A biological forceps device for the taking of tissue samples from a body, comprising a flexible main coil attached at its distal end to a pair of homologous cast jaws. The jaws have radially arranged teeth on their distalmost end. The jaws are opened and closed by attachment to a pair of pull wires which extend through the main coil, into a handle at its proximal end, the handle has a spool which slides about a central shaft attached to the main coil. The spool is attached to the pull wires, so that movement of the spool with respect to the central shaft, effectuates a force on the proximal ends of the levered jaws, to open and close them, appropriately.
|
21. An end effector assembly for use in a biopsy forceps device including an actuator at a proximal end of the device and a hollow portion connecting the actuator to the end effector assembly, the end effector assembly comprising:
a first jaw; and
a second jaw for mating with the first jaw, wherein the first jaw is pivotally disposed with respect to the second jaw about a pivotal axis, and each of the first and second jaws includes a generally u-shaped configuration defining a center point and having a distalmost end, and wherein an edge of the distalmost end of each of the jaws includes teeth radially disposed about the center point.
0. 74. An end effector assembly for use in a biopsy forceps device including an actuator at a proximal end of the device and a hollow portion connecting the actuator to the end effector assembly, the end effector assembly comprising:
a first jaw; and
a second jaw for mating with the first jaw, wherein the first jaw is pivotably disposed with respect to the second jaw about a pivotal axis, and each of the first and second jaws includes a distalmost portion having a generally curved configuration, and wherein a curved edge of the distalmost portion of the first jaw includes teeth and a curved edge of the distalmost portion of the second jaw includes at least one tooth.
0. 53. An end effector assembly for use in a biopsy forceps device including an actuator at a proximal end of the device and a hollow portion connecting the actuator to the end effector assembly, the end effector assembly comprising:
a first jaw; and
a second jaw for mating with the first jaw, wherein the first jaw is pivotally disposed with respect to the second jaw about a pivotal axis, and each of the first and second jaws includes a generally u-shaped configuration defining a center point and having distalmost end, and wherein an edge of the distalmost end of the first jaw includes teeth radially disposed about the center point, and an edge of the distalmost end of the second jaw includes at least one tooth disposed at a portion thereof.
1. A biopsy forceps device having a proximal end and a distal end, the device comprising:
an end effector assembly at the distal end of the device, wherein the end effector assembly includes a first jaw and a second jaw, the first jaw being pivotally disposed about a pivotal axis and with respect to the second jaw;
an actuator at the proximal end of the device; and
a hollow portion connecting the end effector assembly and the actuator, wherein the actuator operates to pivot the first jaw about the pivotal axis and move the first jaw into contact with the second jaw, wherein each of the first and second jaws includes a generally u-shaped configuration defining a center point and having a distalmost end, and wherein an edge of the distalmost end of each of the jaws includes teeth radially disposed about the center point.
0. 33. A biopsy forceps device having a proximal end and a distal end, the device comprising:
an end effector assembly at the distal end of the device, wherein the end effector assembly includes a first jaw and a second jaw, the first jaw being pivotally disposed about a pivotal axis and with respect to the second jaw;
an actuator at the proximal end of the device; and
a hollow portion connecting the end effector assembly and the actuator,
wherein the actuator operates to pivot the first jaw about the pivotal axis and move the first jaw into contact with the second jaw, wherein each of the first and second jaws includes a generally u-shaped configuration defining a center point and having a distalmost end, and wherein an edge of the distalmost end of one of the jaws includes teeth radially disposed about the center point, and an edge of the distalmost end of the other jaw includes at least one tooth.
0. 65. A biopsy forceps device having a proximal end and a distal end, the device comprising:
an end effector assembly at the distal end of the device, wherein the end effector assembly includes a first jaw and a second jaw, the first jaw being pivotally disposed relative to the second jaw, the first jaw having an array of teeth, the second jaw having at least one tooth;
an actuator at the proximal end of the device; and
a hollow portion connecting the end effector assembly and the actuator, wherein the actuator operates to pivot the first jaw relative to the second jaw and move the first and second jaws so that the array of teeth of the second jaw engages the at least one tooth of the second jaw along an edge,
wherein the edge of each of the jaws includes a first side portion, a second side portion on an opposite side of the first side portion and a third distalmost portion connecting the first side portion to the second side portion, the third distalmost portion having a curved configuration.
2. The device according to
3. The device according to
6. The device according to
7. The device according to
9. The device according to
10. The device according to
11. The device according to
12. The device according to
13. The device according to
14. The device according to
15. The device according to
16. The device according to
17. The device according to
18. The device according to
20. The device according to
22. The assembly according to
23. The assembly according to
24. The device according to
25. The device according to
28. The assembly according to
29. The assembly according to
30. The assembly according to
31. The assembly according to
32. The assembly according to
0. 34. The device according to
0. 35. The device according to
0. 36. The device according to
0. 37. The device according to
0. 38. The device according to
0. 39. The device according to
0. 40. The device according to
0. 41. The device according to
0. 42. The device according to
0. 43. The device according to
0. 44. The device according to
0. 45. The device according to
0. 46. The device according to
0. 47. The device according to
0. 48. The device according to
0. 49. The device according to
0. 50. The device according to
0. 51. The device according to
0. 52. The device according to
0. 54. The assembly according to
0. 55. The assembly according to
0. 56. The assembly according to
0. 57. The assembly according to
0. 58. The assembly according to
0. 59. The assembly according to
0. 60. The assembly according to
0. 61. The assembly according to
0. 62. The assembly according to
0. 63. The assembly according to
0. 64. The assembly according to
0. 66. The biopsy forceps device of
0. 67. The biopsy forceps device of
0. 68. The biopsy forceps device of
0. 69. The biopsy forceps device of
0. 70. The biopsy forceps device of
0. 71. The biopsy forceps device of
0. 72. The biopsy forceps device of
0. 73. The biopsy forceps device of
0. 75. The end effector assembly of
0. 76. The end effector assembly of
0. 77. The end effector assembly of
0. 78. The end effector assembly of
0. 79. The end effector assembly of
0. 80. The end effector assembly of
|
Notice: This is a continuation reissue of application Ser. No. 10/074,012, filed Feb. 14, 2002, which is a reissue application of U.S. Pat. No. 6,024,708.
This is a continuation division of application Ser. No. 08/458,215, filed Jun. 2, 1995, now U.S. Pat. No. 5,666,965 which is a continuation of Ser. No. 07/837,046 filed Feb. 18, 1992, now U.S. Pat. No. 5,507,296, which is a continuation of Ser. No. 07/521,766 filed May. 10, 1990 now U.S. Pat. No. 5,133,727.
This invention relates to biopsy forceps and more particularly to unique handler actuation wire and homologous jaw construction for those forceps.
A number of different types of biopsy forceps are in common use, typically in conjunction with endoscopic assistance. Ordinarily, these devices are of complicated construction, requiring the manufacturing and machining of precise miniaturized components, which are therefore generally quite expensive.
One early example of flexible forceps is shown in U.S. Pat. No. 3,895,636 (1975) to Schmidt, wherein a pair of cup shaped jaws having an annular rim mate with a hub and a sharpened trocar. The jaws in this embodiment are of a nature which requires machining for the edge, each jaw being different from the other jaw.
U.S. Pat. No. 4,887,612 to Esser et al, shows a similar biopsy forceps which utilizes a cam linkage to effectuate the cup shaped jaws toward and away form one another. The jaws shown in this patent are made from stainless steel and likewise, require expensive machining.
U.S. Pat. No. 4,763,668 to Macek et al, shows a biopsy forceps whose cup shaped forceps are driven by a linkage arrangement. Each pivot point in the linkage establishes a new place for stress, wear and breakage. This is similar to the linkage assembly shown in U.S. Pat. No. 4,721,116 to Schintgen et al. A needle between the forceps shown in this patent, is retractable as the forceps close.
U.S. Pat. No. 3,921,640 to Freeborn, shows a surgical instrument manufactured from a single piece of molded plastic. The instrument may have any of various forms of jaws including an arrangement of teeth for holding towels or surgical dressing.
U.S. Pat. No. 4,200,111 shows a pair of spring biased jaws which are slidably disposed within the end of a trocar. The jaws are moved inwardly and outwardly from the trocar by movement from a twisted wire.
U.S. Pat. No. 4,669,471 to Hayashi, shows a biopsy forceps device having a pair of cups attached by a pivot pin, with several linkages between the cups and the operating wire, which are likewise, connected by pivot pins, the pins being welded or fused to their components by the use of laser welding.
U.S. Pat. No. 4,815,460 to Porat et al, shows a medical device for gripping, having a pair of jaws which are identical to one another. The jaws have an array of teeth disposed completely thereacross. The teeth are divided longitudinally across each jaw and are out of phase from one another by a half a pitch. The instrument is utilized for gripping purposes. A further device is shown in U.S. Pat. No. 825,829 to Heath. This appliance utilizes two different sets of engaging jaws to accomplish its cutting purpose.
It is an object of the present invention to provide a forcep device which overcomes the disadvantages of the prior art.
It is a further object of the present invention to provide a cutting device having a pair of jaws, wherein each jaw may be a duplicate of its opposing jaw.
It is yet a further object of the present invention to provide a cutting device which is self-aligning which permits greater tolerance in the dimensions of the components in their manufacture.
The present invention comprises an improvement in biopsy forceps wherein a pair of jaws are formed from a casting. Each jaw of the pair of jaws of the biopsy forceps may be a duplicate of the other jaw. Each jaw is somewhat hemispherically shaped having an elongated portion which extends proximally into a cutter tang. Each cutter jaw has a generally U-shaped distalmost end on which is defined a plurality of radially disposed teeth. The teeth on one side of the longitudinal centerline of the jaw are displaced by one-half pitch from the corresponding teeth on the other side of the longitudinal centerline on that jaw. The displacement by one-half pitch of the teeth on one side of the jaw relative to those corresponding teeth on the other longitudinal side of the jaw permits the same casting to be used for both the upper and lower jaws. The radially disposed array of teeth on each of the jaws permits a self-aligning feature therewith, thus compensating for the slightly looser tolerances found in the casting manufacturing technique.
Each jaw extends proximally and terminates in a tang, as aforementioned. Each tang is arranged so as to receive a joggled pull wire therethrough. Each jaw is mated with one another about a clevis pin which is cast unitarily with a clevis. The clevis extends into a housing which is crimped to a main coil, the proximal end of which extends into a handle having means for articulating the jaws. Each joggled pullwire from the tang on the proximal end of each jaw flexibly extends through the main coil and into the hub of the handle at the proximal end of the forceps assembly.
The handle comprises a central shaft about which a displaceable spool is disposed. The central shaft has a longitudinally directed stepped diameter bore extending therein on its distal end, and a thumb ring on its proximalmost end. The proximal end of the coil extends into the bore on the proximal end of the central shaft. The bore in the central shaft on the handle has a stepped configuration. The distal end of the bore having a slightly larger diameter than the second or intermediate bore, or the third or proximal end of the bore in the central shaft. A locking coil is arranged to mate within the stepped large outer diameter (distal end) of the central shaft. The locking coil has an inner diameter which is slightly smaller than the outer diameter of the main coil extending from the cutter jaw assembly to the handle. The main coil is screwed into the locking coil disposed within the central shaft. A sheath which acts as a strain relief, is disposed distally of the locking coil about the main coil within the central shaft. The sheath holds the locking coil within the first stepped bore in the central shaft. The strain relief is bonded to the bore of the central shaft. The proximalmost end of the joggled pull wires extend through the proximal end of the main coil and into a thin anti-kink tube in the narrowest third stepped bore in the central shaft. The cross pin fits through a slot at the midpoint of the central shaft. The slot is in communication with the third bore therein. A cross pin mates with the slot across the central shaft. The proximalmost end of the joggled pull wires are locked into an opening in the cross pin. The ends of the cross pin mate with slots in the spool so as to facilitate corresponding motion in the joggled pull wires.
Proximal movement of the spool with respect to the central shaft effectuates a pull on the joggled pull wires so as to create a pivotable motion of the tangs on the proximal end of the cutters, to cause the cutter jaws to engage to one another.
Movement of the spool distally with respect to the central shaft effectuates a compression on the pull wire thus causing arcuate movement of the tangs on the proximal end of each jaw to force a pivoting motion about the clevis pin thus opening the respective jaws.
The objects and advantages of the present invention will become more apparent when viewed in conjunction with the following drawings, in which:
Referring now to the drawings in detail and particularly to
Each jaw 18 has a proximalmost end which comprises a tang 24. Each tang 24 has a generally semicircular recess position 26 on its outer side thereof. The recessed portion 26 may be seen most clearly in
A main tubular coil 50 shown in
An FEP sheath 54 extends from the distal end of the main coil 50 therethrough into the central shaft 56 of the handle 17 as shown in
The distalmost end of each pull wire 60 has a Z-bend therein. the Z-bend of each pull wire 60 has a first portion 62 which is rotatably disposed in the recess 26 in the tang 24 of each cutter jaw 18. The Z-bend has a second portion 64 which extends through a bore 66 in the proximalmost end of the tang 24, as best shown in
The proximal end of the main coil 50 and the proximal end of the pull wires 60 extend into handle 17 at the proximal end 16 of the biopsy forceps assembly 10. The handle 17 comprises a central shaft about which a displaceable spool 19 is disposed. The central shaft has a longitudinally directed stepped diameter bore 92 extending therein, as shown in
Thus there has been shown a biopsy forceps assembly which can be made in a very cost effective manner for an improved biopsy sample. The cutter jaws and clevis support of the biopsy forceps each being made of a cast material permitting a far less expensive manufacture because of its simplicity permitting one jaw design and its self-aligning radially directed distal jaw teeth effectuating its cutting effectiveness as well as its ease of assembly. The pull wire arrangement with each particular jaw eliminates the prior art multiple linkages which have frictional problems and potential for breakage therewith. The spool design for the grasping of the pull wires in regard to the handle therewithin facilitates a one-handed operation thus permitting the physician use of his other hand for other purposes.
Smith, Kevin W., Slater, Charles R., Bales, Thomas O.
Patent | Priority | Assignee | Title |
10004558, | Jan 12 2009 | Cilag GmbH International | Electrical ablation devices |
10092291, | Jan 25 2011 | Ethicon Endo-Surgery, Inc | Surgical instrument with selectively rigidizable features |
10098527, | Feb 27 2013 | Cilag GmbH International | System for performing a minimally invasive surgical procedure |
10098691, | Dec 18 2009 | Cilag GmbH International | Surgical instrument comprising an electrode |
10105141, | Jul 14 2008 | Cilag GmbH International | Tissue apposition clip application methods |
10206709, | May 14 2012 | Cilag GmbH International | Apparatus for introducing an object into a patient |
10258406, | Feb 28 2011 | Cilag GmbH International | Electrical ablation devices and methods |
10278761, | Feb 28 2011 | Cilag GmbH International | Electrical ablation devices and methods |
10314603, | Nov 25 2008 | Cilag GmbH International | Rotational coupling device for surgical instrument with flexible actuators |
10314649, | Aug 02 2012 | Ethicon Endo-Surgery, Inc | Flexible expandable electrode and method of intraluminal delivery of pulsed power |
10342598, | Aug 15 2012 | Cilag GmbH International | Electrosurgical system for delivering a biphasic waveform |
10478248, | Feb 15 2007 | Cilag GmbH International | Electroporation ablation apparatus, system, and method |
10492880, | Jul 30 2012 | Ethicon Endo-Surgery, Inc | Needle probe guide |
10779882, | Oct 28 2009 | Cilag GmbH International | Electrical ablation devices |
11284918, | May 14 2012 | Cilag GmbH International | Apparatus for introducing a steerable camera assembly into a patient |
11337715, | Mar 26 2015 | UNITED STATES ENDOSCOPY GROUP, INC | Endoscopic grasping device |
11399834, | Jul 14 2008 | Cilag GmbH International | Tissue apposition clip application methods |
11484191, | Feb 27 2013 | Cilag GmbH International | System for performing a minimally invasive surgical procedure |
11864742, | Mar 24 2010 | UNITED STATES ENDOSCOPY GROUP, INC. | Biopsy device |
7655004, | Feb 15 2007 | Cilag GmbH International | Electroporation ablation apparatus, system, and method |
7815662, | Mar 08 2007 | Ethicon Endo-Surgery, Inc | Surgical suture anchors and deployment device |
7951165, | Aug 18 2003 | Boston Scientific Scimed, Inc | Endoscopic medical instrument and related methods of use |
8029504, | Feb 15 2007 | Cilag GmbH International | Electroporation ablation apparatus, system, and method |
8037591, | Feb 02 2009 | Ethicon Endo-Surgery, Inc | Surgical scissors |
8062306, | Dec 14 2006 | Ethicon Endo-Surgery, Inc | Manually articulating devices |
8070759, | May 30 2008 | Cilag GmbH International | Surgical fastening device |
8075572, | Apr 26 2007 | Ethicon Endo-Surgery, Inc | Surgical suturing apparatus |
8100922, | Apr 27 2007 | Ethicon Endo-Surgery, Inc | Curved needle suturing tool |
8114072, | May 30 2008 | Ethicon Endo-Surgery, Inc | Electrical ablation device |
8114119, | Sep 09 2008 | Ethicon Endo-Surgery, Inc | Surgical grasping device |
8157834, | Nov 25 2008 | Cilag GmbH International | Rotational coupling device for surgical instrument with flexible actuators |
8172772, | Dec 11 2008 | Ethicon Endo-Surgery, Inc | Specimen retrieval device |
8211125, | Aug 15 2008 | Ethicon Endo-Surgery, Inc | Sterile appliance delivery device for endoscopic procedures |
8241204, | Aug 29 2008 | Ethicon Endo-Surgery, Inc | Articulating end cap |
8252057, | Jan 30 2009 | Cilag GmbH International | Surgical access device |
8262563, | Jul 14 2008 | Ethicon Endo-Surgery, Inc | Endoscopic translumenal articulatable steerable overtube |
8262655, | Nov 21 2007 | Ethicon Endo-Surgery, Inc | Bipolar forceps |
8262680, | Mar 10 2008 | Ethicon Endo-Surgery, Inc | Anastomotic device |
8308738, | Dec 14 2006 | Ethicon Endo-Surgery, Inc. | Manually articulating devices |
8317726, | May 13 2005 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
8317806, | May 30 2008 | Ethicon Endo-Surgery, Inc | Endoscopic suturing tension controlling and indication devices |
8337394, | Oct 01 2008 | Ethicon Endo-Surgery, Inc | Overtube with expandable tip |
8353487, | Dec 17 2009 | Ethicon Endo-Surgery, Inc | User interface support devices for endoscopic surgical instruments |
8361066, | Jan 12 2009 | Cilag GmbH International | Electrical ablation devices |
8361112, | Jun 27 2008 | Ethicon Endo-Surgery, Inc | Surgical suture arrangement |
8403926, | Jun 05 2008 | Ethicon Endo-Surgery, Inc | Manually articulating devices |
8409200, | Sep 03 2008 | Ethicon Endo-Surgery, Inc | Surgical grasping device |
8425505, | Feb 15 2007 | Cilag GmbH International | Electroporation ablation apparatus, system, and method |
8449538, | Feb 15 2007 | Cilag GmbH International | Electroporation ablation apparatus, system, and method |
8469993, | Jun 18 2003 | Boston Scientific Scimed, Inc | Endoscopic instruments |
8480657, | Oct 31 2007 | Ethicon Endo-Surgery, Inc | Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ |
8480689, | Sep 02 2008 | Ethicon Endo-Surgery, Inc | Suturing device |
8496574, | Dec 17 2009 | KARL STORZ ENDOVISION, INC | Selectively positionable camera for surgical guide tube assembly |
8506564, | Dec 18 2009 | Ethicon Endo-Surgery, Inc | Surgical instrument comprising an electrode |
8529563, | Aug 25 2008 | Ethicon Endo-Surgery, Inc | Electrical ablation devices |
8568410, | Aug 31 2007 | Ethicon Endo-Surgery, Inc | Electrical ablation surgical instruments |
8579897, | Nov 21 2007 | Ethicon Endo-Surgery, Inc | Bipolar forceps |
8608652, | Nov 05 2009 | Ethicon Endo-Surgery, Inc | Vaginal entry surgical devices, kit, system, and method |
8652150, | May 30 2008 | Ethicon Endo-Surgery, Inc | Multifunction surgical device |
8672859, | May 13 2005 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
8679003, | May 30 2008 | Ethicon Endo-Surgery, Inc | Surgical device and endoscope including same |
8771260, | May 30 2008 | Ethicon Endo-Surgery, Inc | Actuating and articulating surgical device |
8828031, | Jan 12 2009 | Ethicon Endo-Surgery, Inc | Apparatus for forming an anastomosis |
8888792, | Jul 14 2008 | Cilag GmbH International | Tissue apposition clip application devices and methods |
8906035, | Jun 04 2008 | Ethicon Endo-Surgery, Inc | Endoscopic drop off bag |
8939897, | Oct 31 2007 | Ethicon Endo-Surgery, Inc. | Methods for closing a gastrotomy |
8986199, | Feb 17 2012 | Ethicon Endo-Surgery, Inc | Apparatus and methods for cleaning the lens of an endoscope |
9005198, | Jan 29 2010 | Ethicon Endo-Surgery, Inc | Surgical instrument comprising an electrode |
9011431, | Jan 12 2009 | Cilag GmbH International | Electrical ablation devices |
9028483, | Dec 18 2009 | Cilag GmbH International | Surgical instrument comprising an electrode |
9049987, | Mar 17 2011 | Cilag GmbH International | Hand held surgical device for manipulating an internal magnet assembly within a patient |
9078662, | Jul 03 2012 | Cilag GmbH International | Endoscopic cap electrode and method for using the same |
9220526, | Nov 25 2008 | Cilag GmbH International | Rotational coupling device for surgical instrument with flexible actuators |
9226772, | Jan 30 2009 | Ethicon Endo-Surgery, Inc | Surgical device |
9233241, | Feb 28 2011 | Cilag GmbH International | Electrical ablation devices and methods |
9254169, | Feb 28 2011 | Cilag GmbH International | Electrical ablation devices and methods |
9277957, | Aug 15 2012 | Cilag GmbH International | Electrosurgical devices and methods |
9314620, | Feb 28 2011 | Ethicon Endo-Surgery, Inc | Electrical ablation devices and methods |
9375268, | Feb 15 2007 | Cilag GmbH International | Electroporation ablation apparatus, system, and method |
9427255, | May 14 2012 | Cilag GmbH International | Apparatus for introducing a steerable camera assembly into a patient |
9545290, | Jul 30 2012 | Ethicon Endo-Surgery, Inc | Needle probe guide |
9566082, | May 22 2009 | Slater Endoscopy, LLC | Endoscopic instrument |
9572623, | Aug 02 2012 | Ethicon Endo-Surgery, Inc | Reusable electrode and disposable sheath |
9681857, | Jun 18 2003 | Boston Scientific Scimed, Inc. | Endoscopic instruments and methods of manufacture |
9788885, | Aug 15 2012 | Cilag GmbH International | Electrosurgical system energy source |
9788888, | Jul 03 2012 | Cilag GmbH International | Endoscopic cap electrode and method for using the same |
9883910, | Mar 17 2011 | Cilag GmbH International | Hand held surgical device for manipulating an internal magnet assembly within a patient |
D779668, | Mar 26 2015 | UNITED STATES ENDOSCOPY GROUP, INC | Grasper |
Patent | Priority | Assignee | Title |
2994321, | |||
3459187, | |||
3895636, | |||
3911766, | |||
3921640, | |||
4178810, | Aug 12 1976 | Asahi Kogaku Kogyo Kabushiki Kaisha | Apparatus for manipulating a medical instrument |
4200111, | Sep 21 1978 | DAVIS MEDITECH, DAVIS, CA A CORP OF CA | Specimen removal instrument |
4424998, | Aug 18 1981 | Cloth doll stuffing tool | |
4427014, | May 06 1981 | Metallisations et Traitements Optiques M.T.O. | Biopsy forceps |
4522206, | Jan 26 1983 | Smith & Nephew, Inc | Surgical instrument |
4632110, | Sep 28 1984 | Olympus Optical Co., Ltd. | Medical operation instrument for endoscope |
4669471, | Nov 10 1983 | OLYMPUS OPTICAL CO , LTD | Forceps device for use in an endoscope |
4676249, | May 19 1986 | Nihon Gijutsu Kaihatsu Kabushiki Kaisha | Multi-mode guidewire |
4712545, | Apr 05 1984 | Smith & Nephew, Inc | Surgical instrument |
4721116, | Jun 03 1986 | Retractable needle biopsy forceps and improved control cable therefor | |
4763668, | Oct 28 1985 | Mill Rose Laboratories; MILL-ROSE LABORATORIES, INC , 7310 CORPORATE BLVD , MENTOR, OHIO, 44060, A CORP OF OHIO | Partible forceps instrument for endoscopy |
4785825, | Dec 28 1984 | Humboldt--Universitaet zu Berlin | Safety biopsy forceps |
4815460, | Sep 26 1984 | DARBY & DARBY P C | Gripper teeth for medical instruments |
4815476, | Mar 28 1988 | Cordis Corporation | Biopsy forceps with locking handle |
4817630, | Jun 04 1985 | Control cable for a biopsy forceps | |
4880015, | Jun 03 1988 | Biopsy forceps | |
4887612, | Apr 27 1988 | C R BARD, INC | Endoscopic biopsy forceps |
4889118, | Jun 20 1988 | Catheter-insertion forceps | |
4936312, | Nov 17 1987 | Olympus Optical Co., Ltd. | Body cavity inserting instrument |
4950273, | Oct 26 1987 | Cable action instrument | |
4953559, | Nov 16 1987 | Consiglio Nazionale delle Ricerche | Catheter for endocardial biopsy, which can also be used for identifying the point of origin of ventricular arrhythmia |
5133727, | May 10 1990 | SYMBIOSIS CORPORATION A CORP OF FLORIDA | Radial jaw biopsy forceps |
5152778, | May 10 1990 | Symbiosis Corporation | Clevis for disposable laparoscopic surgical instrument |
5171256, | May 10 1990 | Symbiosis Corporation | Single acting disposable laparoscopic scissors |
5241968, | May 10 1990 | Symbiosis Corporation | Single acting endoscopic instruments |
5507296, | May 10 1990 | Symbiosis Corporation | Radial jaw biopsy forceps |
825829, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 11 2004 | Symbiosis Corporation | Boston Scientific Miami Corporation | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 017534 | /0987 | |
Feb 24 2005 | Boston Scientific Miami Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 06 2006 | ASPN: Payor Number Assigned. |
Jun 21 2007 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 26 2011 | REM: Maintenance Fee Reminder Mailed. |
Feb 12 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 28 2009 | 4 years fee payment window open |
May 28 2010 | 6 months grace period start (w surcharge) |
Nov 28 2010 | patent expiry (for year 4) |
Nov 28 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 28 2013 | 8 years fee payment window open |
May 28 2014 | 6 months grace period start (w surcharge) |
Nov 28 2014 | patent expiry (for year 8) |
Nov 28 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 28 2017 | 12 years fee payment window open |
May 28 2018 | 6 months grace period start (w surcharge) |
Nov 28 2018 | patent expiry (for year 12) |
Nov 28 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |