In metallic material injection molding machines, the connection between the injection nozzle and the sprue bushing has tended to leak metallic material. To overcome this problem, the nozzle has been modified to have a projecting portion or spigot that extends into a mating portion of the sprue bushing to form a seal between the respective portion walls. The nozzle and sprue bushing can move axially with respect to one another without loss of sealing whereas with the prior designs any separation between confronting annular surfaces on the sprue bushing and the nozzle would result in a loss of sealing and leakage.
|
0. 14. A metallic material injection molding machine nozzle and sprue bushing interface apparatus, comprising:
a spigot portion configured to be disposed in at least one of the nozzle and the sprue bushing; and
a channel portion configured to be disposed in at least one of the sprue bushing and the nozzle;
said at least one spigot portion and said at least one nozzle portion being also configured to form a gap therebetween during a molding operation to cause a limited amount of metallic material to flow into said gap and solidify in said gap to form a seal.
0. 15. A metallic material injection molding machine, comprising:
a mold;
an injection nozzle configured to supply metallic material to said mold;
a sprue bushing coupled to said mold;
a spigot disposed in at least one of said nozzle and said sprue bushing; and
a channel disposed in at least one of said sprue bushing and said nozzle;
said at least one spigot and said at least one nozzle being configured to form a gap therebetween during a molding operation to cause a limited amount of metallic material to flow into said gap and solidify in said gap to form a seal.
8. An improved nozzle and sprue bushing connection for a metal injection molding machine,
wherein said nozzle has a first surface portion which fits inside a and said sprue bushing has a complementary second surface portion,
of said sprue bushing said surface portions fit closely together with one inside the other,
wherein said first portion and said surface portion are separated by close fit between said portions provides for a small gap that permits a limited amount of metallic material to flow into said gap and solidify in said gap to form a seal against leakage of a metal molding material, and
wherein said nozzle can move axially within said sprue bushing without losing sealing contact between said nozzle and said bushing.
0. 21. A metallic material injection molding machine nozzle tip configured to interface with a sprue bushing having first and second angled surfaces, comprising:
a first nozzle tip surface configured to interface with the first surface of the sprue bushing;
a second nozzle tip surface, angled with respect to the first nozzle tip surface, and configured to interface with the second surface of the sprue bushing; and
the first and second angled nozzle tip surfaces being configured to form a gap between the first sprue bushing surface and the first nozzle tip surface during a molding operation to cause a limited amount of metallic material to flow into the gap and solidify in said gap to form a seal.
0. 16. A metallic material injection molding machine sprue bushing configured to interface with a nozzle tip having first and second angled surfaces, comprising:
a first sprue bushing surface configured to interface with the first surface of the nozzle tip;
a second sprue bushing surface, angled with respect to the first sprue bushing surface, and configured to interface with the second surface of the nozzle tip; and
the first and second angled sprue bushing surfaces being configured to form a gap between the first sprue bushing surface and the first nozzle tip surface during a molding operation to cause a limited amount of metallic material to flow into the gap and solidify in said gap to form a seal.
6. An improved nozzle and sprue bushing connection for a metallic material injection molding machine,
said sprue bushing having a first cylindrical sealing surface and said nozzle having a complementary second cylindrical sealing surface,
one of said first or second sealing surface being of a smaller diameter than said first surface, said second surface the other, with the one fitting within first cylindrical surface to provide the other, and
a gap being provided between said first surface and said second sealing surface,
wherein when said nozzle is engaged in said bushing, that permits a limited amount of metallic material to enter the enters said gap and solidify in the gap solidifies therein to form a seal, said limited amount of material being attached to a sprue and removed therewith, said first and second surfaces being of sufficient length to permit limited axial movement therebetween without a loss of sealing between said surfaces.
1. In a metallic material injection molding machine,
an injection nozzle joined to an injection barrel of said injection molding machine,
a stationary platen holding a portion of a mold,
a sprue bushing mounted in said mold,
said nozzle engaging said sprue bushing when said metallic material is injected through said nozzle and into said sprue bushing into said mold ,
at least one of said nozzle and said sprue bushing having a spigot portion, and at least the other one of said nozzle and said sprue bushing having a complementary channel formed therein,
wherein, in use, said spigot portion which extends into a said channel in said sprue bushing , an outer periphery of said spigot fitting within a surface of said channel so as to create a gap between between said surface and said periphery of said spigot that permits a limited amount of metallic material to enter the gap and solidify in the gap to form a seal and thereby prevent loss of metallic material through the interface between said nozzle and said sprue bushing during an injection cycle, said limited amount of material being attached to a sprue and removed therewith.
2. In a The metallic material injection molding machine as in
3. In a The metallic material injection molding machine as in
4. In an The metallic material injection machine as defined in
5. In an The metallic material injection molding machine as defined in any one of claims 1, 2, 3 or claim 4 wherein said spigot portion is of a length sufficient to maintain sealing between said channel and said spigot portion during an injection cycle and short enough to permit release of any metallic material retained between said channel and said spigot portion when a sprue is released from said channel .
7. An improved nozzle and sprue bushing connection as defined in
9. An The improved nozzle and sprue bushing connection as defined in
0. 10. The improved nozzle and sprue bushing connection as defined in
0. 11. The metallic material injection molding machine as defined in any one of claims 1, 4, or 5 wherein said spigot portion is disposed on said nozzle, and wherein said channel is formed in said sprue bushing.
0. 12. The improved connection as defined in
0. 13. The improved connection as defined in
0. 17. A sprue bushing according to
0. 18. A sprue bushing according to
0. 19. A sprue bushing according to
0. 20. A sprue bushing according to
0. 22. A nozzle tip according to
0. 23. A nozzle tip according to
0. 24. A nozzle tip according to
0. 25. A nozzle tip according to
0. 26. The metallic material injection molding machine as in
0. 27. The metallic material injection molding machine as in
0. 28. The improved nozzle and sprue bushing connection as defined in
0. 29. The improved nozzle and sprue bushing connection as defined in
0. 30. The improved nozzle and sprue bushing connection as defined in
0. 31. The improved nozzle and sprue bushing connection as defined in
0. 32. The metallic material injection molding machine nozzle and sprue bushing interface apparatus as in
0. 33. The metallic material injection molding machine nozzle and sprue bushing interface apparatus as in
0. 34. The metallic material injection molding machine as in
0. 35. The metallic material injection molding machine as in
|
1. Field of the Invention
The present invention is directed to an improved injection nozzle for a metallic material injection-molding machine and particularly a metal alloy injection machine.
2. Related Prior Art
In metallic material injection technology the facing surfaces between the nozzle and the sprue bushing on the mold have been machined so as to be compliant with one another and designed so as to have substantial surface contact. In this design it was assumed that the carriage cylinders could apply sufficient pressure to the nozzle to prevent it from parting contact with the sprue bushing. However, it has been discovered that even when the highest acceptable force is applied at the interface between the nozzle and the sprue bushing, it is insufficient to prevent some parting at the interface. This parting at the interface creates a build up of injection material on the surfaces of the interface with the ultimate result that the interface may fail to seal and permit the leakage of the injected material with sometimes catastrophic results.
In the prior art designs, the mating geometry between the faces of the nozzle and the sprue bushing were designed to withstand the positive forces applied by the carriage cylinders and remain in positive sealing contact throughout a complete machine cycle. The mating surfaces of the nozzle and the sprue bushing might be flat, spherical, conical or any other geometric shape that would provide an acceptable area of positive contact. The positive force applied by the carriage cylinders to the interface between the sprue bushing and the nozzle was intended to overcome the reactive forces developed as a result of the injection pressure generated during injection and any dynamic forces created as a result of any energy transfer between the components of the machine involved in the injection process.
Unfortunately, it has been discovered that it is virtually impossible to provide adequate clamping force to prevent separation between the nozzle and the sprue bushing when injecting metallic material, particularly material in a thixotropic state, because such very high pressures are involved and the reactionary and dynamic forces reach such high and relatively uncontrollable levels that separation eventually occurs.
Japanese Patent 11048286 to Japan Steel Works Ltd. is a further example of a nozzle that will continue to have leakage problems when subjected to the injection pressures normally associated with metallic material injection. In that design, the nozzle has a projected cylindrical part that is inserted into a cylindrical recess in the mold. The two annular surfaces formed on the nozzle and the mold are held in annular contact so as to maintain the nozzle to mold interface sealed. It is the problem of maintaining such a seal that has been overcome by the present invention, which does not require that the nozzle be in facing contact with the mold.
The primary objective of the invention is to provide a nozzle to sprue bushing interface in a metallic material injection-molding machine that will remain sealed during the injection cycle.
Another object of the invention is to provide, in a metallic material injection machine, an injection nozzle that may move relative to the sprue bushing without losing sealing at the interface between the nozzle and the bushing.
A further object of the invention is to provide, in a metallic material injection machine, a seal between the machine nozzle and the mold that requires a minimal force to be applied between the mold and the nozzle to maintain a seal between them.
A further object of the invention is to provide, in a metallic material injection machine, a machine nozzle and sprue bushing design that does not require contact between the nozzle and bushing to maintain sealing between them.
The foregoing objects are achieved by extending the nozzle into the interior surface of the sprue bushing.
The invention provides an improved nozzle and sprue bushing for a metallic material injection molding machine. The sprue bushing has a cylindrical surface and the nozzle an annular portion. The annular portion snugly fits within the cylindrical surface to provide a sealing engagement between the surface and the portion when the nozzle engages the bushing. The surface and the portion are of sufficient length to permit limited axial movement therebetween without a loss of sealing between them. The actual seal may be provided by the close fit between the bushing and the nozzle or by slight seepage of the metallic material between the surfaces where it freezes and provides the necessary seal.
The invention provides, in a metallic material injection molding machine, an injection nozzle joined to an injection barrel of the injection molding machine, a stationary platen holding a portion of a mold and a sprue bushing mounted in the mold. The nozzle engages the sprue bushing when the metallic material is injected through the sprue bushing into the mold. The nozzle has a spigot portion which extends into a channel in the sprue bushing. An outer periphery of the spigot fits into the inside surface of the channel so as to create a seal between the surface and the periphery of the spigot or enable the metallic material to create and seal and thereby prevent loss of metallic material through the interface between the nozzle and the sprue bushing during an injection cycle.
The invention is useful in any metallic material injection or casting process that requires a sealed interface between a nozzle and a sprue bushing. The invention has been found particularly useful when injecting metallic alloys such as magnesium based alloys when in the thixotropic state.
Referring to
To enable injection of metallic material into a mold, the carriage cylinders 14 move the barrel 11 towards the stationary platen 15 until the nozzle 13 is in operative engagement with a sprue bushing in the mold. When the nozzle 13 engages the bushing, the carriage cylinders 14 clamp the assembly 10 in position for injection of metallic material into the mold.
A rotational source 18 rotates the screw 12 to move metallic material from a feed throat 19 to the nozzle 13. Heater bands 20, along the length of the barrel 11, heat the metallic material to the desired injection temperature. As the metallic material passes through the head portion of the screw 12, a non-return valve 21 enables the metallic material to drive the screw 12 back towards the injector housing 22. This creates an injection charge of metallic material at the head of the screw 12.
In operation, metallic material chips are fed in at the feed throat 19 on the barrel 11 of the machine. The chips are transported through the barrel 11 by the extruder screw 12 and simultaneously heated to a thixotropic state by the heater bands 20 located around the barrel. When sufficient metallic material for injection has been moved past the non-return valve 21, the screw 12 is then driven forward by an injection unit within the injection housing 22 to inject the metallic material into the mold. As the metallic material cools very quickly when it enters the mold it is essential that the metallic material be injected into the mold as quickly as possible so as to ensure that all parts of the mold are filled. To do this requires that the injection piston be moved quickly forward during the injection cycle and with great force. The high speed and force makes it very difficult to hold the nozzle 13 in contact with the sprue bushing throughout the injection cycle even though the nozzle 13 is positively clamped to the sprue bushing by the carriage cylinder 14 which, with the tie rods and tie bars, are set to fully resist any separation between the sprue bushing and the nozzle 13. In practice, it has been found that the nozzle 13 and sprue bushing do separate during the injection cycle.
Dynamic and inertial loads are initiated at various parts of the injection cycle. Metallic material solidifies in the nozzle in between each injection cycle to form a cylindrical “plug”. At the start of each injection cycle, the injection cylinder is pressurized by hydraulic fluid which forces the screw to move forward and increases the pressure on the thixotropic metallic material in front of the screw, but behind the plug. Eventually, the force from the injection piston is sufficient to cause the plug to separate from the nozzle and blow into the mold along with the thixotropic metallic material. The injection piston continues to move forward and the screw forces the metallic material into the mold until the mold is filled. When the plug leaves the nozzle, it creates recoil forces, which act on the nozzle to reduce the sealing load at the interface with the sprue bushing. This reduction of sealing load can cause separation at the sealing interface and the consequent leakage of metallic material.
Another significant load occurs when the mold is full and the screw comes to an abrupt stop. The deceleration of the screw, piston, and metallic material in front of the screw creates additional forces on the nozzle and sprue bushing connection. The nozzle springs back and the sealing force is reduced, at the same time that the melt pressure is highest. This causes the metallic material to leak from between the seal faces of the nozzle and sprue bushing.
As shown in
With the design shown in
Accordingly, by the simple change in the shape of the nozzle, the problem of nozzle sealing failure has been overcome.
Furthermore, there are a number of further advantages to this design modification. For example, the nozzle shoulder 28 does not need to be in contact with the face 29 of the sprue bushing 16″ so that wear on these surfaces can be avoided. Of course, a screw bushing insert like the one shown at 24 in
A variety of metallic materials may be injected using the new nozzle, however, the nozzle works particularly well with metal alloys such as magnesium based alloys. The nozzle will also work with other metal alloys such as aluminum or zinc based alloys.
It is to be understood that the invention is not limited to the illustrations described and shown herein, which are deemed to be merely illustrative of the best modes of carrying out the invention, and which are susceptible of modification of form, size, arrangement of parts and details of operation. The invention rather is intended to encompass all such modifications, which are within its spirit and scope as defined by the claims.
Kestle, Martin R., Manda, Jan Marius
Patent | Priority | Assignee | Title |
7449663, | Aug 16 2006 | iTherm Technologies, LP | Inductive heating apparatus and method |
7540316, | Aug 16 2006 | iTherm Technologies, LP | Method for inductive heating and agitation of a material in a channel |
7718935, | Aug 16 2006 | iTherm Technologies, LP | Apparatus and method for inductive heating of a material in a channel |
7723653, | Aug 16 2006 | iTherm Technologies, LP | Method for temperature cycling with inductive heating |
Patent | Priority | Assignee | Title |
4609032, | Feb 29 1984 | DMB INDUSTRIES LIMITED, A COMPANY OF QUEBEC, CANADA | Nozzle assembly for die casting machine |
4623015, | Dec 05 1984 | INVESTORS HOLDING GROUP, INC | Shot sleeve |
5858420, | Aug 13 1997 | Husky Injection Molding Systems Ltd | Flow regulating and distributing assembly |
6106275, | Sep 01 1994 | AEROJET ROCKETDYNE HOLDINGS, INC | Molding press apparatus |
6533021, | Feb 10 1999 | Ju-Oh Inc.; The Japan Steel Works Ltd. | Mold for hot-runner injection molding machine and method for manufacturing the same |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 24 2000 | KESTLE, MARTIN R , MR | Husky Injection Molding Systems Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044498 | /0924 | |
Oct 24 2000 | MANDA, JAN MARIUS, MR | Husky Injection Molding Systems Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044498 | /0924 | |
Nov 13 2003 | Husky Injection Molding Systems Ltd. | (assignment on the face of the patent) | / | |||
Dec 13 2007 | Husky Injection Molding Systems Ltd | ROYAL BANK OF CANADA | SECURITY AGREEMENT | 020431 | /0495 | |
Jun 30 2011 | ROYAL BANK OF CANADA | Husky Injection Molding Systems Ltd | RELEASE OF SECURITY AGREEMENT | 026647 | /0595 |
Date | Maintenance Fee Events |
Jun 17 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 25 2013 | REM: Maintenance Fee Reminder Mailed. |
Mar 19 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 19 2009 | 4 years fee payment window open |
Mar 19 2010 | 6 months grace period start (w surcharge) |
Sep 19 2010 | patent expiry (for year 4) |
Sep 19 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 19 2013 | 8 years fee payment window open |
Mar 19 2014 | 6 months grace period start (w surcharge) |
Sep 19 2014 | patent expiry (for year 8) |
Sep 19 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 19 2017 | 12 years fee payment window open |
Mar 19 2018 | 6 months grace period start (w surcharge) |
Sep 19 2018 | patent expiry (for year 12) |
Sep 19 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |