A connecting device includes a bottom member with a periphery for attaching on a rotor of a motor, a circumferential wall which extends upwardly from the periphery, and a mounting arm which has an anchored end adapted for mounting the fan blade thereon and an anchoring end for anchoring on the bottom member such that the mounting arm is oriented in a radial direction relative to the bottom member by guidance of a guiding member. A tightening member is disposed to tighten the anchoring end relative to the bottom member through a clamping force generated in a circumferential direction of the bottom member when the anchoring end is pulled away from the bottom member in the radial direction. A retaining member is disposed between the tightening member and the anchored end in the radial direction, and has an engaging spring member that abuts against the circumferential wall once the anchoring end is moved away from the bottom member.

Patent
   RE39448
Priority
Nov 17 1998
Filed
Sep 14 2001
Issued
Dec 26 2006
Expiry
Nov 17 2018

TERM.DISCL.
Assg.orig
Entity
Small
6
34
all paid
25. A method of attaching a fan blade to a rotor on a ceiling fan motor, comprising the steps of:
selecting a mounting arm having an anchoring end and a blade attached to a second end of the mounting arm opposite the anchoring end;
positioning the anchoring end of the mounting arm about a mounting portion of the rotor;
pulling the blade in a single radial direction away from the rotor to attach the blade to the rotor, wherein the blade is attached to the rotor without twisting the blade relative to the rotor; and
retaining the anchoring end of the mounting arm to the mounting portion of the rotor with a spring member.
16. A method of attaching a fan blade in a rotor on a ceiling fan motor, comprising the steps of:
selecting a mounting arm having an anchoring end and a blade attached to a second end of the mounting arm opposite to the anchoring end;
positioning the anchoring end of the mounting arm about a mounting portion of the rotor;
pulling the blade in a single radial direction away from the rotor to attach the blade to the rotor, wherein the blade is attached to the anchor without twisting the blade relative in the motor, and
guiding a sliding member on the anchoring end of the mounting arm within a groove on the mounting portion of the rotor, wherein the step of guiding includes:
simultaneously guiding two sliding members on the anchoring end of the mounting arm within two grooves on the mounting portion of the rotor.
26. A method of attaching a fan blade to a rotor on a ceiling fan motor, comprising the steps of:
selecting a mounting arm having an anchoring end and a blade attached to a second end of the mounting arm opposite in the anchoring end;
positioning the anchoring end of the mounting arm about a mounting portion of the rotor;
pulling the blade in a single radial direction away from the rotor to attach the blade to the rotor, wherein the blade is attached to the rotor without twisting the blade relative to the rotor; and
retaining the anchoring end of the mounting arm to an underside of the mounting portion of the rotor with a capped member that fits within a bore opening and which slides into a notch portion next to the bore opening, while the anchoring arm is being pulled in the single radial direction outward from the rotor, without twisting the anchoring arm relative to the rotor.
6. A connecting device for connecting a fan blade to a rotor of a motor of a ceiling fan , the motor including a stator and the rotor which is concentrically surrounded by the stator and which is rotated about an axial direction, said connecting device comprising:
a bottom member with a periphery adapted to be attached adjacent on the rotor and spaced apart from the stator in the axial direction, said bottom member being disposed transverse to and being rotated about the axial direction;
a circumferential wall extending upwardly from said periphery towards the stator and diverging away from said bottom member so as to form an annular slanting wall;
a mounting arm including an anchored end adapted for mounting the fan blade thereon, and an anchoring end disposed to be brought to anchor on said bottom member such that said mounting arm is oriented in a single radial outward direction relative to said bottom member;
means for tightening said anchoring end relative to said bottom member through a clamping force generated in a circumferential direction of said bottom member when said anchoring end is pulled away from said bottom member in said radial direction, said tightening means being disposed between said mounting arm and said bottom member;
a guiding member disposed between said anchoring end and said bottom member to guide said anchoring end to move in said single radial outward direction relative to said bottom member, without twisting said anchoring end relative to said bottom member; and
biasing member having an engaging spring tongue to provide a biasing force for biasing said anchoring end away from said bottom member disposed to bias and anchoring end away from said bottom member in said radial direction once said anchoring end has been brought toward said bottom member in said radial direction .
24. A connecting device for connecting a fan blade to a rotor of a motor of a ceiling fan, said connecting device comprising:
a bottom member with a periphery adapted to be attached adjacent the rotor;
a mounting arm including an anchored end adapted for mounting the fan blade thereon, and an anchoring end disposed to be brought to anchor on said bottom member such that said mounting arm is oriented in a single radial outward direction relative to said bottom member;
means for tightening said anchoring end relative to said bottom member through a clamping force when said anchoring end is pulled away from said bottom member in said radial direction, said tightening means being disposed between said mounting arm and said bottom member, wherein the tightening means includes a capped member for fitting into a bore opening to slide and snugly being fit into a notch portion next to the bore opening which is smaller than the bore opening; and
a guiding member disposed between said anchoring end and said bottom member to guide said anchoring end to move in said single radial outward direction relative to said bottom member, without twisting said anchoring end relative to said bottom member.
1. A connecting device for connecting a fan blade to a rotor of a motor of a ceiling fan, the motor including a stator and the rotor which is concentrically surrounded by the stator and which is rotated about an axial direction, said connecting device comprising:
a bottom member with a periphery adapted to be attached adjacent on the rotor and spaced apart from the stator in the axial direction, said bottom member being disposed transverse to and being rotatable about the axial direction;
a circumferential wall extending upwardly from said periphery toward the stator and diverging away from said bottom member so as to form an annular slanting wall;
a mounting arm including an anchored end adapted for mounting the fan blade thereon, and an anchoring end disposed to be brought to anchor adjacent on said bottom member such that said mounting arm is oriented in one a radial outward direction relative to said bottom member;
means for tightening said anchoring end relative to said bottom member through a damping force generated in a circumferential direction of said bottom member when said anchoring end is pulled away from said bottom member in said radial direction, said tightening means being disposed between said mounting arm and said bottom member;
a guiding member adjacent disposed between said anchoring end and adjacent said bottom member to guide said anchoring end to move in said one radial outward direction to said bottom member, wherein said guiding member locks the mounting arm to said bottom member by said mounting arm being pulled in the one radial outward direction without twisting between the mounting arm and the bottom member, wherein said guiding member includes a groove on said bottom member and sliding member on said anchoring end of the mounting arm so as to fit slidably in said groove; and
a retaining member having an engaging spring member that abuts against a portion of the guiding member for locking said sliding member to the groove ; and
a retaining member disposed between said tightening means and said anchored end in said radial direction, and including an engaging spring member mounted on said mounting arm, said engaging spring member abutting against said annular slanting wall and providing an upward biasing force to said annular wall once said anchoring end is moved away from said bottom member in said radial direction .
21. A connecting device for connecting a fan blade to a rotor of a motor of a ceiling fan, said connecting device comprising:
a bottom member with a periphery adapted to be attached adjacent the rotor;
a mounting arm including an anchored end adapted for mounting the fan blade thereon, and an anchoring end disposed to be brought to anchor adjacent said bottom member such that said mounting arm is oriented in one radial outward direction relative the said bottom member; and
a guiding member adjacent said anchoring end and adjacent said bottom member to guide said anchoring end to move in said one radial outward direction relative to said bottom member, wherein said guiding member locks the mounting arm to said bottom member by said mounting arm being pulled in the one radial outward direction without twisting between the mounting arm and the bottom member, said guiding member includes a groove on said bottom member and sliding member on said anchoring end of the mounting arm so as to fit slidably in said groove, wherein said groove includes two grooves and said sliding member includes two sliding members, wherein each of said sliding members slides in the one radial outward direction within each of said grooves.
22. A connecting device for connecting a fan blade to a rotor of a motor of a ceiling fan, said connecting device comprising:
a bottom member with a periphery adapted to be attached adjacent the rotor;
a mounting arm including an anchored end adapted for mounting the fan blade thereon, and an anchoring end disposed to be brought to anchor adjacent said bottom member such that said mounting arm is oriented in one radial outward direction relative to said bottom member;
a guiding member adjacent said anchoring end and adjacent said bottom member to guide said anchoring end to move in said one radial outward direction relative to said bottom member, wherein said guiding member locks the mounting arm to said bottom member by said mounting arm being pulled in the one radial outward direction without twisting between the mounting arm and the bottom member; and
a tightening member for tightening said anchoring end relative to said bottom end, said tightening member includes a capped member for fitting into a bore opening end, said tightening member includes a capped member for fitting into a bore opening and snugly being fit to slide into a notch portion next to the bore opening which is smaller than the bore opening.
23. A connecting device for connecting a fan blade to a rotor of a motor of a ceiling fan, said connecting device connecting:
a bottom member with a periphery adapted to be attached adjacent the rotor;
a mounting arm including an anchored end adapted for mounting the fan blade thereon, and an anchoring end disposed to be brought to anchor on said bottom member such that said mounting arm is oriented in a single radial outward direction relative to said bottom member;
means for tightening said anchoring end relative to said bottom member through a clamping force when said anchoring end is pulled away from said bottom member in said radial direction, said tightening means being disposed between said mounting arm and said bottom member; and
a guiding member disposed between said anchoring end and said bottom member to guide said anchoring end to move in said single radial outward direction relative to said bottom member, without twisting said anchoring end relative to said bottom member, said guiding member includes a groove on said bottom member and a sliding member on said anchoring end of the mounting arm, respectively corresponding to said groove so as to fit slidably in said groove, said groove includes two grooves in said bottom member, and said sliding member includes two sliding members on said anchoring end of said mounting arm, wherein each of said sliding members slides within each of said grooves.
0. 2. The connecting device as claimed in claim 1, wherein said guiding member includes two elongate grooves formed in said bottom member, and two elongate rails disposed on said anchoring end and respectively corresponding to said elongate grooves so as to fit slidably in said elongate grooves.
3. The connecting device as claimed in claim 1 2 , wherein a each of said elongate grooves extends in said radial direction such that the clamping force is generated to tighten the sliding member in each of said elongate rails in a respective one of said elongate grooves when said anchoring end is pulled away from said bottom member in said one radial outward direction.
0. 4. The connecting device as claimed in claim 2, wherein said tightening means includes:
an inner peripheral wall formed on said anchoring end between said elongate rails, said inner peripheral wall confining a mounting hole, and having a constricted portion to divide said mounting hole into a notch portion and a bore portion, said bore portion being distal to said bottom member in said radial direction and having a dimension larger than that of said notch portion; and
a coupling member disposed on said bottom member between said elongate grooves, and including a shank having an upper end which is mounted on said bottom member and a lower end which extends downwardly from said upper end, and a peripheral flange projecting radially and outwardly from said lower end of said shank end of a dimension larger than that of said notch portion and smaller than that of said bore portion such that said coupling member is fitted snugly in said notch portion by passing said shank thereinto after said peripheral flange has been brought to pass through said bore portion.
0. 5. The connecting device as claimed in claim 1, wherein said retaining member has an end disposed on said mounting arm adjacent to said anchoring end, and an opposite end extending toward said tightening means in said radial direction and formed with said engaging spring member that abuts against said annular slanting wall.
7. The connecting device as claimed in claim 6, herein said guiding member includes a two elongate grooves on formed in said bottom member and a sliding member on said anchoring end of the mounting arm, and two elongate rails disposed on said anchoring end and respectively corresponding to said elongate grooves so as to fit slidably in said elongate grooves .
8. The connecting device as claimed in claim 7, wherein each of said elongate grooves extends in said radial direction such that the clamping force is generated to tighten said sliding member in each of said elongate rails in a respective one of said elongate grooves when said anchoring end is pulled away from said bottom member in said single radial outward direction.
0. 9. The connecting device as claimed in claim 7, wherein said tightening means includes:
an inner peripheral wall formed on said anchoring end between said elongate rails, said inner peripheral wall confining a mounting hole, and having a constricted portion to divide said mounting hole into a notch portion and a bore portion, said bore portion being distal to said bottom member in said radial direction and having a dimension larger than that of said notch portion, and
a coupling member disposed on said bottom member between said elongate grooves, and including a shank having an upper end which is mounted on said bottom member and a lower end which extends downwardly, from said upper end, and a peripheral flange projecting radially and outwardly from said lower end of said shank and of a dimension larger than that of said notch portion and smaller than that of said bore portion such that said coupling member is fitted snugly in said notch portion by passing said shank thereinto after said peripheral flange has been brought to pass through said bore portion.
0. 10. The connecting device as claimed in claim 6, wherein said biasing member has an inner end secured to said bottom member, an outer end extending outwardly in said radial direction toward said anchoring end of said mounting arm and having an engaging spring tongue to provide a biasing force for biasing said anchoring end away from said bottom member, and a middle portion between said inner and outer ends, said bottom member having a concavity adjacent to said guiding member for receiving said middle portion of said biasing member when said biasing member is bent against said biasing force thereof so as to permit said engaging spring tongue to be steered away from said anchoring end.
11. The connecting device as claimed in claim 1, wherein said groove includes two grooves, and said sliding member includes two sliding members, wherein each of said sliding members slides in the one radial outward direction within each of said grooves.
12. The connecting device as claimed in claim 1, further comprising:
a tightening member for tightening said anchoring end relative to said bottom end, said tightening member includes a capped member for fitting into a bore opening end snugly being fit to slide into a notch portion next to the bore opening which is smaller than the bore opening.
13. The connecting device of claim 6, wherein the tightening means is formed by the groove on said bottom member end of the sliding member on the anchoring end of said mounting arm fitting together.
14. The connecting device of claim 6, wherein said groove includes two grooves on said bottom member, and said sliding member includes two sliding members on said anchoring end of said mounting arm, wherein each of said sliding members slides within each of said grooves.
15. The connecting device of claim 6, wherein the tightening means includes a capped member for fitting into a bore opening to slide and snugly being fit into a notch portion next to the bore opening which is smaller than the bore opening.
17. The method of claim 16, wherein the step of positioning includes:
positioning the anchoring end of the mounting arm behind the mounting portion of the rotor.
18. The method of claim 16, further comprising the step of:
forming a tight fit between the sliding member and the groove without twisting one relative to another.
19. The method of claim 16, further comprising the step of:
retaining the anchoring end of the mounting arm to the mounting portion of the rotor with a spring member.
20. The method of claim 16, further comprising the step of:
retaining the anchoring end of the mounting arm to an underside of the mounting portion of the rotor with a capped member that fits within a bore opening end which slides into a notch portion next to the bore opening, while the anchoring arm is being pulled in the single radial direction outward from the rotor, without twisting the anchoring arm relative to the rotor.

1. Field of the Invention

This invention relates to a connecting device for a ceiling fan, more particularly to a connecting device for connecting a fan blade to a rotor of a motor of a ceiling fan.

2. Description of the Related Art

Referring to FIG. 1, a conventional ceiling fan 10 is shown to comprise a motor casing 16 for housing a motor 12 which includes a stator 122 and a rotor 121 that is concentrically surrounded by the stator 122 and that is rotatable about an axial direction. A plurality of fan blades 13 are connected to the rotor 121 by mounting arms, 11 respectively. Each mounting arm 11 has two plate-like connecting ends 111,113 which are mounted respectively and securely on the rotor 121 and the corresponding fan blade 13 by means of screw fasteners 14,15. It is inconvenient to assemble the fan blades 13 due to the use of the screw fasteners 14, 15.

To facilitate assembly of the ceiling fan, referring to FIGS. 2 and 3, another mounting arm 21 for the conventional ceiling fan is shown to have three coupling members 23 at one connecting end 212. Three mounting holes 25 are formed in the fan blade 24. Each mounting hole 25 has a notch portion 251 and a bore portion of a dimension larger than that of the notch portion 251 such that each coupling member 23 can be brought to fit snugly in the notch portion 251 of the respective mounting hole 25 by passing through the bore portion. A spring plate 22 is secured on the mounting arm 21 and has an engaging spring tongue 221 at one end thereof for abutting against the fan blade 24.

However, the assembly of the mounting arm 21 on the rotor (not shown) is still inconvenient to conduct. In addition the mounting arm 21 involves increased packaging and transport costs.

The object of the present invention is to provide a connecting device which is easy to fabricate and which can permit substantial reductions in the packaging and transport costs thereof.

According to this invention, a connecting device includes a bottom member with a periphery for attaching on a rotor of a motor, a circumferential wall which extends upwardly from the periphery, and an anchoring end for anchoring on the bottom member such that the mounting arm is oriented in a radial direction relative to the bottom member. A tightening member is disposed between the anchoring end and the bottom member to tighten the anchoring end relative to the bottom member through a clamping force generated in a circumferential direction of the bottom member when the anchoring end is pulled away from the bottom member in the radial direction. A guiding member is disposed between the anchoring end and the bottom member to guide the anchoring end to move in the radial direction relative to the bottom member. A retaining member is disposed between the tightening member and the anchored end in the radial direction, and has an engaging spring member abutting against the circumferential wall once the anchoring end is moved away from the bottom member.

Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments of the invention with reference to the accompanying drawings in which:

FIG. 1 is an exploded view of a conventional ceiling fan;

FIG. 2 is an exploded view of another connecting device for the conventional ceiling fan;

FIG. 3 is a perspective view of the assembly of the connecting device and the fan blade, in FIG. 2;

FIG. 4 is an exploded view of a first preferred embodiment of a connecting device according to this invention;

FIG. 5 is an inverted perspective view showing how the first preferred embodiment connects a fan blade to a rotor;

FIG. 6 is a sectional view showing the first preferred embodiment of the connecting device with another retaining member;

FIG. 7 is an exploded view of a second preferred embodiment of a connecting device according to this invention;

FIG. 8 is an inverted perspective view showing how the second preferred embodiment interconnects the rotor and the fan blade; and

FIG. 9 is a sectional view showing the second preferred embodiment of the connecting device with another retaining member.

Before the present invention is described in greater detail, it should be noted that same reference numerals have been used to denote like elements throughout the specifications.

Referring to FIGS. 4 and 5, a first preferred embodiment of a connecting device according to the present invention is shown to be adapted to connect a fan blade 50 to a rotor 301 of a motor 30. The rotor 301 has a bottom member 30a which is disposed transverse to the axial direction, and which has two screw holes 31 formed therein adjacent to a periphery thereof. A circumferential wall extends upwardly from the perpher of the bottom member 30a and diverges upwardly so as to form an annular slanting wall 30b. An elongate mounting block 32 is mounted on the bottom member 30a, and has two through holes 322 such that two screw fasteners 33 respectively pass through the through holes 322 to engage threadedly the screw holes 31 so as to secure the mounting block 32 on the bottom member 30a. Two elongate grooves 321 are formed in the mounting block 32 at opposite ends thereof, and extend in the radial direction to pass through from an inner side distal to the periphery of he bottom member 30a to an outer side of the mounting block 32.

A mounting arm 40 includes a plate-like anchored end 43 which is adapted to be secured on an upper surface wall of the fan blade 50, and an anchoring end 41 opposite to the anchored end 43 in the radial direction. The anchoring end 41 has two elongate rails 411, each of which extends in the radial direction to correspond with a respective one of the elongate grooves 321 so as to fit slidably in the respective elongate groove 321. Since each of the elongate grooves 321 and the elongate rails 411 extends in the radial direction, that is, a distance between the elongate grooves 321 is increased gradually from the inner side of the mounting block 32 to the outer side, a clamping force is generated to tighten each elongate rail 411 in the corresponding elongate groove 321 when the anchoring end 41 of the mounting arm 40 is pulled outwardly from the inner side of the mounting block 32 to the outer side. Thus, the anchoring end 41 can anchor tightly on the mounting block 32 to prevent further outward movement of the anchoring end 41 relative to the mounting block 32.

A retaining member 42 includes a spring plate 421 which is mounted on the mounting arm 40 at one end, and which has an engaging spring member or tongue 422 at the other end that extends toward the anchoring end 41. Thus, once the elongate rails 411 of the anchoring end 41 are moved in the elongate grooves 321 from the inner side toward the outer side, the engaging spring tongue 422 abuts against the annular slanting wall 30b and provides an upward biasing force thereto, thereby preventing movement of the anchoring end 41 inwardly relative to the mounting block 32.

Alternatively, referring to FIG. 6, instead of the retaining member 42, a biasing member 37 has an inner end which is secured to the bottom member 30a, an outer end which extends outwardly and downwardly and which has an engaging spring tongue 371 with a biasing force so as to abut against the anchoring end 41, and a middle portion 372 between the inner and outer ends. The bottom member 30a further has a concavity 36 which can receive the middle portion 372 when the biasing member 37 is bent against: the biasing force thereof so as to be steered away from the anchoring end 41, thereby preventing the biasing member 37 from hindering the assembly of the anchoring end 41 to the mounting block 32.

As illustrated, the anchored end 43 of the mounting arm 40 and the mounting block 32 can be mounted respectively on the fan blade 5O and the bottom member 30a by operators in a manufacturing plant. There is no need to increase the size of the package, thereby reducing substantially the packaging and transport costs.

Subsequently, when it is desired to assemble the fan blade 50 on the bottom member 30a, the elongate rails 411 of the anchoring end 41 are moved in the elongate grooves 321 from the inner side toward he outer side in the radial direction. Then, the engaging spring tongue 422 (or 371) of the retaining member 42 (or the biasing member 37) abuts against the slanting wall 30b (or the anchoring end 30b) so as to retain firmly the anchoring end 41 to the mounting arm 32.

Referring to FIGS. 7 and 8, the second preferred embodiment of the connecting device according to this invention is shown to include a guiding member with two L-shaped elongate rails 34 which are disposed on the bottom member 30a adjacent to the periphery of the bottom member 30a to confine two elongate grooves respectively, and two inverted L-shaped elongate rails 44 which are disposed on the anchoring end 41 of the mounting arm 40 and which correspond to the elongate rails 34 to, engage slidably the elongate grooves respectively.

A tightening member includes a mounting hole 45 which is formed in the anchoring end 41 between the the elongate rails 44, and an elastomeric coupling member 35 which is mounted securely on the bottom member 30a between the elongate rails 34 by a screw fastener 353. The mounting hole 45 is confined by an inner peripheral wall which has a constricted portion 453 to divide the mounting hole 45 into a notch portion 452 and a bore portion 451 that is distal to the bottom member 30a and that has a dimension larger than that of the notch portion 452. The coupling member 35 includes a shank 351 which has an upper end for mounting on the bottom member 30a and a lower end that extends downward from the upper end, and a peripheral flange 352 which projects radially and outwardly from the lower end of the shank 351 and which has a dimension larger than that of the notch portion 452 and smaller than that of the bore portion 451. Thus, the coupling member 35 can fit snugly in the notch portion 452 by passing the shank 351 thereinto after the peripheral flange 352 has been brought to pass through the bore portion 451.

In assembly, similar to the first preferred embodiment, the elongate rails 44 of the anchoring end 41 are fitted in the elongate grooves of the bottom member 30a outwardly to the periphery of the bottom member 30a. At the same time, the shank 351 of the coupling member 35 is moved to be fitted snugly in the notch portion 452, thereby retaining the anchoring end 41 to the bottom member 30a and avoiding further outward movement of the anchoring end 41 relative to the bottom member 30a by virtue of the inner peripheral wall of the notch portion 452. In addition, with reference to FIGS. 8 and 9, a retaining member 42 and a biasing member 37 are disposed similar to those of the first preferred embodiment shown in FIGS. 5 and 6. While the present invention has been described in connection with what is considered the most practical and preferred embodiments, it is understood that this invention is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretations and equivalent arrangements.

Wu, San-Chi

Patent Priority Assignee Title
10502228, Mar 28 2014 CHIEN LUEN INDUSTRIES CO , LTD , INC Locking flywheel blade
7527478, May 19 2006 Hunter Fan Company Fan blade mounting system
8356979, Oct 28 2008 Hunter Fan Company Fan blade mounting system
8668451, Sep 10 2009 Hunter Fan Company Fan blade mounting system
9039377, Aug 09 2010 LOWE S COMPANIES, INC Fan assemblies and methods for assembling same
RE43629, Nov 17 1998 Chien Luen Industries Co., Ltd., Inc. Connecting device for connecting a fan blade to a rotor of a motor of a ceiling fan
Patent Priority Assignee Title
1485552,
1804831,
1935314,
2610377,
2771259,
2965180,
4050771, Jul 01 1976 DELCO REMY AMERICA, INC Threaded terminal assembly for dynamoelectric machine
4121495, Mar 01 1976 ACF Industries, Incorporated Car key hole bolt fastening assembly
4396352, Jul 17 1981 HUNTER FAN COMPANY A CORPORATION OF DE Pitch adjustment for blades of ceiling fan
4511310, Mar 02 1984 JPMORGAN CHASE BANY Ceiling fan blade isolation
5135341, Nov 17 1990 Blaupunkt-Werke GmbH Device for fastening an electronic equipment to a mounting wall
5180284, Oct 23 1990 Detachable blades for ceiling fans
5237889, Jun 17 1991 FORD GLOBAL TECHNOLOGIES, INC A MICHIGAN CORPORATION Self-locking accelerator pedal cable-carburetor throttle lever mechanism
5384940, Feb 28 1992 THE PRUDENTIAL INSURANCE COMPANY OF AMERICA, AS COLLATERAL AGENT Self-locking heat sinks for surface mount devices
5397206, Mar 15 1994 Chrysler Corporation Vibration isolating fastener
5462412, Jan 29 1992 Hunter Fan Company Ceiling fan
5599512, May 10 1995 SYMMETRY MEDICAL MANUFACTURING, INC Sterilization support and storage container system
5722814, Apr 03 1997 Fan blade mounting device having a decorative member provided thereon
5873701, Jul 14 1997 Device for connecting brackets and a motor of a ceiling fan
5927945, Dec 18 1998 Assembling device for blade of hanging fan
5944486, Apr 24 1997 Interchangeable fan blade system
5944487, Aug 09 1996 JPMORGAN CHASE BANY Blade ring attachment system
5951197, Nov 17 1998 CHIEN LUEN INDUSTRIES CO , LTD , INC Connecting device for connecting a fan blade to a rotor of a motor of a ceiling fan
5954449, Nov 17 1998 CHIEN LUEN INDUSTRIES CO , LTD , INC Connecting device for connecting a fan blade to a rotor of a motor of a ceiling fan
5980353, Dec 02 1998 CHIEN LUEN INDUSTRIES CO , LTD , INC Connecting device for connecting a fan blade to a rotor of a motor if a ceiling fan
6010306, May 05 1997 CHIEN LUEN INDUSTRIES CO , LTD , INC Quick assembly blades for ceiling fans
6027310, Jul 26 1999 Angelo Fan Brace Licensing, L.L.C. Ceiling fan with easy installation features
6039540, Oct 21 1998 CHIEN LUEN INDUSTRIES CO , LTD , INC Fan blade assembly of a ceiling fan
6059531, Jun 19 1998 Impeller and fan blade attachment assembly
6095753, Nov 06 1998 Structure for mounting blades of a ceiling fan
6139276, Nov 20 1998 Aloha Housewares Co., Ltd. Ceiling fan assembly and method for assembling same
6210117, Sep 03 1999 CHIEN LUEN INDUSTRIES CO , LTD , INC Device for connecting a fan blade to a rotor of a ceiling fan motor
GB2276219,
JP403272308,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 14 2001King of Fans, Inc.(assignment on the face of the patent)
Aug 25 2008King of Fans, IncCHIEN LUEN INDUSTRIES CO , LTD , INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0215230974 pdf
Date Maintenance Fee Events
Nov 19 2010M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Dec 26 20094 years fee payment window open
Jun 26 20106 months grace period start (w surcharge)
Dec 26 2010patent expiry (for year 4)
Dec 26 20122 years to revive unintentionally abandoned end. (for year 4)
Dec 26 20138 years fee payment window open
Jun 26 20146 months grace period start (w surcharge)
Dec 26 2014patent expiry (for year 8)
Dec 26 20162 years to revive unintentionally abandoned end. (for year 8)
Dec 26 201712 years fee payment window open
Jun 26 20186 months grace period start (w surcharge)
Dec 26 2018patent expiry (for year 12)
Dec 26 20202 years to revive unintentionally abandoned end. (for year 12)