There is provided a heat pump system including two (4,6), at least similar units in fluid communication with each other, each unit having a housing (8,8′), a first air/brine heat exchanger (12,12′), a second brine/refrigerant heat exchanger (24,24′), a brine inlet (10,10′) for applying brine onto at least one of the heat exchangers, a brine reservoir (14,14′) and a pump (28) for circulating the brine from the reservoir to the inlet. The first and second heat exchangers are in closed loop fluid communication with each other and have a compressor (44) for circulating a refrigerant therethrough in selected directions.
|
1. A heat pump system comprising:
two, substantially similar units in fluid communication with each other, each unit including
a housing, a forced-air counter-flow air/brine heat exchanger, a brine/refrigerant heat exchanger, brine inlet means for applying brine onto at least one of said heat exchangers, a brine reservoir and means for circulating said brine from the reservoir to said inlet means,
said brine/refrigerant heat exchangers being in closed loop fluid communication with each other and having compressor means for circulating a refrigerant therethrough in a selected direction, and for reversing the sense of circulation of the refrigerant inside said closed loop.
14. A heat pump system, comprising:
two substantially similar or identical units in fluid communication with each other, each unit including
a housing, an air/brine heat exchanger, a brine refrigerant heat exchanger, brine inlet means for applying brine into at least one of said heat exchangers, a brine reservoir and means for circulating said brine from the reservoir to said inlet means,
said brine/refrigerant heat exchangers being in closed loop fluid communication with each other and having compressor means for circulating a refrigerant therethrough in a selected direction, and for reversing the sense of circulation of the refrigerant inside said closed loop, and
an external humidity source for adding humidity to ambient air introducible into said housing.
12. A heat pump system, comprising:
two substantially similar or identical units in fluid communication with each other, each unit including
a housing, an air/brine heat exchanger, a brine refrigerant heat exchanger, brine inlet means for applying brine into at least one of said heat exchangers, a brine reservoir and means for circulating said brine from the reservoir to said inlet means,
said brine/refrigerant heat exchangers being in closed loop fluid communication with each other and having compressor means for circulating a refrigerant therethrough in a selected direction, and for reversing the sense of circulation of the refrigerant inside said close loop, and
ambient air heating means for heating the ambient air prior to the introduction thereof into said housing.
0. 29. A heat pump system, comprising:
two units in fluid communication with each other, each unit including:
a housing, an air/brine heat exchanger, a brine/refrigerant heat exchanger, brine inlet means for applying brine onto at least one of said heat exchangers, a brine reservoir and means for circulating said brine from the reservoir to said inlet means;
said brine/refrigerant heat exchangers of said units being in closed loop fluid communication with each other and having compressor means for circulating a refrigerant therethrough in selected directions, and
means for circulating brine between said reservoirs,
wherein said means for circulating the brine between said reservoirs are adapted to circulate brine at a lower rate than the rate of circulation of the brine between said reservoirs and said brine inlet means.
21. A heat pump, comprising:
two substantially similar or identical units in fluid communication with each other, each unit including
a housing, an air/brine heat exchanger, a brine refrigerant heat exchanger, brine inlet means for applying brine into at least one of said heat exchangers, a brine reservoir and means for circulating said brine from the reservoir to said inlet means;
said brine/refrigerant heat exchangers being in closed loop fluid communication with each other and having compressor means for circulating a refrigerant therethrough in a selected direction and for reversing the sense of circulation of the refrigerant inside said closed loop; and
means for circulating brine between said reservoirs adapted to circulate brine at a lower rate than the rate of circulation of brine between the reservoirs and said inlet means.
2. A heat pump system, comprising:
two, substantially similar units in fluid communication with each other, each unit including
a housing, brine inlet means at the top portion thereof, a first air/brine heat exchanger located adjacent said brine inlet means, a brine reservoir at the lower part of said housing and means for introducing forced air into brine-dripping space delimited between said first heat exchanger and said reservoir to produce a counter-flow air/brine heat exchanger, and
a second heat exchanger in liquid communication with said brine inlet means and said reservoir;
the reservoir of each unit being in liquid communication with each other;
said second heat exchangers being in closed loop fluid communication with each other and having compressor means for circulating a refrigerant therethrough in a selected direction, and for reversing the sense of circulation of the refrigerant inside said closed loop, and
means for circulating brine between said reservoir and said second heat exchanger of each unit.
25. A heat pump system, comprising:
two substantially similar units in fluid communication with each other, each unit including
a housing, brine inlet means at the top portion thereof, a first heat exchanger located adjacent said brine inlet means, a brine reservoir at the lower part of said housing and means for introducing air into brine-dripping space delimited between said first heat exchanger and said reservoir, and
a second heat exchanger in liquid communication with said brine inlet means and said reservoir;
the reservoirs of said units being in liquid communication with each other;
said second heat exchangers being in closed loop fluid communication with each other and having compressor means for circulating a refrigerant therethrough in a selected direction and for reversing the sense of circulation of the refrigerant inside said closed loop;
means for circulating brine between said reservoir and said second heat exchanger of each unit, and
an external humidity source for adding humidity to ambient air introducible into said housing.
0. 30. A heat pump system, comprising:
two units in fluid communication with each other, each unit including:
a housing, brine inlet means at the top portion thereof, a first heat exchanger located adjacent said brine inlet means, a brine reservoir at the lower part of said housing, and means for introducing air into brine-dripping space delimited between said first heat exchanger and said reservoir, and
a second heat exchanger in liquid communication with said brine inlet means and said reservoir;
said second heat exchangers being in closed loop fluid communication with each other and having compressor means for circulating a refrigerant therethrough in selected directions, and
means for circulating brine between said reservoir and said second heat exchanger of each unit,
and means for circulating brine between said reservoirs,
wherein said means for circulating the brine between said reservoirs are adapted to circulate brine at a lower rate than the rate of circulation of the brine between said reservoirs and said second heat exchanger of each unit.
23. A heat pump system, comprising:
two substantially similar units in fluid communication with each other, each unit including
a housing, brine inlet means at the top portion thereof, a first heat exchanger located adjacent said brine inlet means, a brine reservoir at the lower part of said housing and means for introducing air into brine-dripping space delimited between said first heat exchanger and said reservoir, and
a second heat exchanger in liquid communication with said brine inlet means and said reservoir;
the reservoirs of said units being in liquid communication with each other;
said second heat exchangers being in closed loop fluid communication with each other and having compressor means for circulating a refrigerant therethrough in a selected direction and for reversing the sense of circulation of the refrigerant inside said closed loop;
means for circulating brine between said reservoir and said second heat exchanger of each unit, and
ambient air heating means for heating the ambient air prior to the introduction thereof into said housing.
19. A method for air conditioning, comprising:
providing a heat pump system having two substantially similar or identical units in fluid communication with each other, each unit including
a housing, an air/brine heat exchanger, a brine refrigerant heat exchanger, brine inlet means for applying brine into at least one of said heat exchangers, a brine reservoir and means for circulating said brine from the reservoir to said inlet means,
said brine/refrigerant heat exchangers being in closed loop fluid communication with each other and having compressor means for circulating a refrigerant therethrough in a selected direction, and for reversing the sense of circulation of the refrigerant inside said closed loop,
wherein the refrigerant's evaporator and the refrigerant's condenser exchange heat with brine solution, whereby the temperature of condensation of said refrigerant is reduced while the temperature of said evaporator is raised, thereby increasing the efficiency of the system, and
wherein said means for circulating the brine is adapted to circulate brine at a higher rate than the rate of circulation of the brine between said two reservoirs.
28. A heat pump system, comprising:
two substantially similar units in fluid communication with each other, each unit including
a housing, brine inlet means at the top portion thereof, a first heat exchanger located adjacent said brine inlet means, a brine reservoir at the lower part of said housing and means for introducing air into brine-dripping space delimited between said first heat exchanger and said reservoir, and
a second heat exchanger in liquid communication with said brine inlet means and said reservoir;
the reservoirs of said units being in liquid communication with each other;
said second heat exchangers being in closed loop fluid communication with each other and having compressor means for circulating a refrigerant therethrough in a selected direction and for reversing the sense of circulation of the refrigerant inside said closed loop, and
means for circulating brine between said reservoir and said second heat exchanger of each unit,
wherein said means for circulating brine are adapted to circulate brine at a lower rate than the rate of circulation of brine between the reservoirs and the second heat exchanger of each unit.
0. 43. A dehumidifier system comprising:
a dehumidifying chamber into which moist air is introduced and from which less moist air is removed after dehumidification;
a desiccant solution situated in two reservoirs;
a first conduit via which desiccant solution is transferred from a first reservoir of said two reservoirs to the dehumidifying chamber, said solution being returned to said first reservoir after absorbing moisture from the moist air;
a regenerator which receives desiccant solution from a second reservoir of said two reservoirs and removes moisture from it;
a second conduit via which desiccant is transferred from said second reservoir to the regenerator, said solution being returned to said second reservoir after moisture is removed from it;
a heat pump that transfers heat from the solution in the first conduit to the solution in the second conduit, and
means for circulating desiccant solution between said reservoirs,
wherein said means for circulating the desiccant between said reservoirs are adapted to circulate desiccant at a lower rate than the rate of transfer of said desiccant from said reservoirs to at least one of said dehumidifying chamber and said regenerator.
0. 44. A dehumidifier system comprising:
a dehumidifying chamber into which moist air is introduced and from which less moist air is removed after dehumidification;
a desiccant solution situated in a first reservoir;
a first conduit via which desiccant solution is transferred from the first reservoir to the dehumidifying chamber, said solution being returned to said first reservoir after absorbing moisture from the moist air;
a desiccant solution situated in a second reservoir;
a regenerator which receives desiccant solution from the second reservoir and removes moisture from it;
a second conduit via which desiccant is transferred from the second reservoir to the regenerator, said solution being returned to said second reservoir after moisture is removed from it; and
means for circulating desiccant solution between said reservoirs,
wherein a substantial temperature differential is maintained between the first and second reservoirs, and
wherein said means for circulating the desiccant between said reservoirs are adapted to circulate desiccant at a lower rate than the rate of circulation of the desiccant between said reservoirs and at least one of said dehumidifying chamber and said regenerator.
27. A method for air conditioning, comprising:
providing a heat pump system having two substantially similar units in fluid communication with each other, each unit including
a housing, brine inlet means at the top portion thereof, a first heat exchanger located adjacent said brine inlet means, a brine reservoir at the lower part of said housing and means for introducing air into brine-dripping space delimited between said first heat exchanger and said reservoir, and
a second heat exchanger in liquid communication with said brine inlet means and said reservoir;
the reservoirs of said units being in liquid communication with each other;
said second heat exchangers being in closed loop fluid communication with each other and having compressor means for circulating a refrigerant therethrough in a selected direction and for reversing the sense of circulation of the refrigerant inside said closed loop;
means for circulating brine between said reservoir and said second heat exchanger of each unit;
wherein the refrigerant's evaporator and the refrigerant's condenser exchanger heat with brine solution, whereby the temperature of condensation of said refrigerant is reduced while the temperature of said evaporator is raised, thereby increasing the efficiency of the system, and
wherein said means for circulating the brine is adapted to circulate brine at a higher rate than the rate of circulation of the brine between said two reservoirs.
3. The heat pump system as claimed in
5. The heat pump system as claimed in
6. The heat pump system as claimed in
7. The heat pump system as claimed in
8. The heat pump system as claimed in
9. The heat pump system as claimed in
10. The heat pump system as claimed in
11. The heat pump system as claimed in
13. The heat pump system as claimed in
16. A method of air conditioning, comprising:
providing a heat pump system as claimed in
17. The method as claimed in
18. The method as claimed in
20. The heat pump as claimed in
22. The heat pump as claimed in
24. The heat pump system as claimed in
0. 31. The heat pump system as claimed in
0. 32. The heat pump system as claimed in
0. 33. The heat pump system as claimed in
0. 34. The heat pump system as claimed in
0. 35. The heat pump system as claimed in
0. 36. The heat pump system as claimed in
0. 37. The heat pump system as claimed in
0. 38. The heat pump system as claimed in
0. 39. The heat pump system as claimed in
0. 40. A method for air conditioning, comprising:
providing a heat pump system as claimed in
0. 41. The method as claimed in
0. 42. The method as claimed in
0. 45. A method for air conditioning, comprising:
providing a heat pump system as claimed in
0. 46. The method as claimed in
0. 47. The method as claimed in
|
The present invention relates to heat pump systems and in particular to heat pump systems utilizing two subcycles, the first involving brine and the second a common refrigerant. The invention also relates to a method of air conditioning, utilizing the heat pump systems.
Space heating and cooling installations are known. Essentially, such installations comprise a closed top refrigerant circulated by means of a compressor through finned pipes located inside a house and outside thereof. In winter, the compressor forces compressed and warmed refrigerant into finned pipe sections within the house where condensation takes place. The liberated heat is usually dispensed into the house by means of a fan. The condensed refrigerant then passes through a throttle valve to an evaporator. The heat of evaporation is provided by the colder outside air. During summer, the sense of circulation of the refrigerant is reversed. The outside finned pipes constitute the condenser, while the inside finned pipes operate as the evaporator.
When such installations are used in areas where the climate is not mild, however, i.e., where the outside air temperature drops to close to the freezing mark or even therebelow, ice can accumulate on the surfaces of the outdoor evaporator and obstruct the air flow.
It is therefore a broad object of the present invention to ameliorate the above problem and to provide a heat pump system adapted to operate efficiently also in more severe climatic conditions.
It is a further object of the present invention to provide a heat pump system utilizing brine in heat exchange relationship with a refrigerant.
In accordance with the present invention there is therefore provided a heat pump system, comprising two, at least similar units in fluid communication with each other, each unit including a housing, a first air/brine heat exchanger, a second brine/refrigerant heat exchanger, brine inlet means for applying brine onto at least one of said heat exchangers, a brine reservoir and means for circulating said brine from the reservoir to said inlet means, said first and second heat exchangers being in closed loop fluid communication with each other and having compressor means for circulating a refrigerant therethrough in selected directions.
The invention further provides a method for air conditioning, comprising providing a housing, a first air/brine heat exchanger, a second brine/refrigerant heat exchanger, brine inlet means for applying brine onto at least one of said heat exchangers, a brine reservoir and means for circulating said brine from the reservoir to said inlet means, said first and second heat exchangers being in closed loop fluid communication with each other and having compressor means for circulating a refrigerant therethrough in selected directions, wherein the refrigerant's evaporator and the refrigerant's condenser exchange heat with brine solution, whereby the temperature of condensation of said refrigerant is reduced while the temperature of said evaporator is raised, thereby increasing the efficiency of the system.
Hygroscopic brine such as LiBr, MgCl2, Ca2cl and mixtures thereof, can be advantageously used. The concentrations of these brines will be such that no precipitation of salts or ice throughout the working range of temperatures of the heat pump will be formed.
The invention will now be described in connection with certain preferred embodiments with reference to the following illustrative figures so that it may be more fully understood.
With specific reference now to the figures in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
Seen in the Figure is a heat pump system 2 essentially comprising two substantially similar units 4 and 6, each acting in its turn as an evaporator and a condenser, one located inside an enclosure (not seen) to be air conditioned and the other, outside the enclosure exposed to ambient air. Each unit respectively includes a housing 8,8′ and brine inlet means 10,10′ disposed in the upper portion of the housing. The liquid inlet means is advantageously embodied by a set of drip or spray nozzles or apertures. Below the brine inlet means 10,10′ there is affixed a brine/air heat exchanger 12,12′. The latter can be made of densely folded carton paper or of packed particles, e.g., glass or ceramic, pebbles of beads. The lower portion of the housing constitutes a brine reservoir 14,14′ while the space 16,16′ inside the housing delimited by the liquid level 18,18′ and the heat exchanger 12,12′, respectively, acts as a brine dripping space exposed to ambient air introduced thereinto, for example, by a blower 20,20′ or by any other natural or forced means. Each of the brine inlet means 10,10′ is respectively connected via conduit 22,22′ to a second heat exchanger 24,24′. A conduit 26,26′ leads from the heat exchanger 24,24′ to the brine reservoir 14,14′ via a circulation pump 28,28′, respectively. The reservoirs 14,14′ are in liquid communication via conduits 30 and 32 and advantageously, pass through a third heat exchange 34.
The heat exchangers 24,24′, in their simple embodiment are composed of a closed vessel 36,36′ each housing a coil 38,38′, respectively. The coils 38,38′ are interconnected, in a closed loop, by pipes 40,42. A compressor 44 fitted on the pipe 40 forces a refrigerant through the coils 38,38′ via a throttle valve 46.
If not all, at least most, of the system's parts and components should be made of materials non-corrosive to brine.
In order to avoid the necessity of providing synchronization and control between the pumps 28,28′, it is proposed to build the system such that the brine accumulated in the reservoir 14′ will return to the reservoir 14 through conduit 32 as gravity flow. This is achieved by locating the reservoir 14′ at a higher level than the level of reservoir 14 or at least inter-connecting the reservoir's conduit 32 in such orientation so as to slope from reservoir 14′ to reservoir 14. In any case, the brine exchange flow rate between the reservoirs 14,14′ via pipes 30,32 should be smaller than the circulation rate of the brine in the units 4 or 6 themselves. For operation under certain conditions, it is also possible to stop the circulation of the brine between the two units, if desired.
The size of the reservoirs will determine the capacity thereof acting as heat accumulators for eventual utilization.
Turning to
The embodiments of
A modification of the system is illustrated in FIG. 3. Here, the system (of
As can now be readily understood, the outside or room air introduced by blowers 20,21′ into the housings 8,8′, flows as counter current or cross current to the droplets of brine dripping in the space 16,16′, so as to exchange heat and vapor with the brine. Since the brine maintains the unit acting as an condenser at a temperature which is lower than the normal temperature, e.g., at 37° C. instead of 47° C., and parallely, maintains the evaporator's temperature higher than the normal temperature, e.g., 4° C. instead of 0° C., it can be shown that the efficiency of the cycle will be superior at a ratio, of about, e.g.:
Hence, the coefficient of performance of the brine heat pump, according to the present invention as compared with conventional heat pumps, is substantially higher. In other words, for the same input of energy, the brine heat pump will remove 40% more heat from an enclosure in which it is installed as compared with conventional heat pumps, provided that the mechanical efficiency of the two compressors is the same.
The average temperature head between the fluid inside and the brine in the above example is 6° C., and it is anticipated that for an area of 1 square meter of heat exchanger, the heat transfer rate will be about 6 Kw.
Therefore, the heat exchange area between the brine and the working fluid (in heat exchangers 24 and 24′) will be small compared with the area required to transfer heat from the working fluid to the air in conventional heat pumps.
The small area of the heat exchanger is related to the large heat conductivity between the condenser and the evaporator's walls (h=1000 W/Square M.° C.) and the brine. The air conductivity is characterized by 70 watt units only (Watts/(square m C.).
The invention is also usable for refrigeration purposes.
It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrated embodiments and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Patent | Priority | Assignee | Title |
10006648, | May 25 2010 | 7AC Technologies, Inc. | Methods and systems for desiccant air conditioning |
10024558, | Nov 21 2014 | 7AC Technologies, Inc. | Methods and systems for mini-split liquid desiccant air conditioning |
10024601, | Dec 04 2012 | 7AC Technologies, Inc. | Methods and systems for cooling buildings with large heat loads using desiccant chillers |
10168056, | May 25 2010 | EMERSON CLIMATE TECHNOLOGIES, INC | Desiccant air conditioning methods and systems using evaporative chiller |
10222087, | Oct 27 2014 | INTEX HOLDINGS PTY LTD | System and method of cooling by latent energy transfer |
10240807, | Nov 24 2014 | Korea Institute of Science and Technology | Desiccant cooling system |
10302317, | Jun 24 2010 | Nortek Air Solutions Canada, Inc.; University of Saskatchewan | Liquid-to-air membrane energy exchanger |
10323867, | Mar 20 2014 | EMERSON CLIMATE TECHNOLOGIES, INC | Rooftop liquid desiccant systems and methods |
10352628, | Mar 14 2013 | NORTEK AIR SOLUTIONS CANADA, INC | Membrane-integrated energy exchange assembly |
10408503, | Nov 08 2016 | AGAM ENERGY SYSTEMS LTD | Heat pump system and method for air conditioning |
10443868, | Jun 11 2012 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and systems for turbulent, corrosion resistant heat exchangers |
10480801, | Mar 13 2013 | Nortek Air Solutions Canada, Inc. | Variable desiccant control energy exchange system and method |
10584884, | Mar 15 2013 | NORTEK AIR SOLUTIONS CANADA, INC | Control system and method for a liquid desiccant air delivery system |
10619867, | Mar 14 2013 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and systems for mini-split liquid desiccant air conditioning |
10619868, | Jun 12 2013 | EMERSON CLIMATE TECHNOLOGIES, INC | In-ceiling liquid desiccant air conditioning system |
10619895, | Mar 20 2014 | EMERSON CLIMATE TECHNOLOGIES, INC | Rooftop liquid desiccant systems and methods |
10634392, | Mar 13 2013 | Nortek Air Solutions Canada, Inc. | Heat pump defrosting system and method |
10712024, | Aug 19 2014 | NORTEK AIR SOLUTIONS CANADA, INC | Liquid to air membrane energy exchangers |
10731876, | Nov 21 2014 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and systems for mini-split liquid desiccant air conditioning |
10739032, | May 15 2015 | NORTEK AIR SOLUTIONS CANADA, INC | Systems and methods for managing conditions in enclosed space |
10753624, | May 25 2010 | EMERSON CLIMATE TECHNOLOGIES, INC | Desiccant air conditioning methods and systems using evaporative chiller |
10760830, | Mar 01 2013 | EMERSON CLIMATE TECHNOLOGIES, INC | Desiccant air conditioning methods and systems |
10782045, | May 15 2015 | NORTEK AIR SOLUTIONS CANADA, INC | Systems and methods for managing conditions in enclosed space |
10808951, | May 15 2015 | NORTEK AIR SOLUTIONS CANADA, INC | Systems and methods for providing cooling to a heat load |
10921001, | Nov 01 2017 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems |
10928082, | Sep 02 2011 | Nortek Air Solutions Canada, Inc. | Energy exchange system for conditioning air in an enclosed structure |
10941948, | Nov 01 2017 | EMERSON CLIMATE TECHNOLOGIES, INC | Tank system for liquid desiccant air conditioning system |
10962252, | Jun 26 2015 | NORTEK AIR SOLUTIONS CANADA, INC | Three-fluid liquid to air membrane energy exchanger |
11022330, | May 18 2018 | EMERSON CLIMATE TECHNOLOGIES, INC | Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture |
11035618, | Aug 24 2012 | Nortek Air Solutions Canada, Inc. | Liquid panel assembly |
11092349, | May 15 2015 | NORTEK AIR SOLUTIONS CANADA, INC | Systems and methods for providing cooling to a heat load |
11098909, | Jun 11 2012 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and systems for turbulent, corrosion resistant heat exchangers |
11143430, | May 15 2015 | NORTEK AIR SOLUTIONS CANADA, INC | Using liquid to air membrane energy exchanger for liquid cooling |
11300364, | Mar 14 2013 | Nortek Air Solutions Canada, Ine. | Membrane-integrated energy exchange assembly |
11408681, | Mar 15 2013 | NORTEK AIR SOLUTIONS CANADA, INC | Evaporative cooling system with liquid-to-air membrane energy exchanger |
11598534, | Mar 15 2013 | Nortek Air Solutions Canada, Inc. | Control system and method for a liquid desiccant air delivery system |
11624517, | May 25 2010 | EMERSON CLIMATE TECHNOLOGIES, INC | Liquid desiccant air conditioning systems and methods |
11732972, | Aug 24 2012 | Nortek Air Solutions Canada, Inc. | Liquid panel assembly |
11761645, | Sep 02 2011 | Nortek Air Solutions Canada, Inc. | Energy exchange system for conditioning air in an enclosed structure |
11815283, | May 15 2015 | Nortek Air Solutions Canada, Inc. | Using liquid to air membrane energy exchanger for liquid cooling |
11892193, | Apr 18 2017 | Nortek Air Solutions Canada, Inc.; NORTEK AIR SOLUTIONS CANADA, INC | Desiccant enhanced evaporative cooling systems and methods |
7775064, | Feb 27 2003 | OXYCOM BEHEER B V | Evaporative cooler |
8602087, | Nov 19 2008 | Double flow-circuit heat exchange device for periodic positive and reverse directional pumping | |
8800308, | May 25 2010 | 7AC Technologies, Inc. | Methods and systems for desiccant air conditioning with combustion contaminant filtering |
8943850, | May 25 2010 | EMERSON CLIMATE TECHNOLOGIES, INC | Desalination methods and systems |
9000289, | May 25 2010 | EMERSON CLIMATE TECHNOLOGIES, INC | Photovoltaic-thermal (PVT) module with storage tank and associated methods |
9086223, | May 25 2010 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and systems for desiccant air conditioning |
9101874, | Jun 11 2012 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and systems for turbulent, corrosion resistant heat exchangers |
9101875, | Jun 11 2012 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and systems for turbulent, corrosion resistant heat exchangers |
9109808, | Mar 13 2013 | NORTEK AIR SOLUTIONS CANADA, INC | Variable desiccant control energy exchange system and method |
9115935, | Nov 17 2008 | Single flow circuit heat absorbing/release device for periodic positive and reverse directional pumping | |
9207020, | Nov 19 2008 | Double flow-circuit heat exchange device for periodic positive and reverse directional pumping using a bidirectional pump | |
9243810, | May 25 2010 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and systems for desiccant air conditioning |
9267696, | Mar 04 2013 | Carrier Corporation | Integrated membrane dehumidification system |
9273877, | May 25 2010 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and systems for desiccant air conditioning |
9308490, | Jun 11 2012 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and systems for turbulent, corrosion resistant heat exchangers |
9377207, | May 25 2010 | EMERSON CLIMATE TECHNOLOGIES, INC | Water recovery methods and systems |
9429332, | May 25 2010 | EMERSON CLIMATE TECHNOLOGIES, INC | Desiccant air conditioning methods and systems using evaporative chiller |
9470426, | Jun 12 2013 | EMERSON CLIMATE TECHNOLOGIES, INC | In-ceiling liquid desiccant air conditioning system |
9506697, | Dec 04 2012 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and systems for cooling buildings with large heat loads using desiccant chillers |
9581346, | Feb 21 2012 | WATERGY GMBH | System for regulating the temperature and humidity in an enclosure |
9631823, | May 25 2010 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and systems for desiccant air conditioning |
9631848, | Mar 01 2013 | EMERSON CLIMATE TECHNOLOGIES, INC | Desiccant air conditioning systems with conditioner and regenerator heat transfer fluid loops |
9709285, | Mar 14 2013 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and systems for liquid desiccant air conditioning system retrofit |
9709286, | May 25 2010 | EMERSON CLIMATE TECHNOLOGIES, INC | Methods and systems for desiccant air conditioning |
9810439, | Sep 02 2011 | NORTEK AIR SOLUTIONS CANADA, INC | Energy exchange system for conditioning air in an enclosed structure |
9816760, | Aug 24 2012 | NORTEK AIR SOLUTIONS CANADA, INC | Liquid panel assembly |
9835340, | Jun 11 2012 | 7AC Technologies, Inc. | Methods and systems for turbulent, corrosion resistant heat exchangers |
9909768, | Mar 13 2013 | Nortek Air Solutions Canada, Inc. | Variable desiccant control energy exchange system and method |
9920960, | Jan 19 2011 | NORTEK AIR SOLUTIONS CANADA, INC | Heat pump system having a pre-processing module |
Patent | Priority | Assignee | Title |
2556250, | |||
2672024, | |||
2798570, | |||
2894376, | |||
2952993, | |||
4700550, | Mar 10 1986 | Enthalpic heat pump desiccant air conditioning system | |
4941324, | Sep 12 1989 | Hybrid vapor-compression/liquid desiccant air conditioner | |
WO9926026, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Jul 24 2007 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Jul 25 2011 | ASPN: Payor Number Assigned. |
Jul 28 2011 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Sep 19 2009 | 4 years fee payment window open |
Mar 19 2010 | 6 months grace period start (w surcharge) |
Sep 19 2010 | patent expiry (for year 4) |
Sep 19 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 19 2013 | 8 years fee payment window open |
Mar 19 2014 | 6 months grace period start (w surcharge) |
Sep 19 2014 | patent expiry (for year 8) |
Sep 19 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 19 2017 | 12 years fee payment window open |
Mar 19 2018 | 6 months grace period start (w surcharge) |
Sep 19 2018 | patent expiry (for year 12) |
Sep 19 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |