Automated, interactive vending system for products which must be processed |
5205436, | Nov 06 1991 | SUPPLYPRO, INC | Maine tool dispensing device and system |
5299113, | Apr 22 1992 | Maytag Corporation | Control board having dual means of configuration |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 26 2002 | Audit Systems Company | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 12 2007 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Aug 08 2009 | 4 years fee payment window open |
Feb 08 2010 | 6 months grace period start (w surcharge) |
Aug 08 2010 | patent expiry (for year 4) |
Aug 08 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 08 2013 | 8 years fee payment window open |
Feb 08 2014 | 6 months grace period start (w surcharge) |
Aug 08 2014 | patent expiry (for year 8) |
Aug 08 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 08 2017 | 12 years fee payment window open |
Feb 08 2018 | 6 months grace period start (w surcharge) |
Aug 08 2018 | patent expiry (for year 12) |
Aug 08 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |