A security device having multiple security features is used with an item, such as a secure document, ticket, label or tag, to authenticate the item and/or encode data pertaining to the item. One example of the security device includes a carrier substrate, a metallic layer disposed on the carrier substrate, and a magnetic layer disposed on the metallic layer in substantial registration with at least a portion of the metallic layer, thereby providing both metallic security features and magnetic security features. The metallic layer and the magnetic layer also form graphic or visually identifiable indicia on the carrier substrate to provide a visual security feature. According to one method, the metallic layer is applied to the carrier substrate, the magnetic layer is applied to the metallic layer, and the layers are etched to form the graphic indicia. The magnetic layer can, in one embodiment, include a magnetic chemical resist that is printed on the metallic layer in the form of the graphic indicia. The magnetic security features use one or more magnetic characteristics, such as the level of magnetism and decay rate characteristic of soft magnetics, to authenticate and/or to encode data. The magnetic security feature may also include magnetic tracks for recording data. The metallic security features use different lengths of conductive regions to authenticate and/or encode data.
|
23. A metallic security device for use with an item, said metallic security device comprising:
a carrier substrate having a width; and
a plurality of conductive regions disposed on said carrier substrate, wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate and have at least two different predetermined lengths forming a predetermined pattern for representing encoded data, and wherein said predetermined lengths of said conductive regions are detectable to read said predetermined pattern and decode said data,
wherein said non-conductive regions are formed as graphic indicia and said conductive regions are formed around said graphic indicia.
47. A magnetic/metallic security device for use with an item to provide multiple security features, said magnetic/metallic security device comprising:
a carrier substrate having a width;
a metallic layer disposed on at least a portion of said carrier substrate, for providing metallic security features, wherein said metallic layer forms a plurality of conductive regions on said carrier substrate, and wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate; and
a magnetic layer disposed on and in substantially identical registration with said metallic layer, for providing magnetic security features, wherein said magnetic layer and said metallic layer together form visually identifiable graphic indicia on said at least a portion of said carrier substrate.
49. A magnetic/metallic security device for use with an item to provide multiple security features, said magnetic/metallic security device comprising:
a carrier substrate having a width;
a metallic layer disposed on at least a portion of said carrier substrate, for providing metallic security features, wherein said metallic layer forms a plurality of conductive regions on said carrier substrate, and wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate; and
a magnetic layer disposed on and in substantially identical registration with said metallic layer, for providing magnetic security features, wherein said magnetic layer and said metallic layer together form visually identifiable magnetic/metal graphic indicia on said at least a portion of said carrier substrate.
26. A method of making a magnetic/metallic security device having a plurality of security features, said method comprising:
providing a carrier substrate having first and second surfaces;
applying a metallic layer to at least a portion of said first surface of said carrier substrate;
applying a metallic layer over at least a portion of said metallic layer; and
etching said magnetic layer and said metallic layer such that at least a portion of said magnetic layer and said metallic layer are in substantially identical registration and together form visually identifiable indicia on said carrier substrate, wherein said metallic layer is etched such that said metallic layer forms a plurality of conductive regions on said substrate, wherein said conductive regions are separated by non-conductive regions extending across an entire width of said carrier substrate.
53. A method of making a magnetic/metallic security device having a plurality of security features, said method comprising:
providing a carrier substrate having a width and first and second surfaces;
applying a metallic layer directly to at least a portion of said first surface of said carrier substrate, wherein said metallic layer forms a plurality of conductive regions on said carrier substrate, wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate; and
applying a magnetic layer over at least a portion of said metallic layer such that at least a portion of said magnetic layer and said metallic layer are in substantially identical registration and wherein said magnetic layer and said metallic layer in substantially identical registration together form visually identifiable graphic indicia.
1. A magnetic/metallic security device for use with an item to provide multiple security features, said magnetic/metallic security device comprising:
a carrier substrate having a width;
a metallic layer disposed on at least a portion of said carrier substrate, for providing metallic security features, wherein said metallic layer forms a plurality of conductive regions on said carrier substrate, wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate; and
a magnetic layer disposed on and in substantially identical registration with at least one of said plurality of said conductive regions, for providing magnetic security features, wherein said magnetic layer and said at least one conductive regions in substantially identical registration include recesses, said recesses forming visually identifiable indicia.
51. A method of making a magnetic/metallic security device having a plurality of security features, said method comprising:
providing a carrier substrate having a width and first and second surfaces;
applying a metallic layer to at least a portion of said first surface of said carrier substrate, said applied metallic layer forming a plurality of conductive regions separated by nonconductive regions that extend entirely across said width of said carrier substrate;
applying a magnetic layer over at least a portion of said metallic layer; and
etching at least one of said magnetic layer and said metallic layer such that at least a portion of said magnetic layer and said metallic layer are in substantially identical registration and wherein said magnetic layer and said metallic layer in substantially identical registration include recesses, said recesses forming visually identifiable indicia.
55. A magnetic/metallic security device for use with an item to provide multiple security features, said magnetic/metallic security device comprising:
a carrier substrate having a width;
a metallic layer disposed on at least a portion of said carrier substrate, for providing metallic security features, wherein said metallic layer forms a plurality of conductive regions on said carrier substrate, wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate; and
a magnetic layer disposed on and in substantially identical registration with said metallic layer, for providing magnetic security features, wherein said magnetic layer and said metallic layer together form visually identifiable magnetic/metal graphic indicia in the form of discrete, non-connected, graphic indicia on said at least a portion of said carrier substrate.
37. A method of authenticating a magnetic/metallic security device, the device having a width and including at least one magnetic region having at least one predetermined magnetic characteristic, and at least one a plurality of metallic, region conductive regions each having at least one a predetermined metallic characteristic and non-conductive regions, wherein said non-conductive regions extend entirely across said width of said security device, said method comprising the steps of:
charging magnetizing said magnetic region of said magnetic/metallic security device;
detecting said predetermined magnetic characteristic of said charged magnetized magnetic region;
detecting said at least one predetermined metallic characteristic characteristics of said at least one metallic region regions; and
comparing said at least one predetermined magnetic characteristic and said at least one predetermined metallic characteristic characteristics to expected magnetic and metallic characteristics.
50. A metallic security device for use with an item, said metallic security device comprising:
a carrier substrate having a width; and
a plurality of conductive regions formed by a metallic layer disposed on said carrier substrate, wherein said conductive regions are separated by non-conductive regions extending across said width of said carrier substrate, said conductive regions having at least two different predetermined lengths forming a predetermined pattern for representing encoded data, and wherein said predetermined pattern may be detected and read to decode said data; and
a magnetic layer disposed on and in substantially identical registration with said metallic layer at least in said plurality of conductive regions, for providing magnetic security features, wherein said magnetic layer and said metallic layer in substantially identical registration include recesses, said recesses forming visually identifiable indicia.
0. 56. A magnetic/metallic security device for use with an item to provide multiple security features, said magnetic/metallic security device comprising:
a carrier substrate having a width;
a metallic layer disposed on at least a portion of said carrier substrate, for providing metallic security features, wherein said metallic layer forms a plurality of conductive regions on said carrier substrate, wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate; and
a magnetic layer disposed on and in substantially identical registration with at least a portion of at least one of said plurality of said conductive regions, for providing magnetic security features, wherein said magnetic layer and said at least a portion of at least one conductive region in substantially identical registration include recesses, said recesses forming visually identifiable indicia.
0. 60. A magnetic/metallic security device for use with an item to provide multiple security features, said magnetic/metallic security device comprising:
a carrier substrate having a width;
a metallic layer disposed on at least a portion of said carrier substrate, for providing metallic security features, wherein said metallic layer forms a plurality of conductive regions on said carrier substrate, wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate; and
a magnetic layer disposed on and in substantially identical registration with at least a portion of at least one of said plurality of said conductive regions, for providing magnetic security features, wherein recesses forming visually identifiable indicia are formed in at least one of (a) any of said conductive regions and (b) said magnetic layer in substantially identical registration with at least a portion of at least one conductive region.
0. 64. A magnetic/metallic security device for use with an item to provide multiple security features, said magnetic/metallic security device comprising:
a carrier substrate having a width;
a metal security feature comprising a metallic layer disposed on at least a portion of said carrier substrate, said metallic layer forming a plurality of conductive regions on said carrier substrate, said conductive regions being separated by non-conductive regions which extend entirely across said width of said carrier substrate, each conductive region of said metallic layer including at least one predetermined characteristic that is detectable such that said metallic layer provides metallic security features, said metallic layer further including visually identifiable graphic indicia; and
a magnetic security feature comprising a magnetic layer including at least one type of magnetic substance having at least one predetermined magnetic characteristic such that said magnetic layer provides magnetic security features;
wherein said magnetic layer is disposed on at least some of said metallic layer.
31. A method of making a magnetic/metallic security device having a plurality of security features, said method comprising:
providing a carrier substrate having first and second surfaces;
applying a metallic layer to at least a portion of said first surface of said carrier substrate;
applying a magnetic chemical resist to at least a portion of said metallic layer, wherein said magnetic chemical resist forms a pattern on said metallic layer; and
chemically etching said metallic layer to remove exposed portions of said metallic layer, wherein chemical etching is resisted by said magnetic chemical resist such that said magnetic chemical resist and at least a portion of said metallic layer underlying said magnetic chemical resist are in substantially identical registration and together form visually identifiable indicia on said carrier substrate, wherein said metallic layer is chemically etched such that said metallic layer forms a plurality of conductive regions on said substrate, wherein said conductive regions are separated by non-conductive regions extending across an entire width of said carrier substrate.
52. A method of making a magnetic/metallic security device having a plurality of security features, said method comprising:
providing a carrier substrate having a width and first and second surfaces;
applying a metallic layer to at least a portion of said first surface of said carrier substrate;
applying a magnetic chemical resist to at least a portion of said metallic layer, wherein said magnetic chemical resist forms a pattern on said metallic layer; and
chemically etching said metallic layer to remove exposed portions of said metallic layer forming a plurality of conductive regions separated by non-conductive regions that extend entirely across said width of said carrier substrate, wherein chemical etching is resisted by said magnetic chemical resist such that said magnetic chemical resist and at least a portion of said metallic layer underlying said magnetic chemical resist are in substantially identical registration and together form visually identifiable indicia on said carrier substrate, and wherein said magnetic layer and said metallic layer in substantially identical registration include recesses, said recesses forming said visually identifiable indicia.
19. A magnetic security device for use with an item, said magnetic security device comprising:
a carrier substrate having a width;
a metallic layer disposed on at least a portion of said carrier substrate, for providing metallic security features, wherein said metallic layer forms a plurality of conductive regions on said carrier substrate, wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate; and
a magnetic layer disposed on and in substantially identical registration with at least one of said plurality of conductive regions, for providing magnetic security features, wherein said magnetic layer and said at least one conductive regions is substantially identical registration include recesses, said recesses forming visually identifiable indicia, wherein said plurality of magnetic regions include at least first and second types of soft magnetic pigments having first and second predetermined magnetic decay rates, wherein said plurality of magnetic regions having said first and second predetermined magnetic decay rates are arranged in a predetermined pattern representing data encoded by said magnetic regions such that said first and second predetermined magnetic decay rates are capable of being detected and read to decode said data.
54. A magnetic/metallic security device for use with an item to provide multiple security features, said magnetic/metallic security device comprising:
a carrier substrate having a width; and
a magnetic/metal security feature comprising:
a magnetic/metal security feature including a metallic layer disposed on at least a portion of said carrier substrate, for providing metallic security features, along with a magnetic layer disposed on and in substantially identical registration with said metallic layer, for providing magnetic security features, wherein said metallic layer forms a plurality of conductive regions on said carrier substrate, wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate, and wherein said magnetic layer and said metallic layer together form visually identifiable magnetic/metal graphic indicia on said at least a portion of said carrier substrate; and/or
a magnetic/metal security feature including a metallic layer disposed on at least a portion of said carrier substrate, for providing metallic security features, wherein said metallic layer forms a plurality of conductive regions on said carrier substrate, wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate, along with a magnetic layer disposed on and in substantially identical registration with at least one of said plurality of conductive regions, for providing magnetic security features, wherein said magnetic layer and said at least one conductive regions region in substantially identical registration include recesses, said recesses forming visually identifiable indicia.
0. 58. A magnetic/metallic security device for use with an item to provide multiple security features, said magnetic/metallic security device comprising:
a carrier substrate having a width; and
a magnetic/metal security feature comprising:
a magnetic/metal security feature including a metallic layer disposed on at least a portion of said carrier substrate, for providing metallic security features, along with a magnetic layer disposed on and in substantially identical registration with said metallic layer, for providing magnetic security features, wherein said metallic layer forms a plurality of conductive regions on said carrier substrate, wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate, and wherein said magnetic layer and said metallic layer together form visually identifiable magnetic/metal graphic indicia on said at least a portion of said carrier substrate; and/or
a magnetic/metal security feature including a metallic layer disposed on at least a portion of said carrier substrate, for providing metallic security features, wherein said metallic layer forms a plurality of conductive regions on said carrier substrate, wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate, along with a magnetic layer disposed on and in substantially identical registration with at least a portion of at least one of said plurality of conductive regions, for providing magnetic security features, wherein said magnetic layer and said at least a portion of at least one conductive region in substantially identical registration include recesses, said recesses forming visually identifiable indicia.
0. 62. A magnetic/metallic security device for use with an item to provide multiple security features, said magnetic/metallic security device comprising:
a carrier substrate having a width; and
a magnetic/metal security feature comprising:
a magnetic/metal security feature including a metallic layer disposed on at least a portion of said carrier substrate, for providing metallic security features, along with a magnetic layer disposed on and in substantially identical registration with said metallic layer, for providing magnetic security features, wherein said metallic layer forms a plurality of conductive regions on said carrier substrate, wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate, and wherein said magnetic layer and said metallic layer together form visually identifiable magnetic/metal graphic indicia on said at least a portion of said carrier substrate; and/or
a magnetic/metal security feature including a metallic layer disposed on at least a portion of said carrier substrate, for providing metallic security features, wherein said metallic layer forms a plurality of conductive regions on said carrier substrate, wherein said conductive regions are separated by non-conductive regions which extend entirely across said width of said carrier substrate, along with a magnetic layer disposed on and in substantially identical registration with at least a portion of at least one of said plurality of conductive regions, for providing magnetic security features, wherein recesses forming visually identifiable indicia are formed in at least one of (a) any of said conductive regions and (b) said magnetic layer in substantially identical registration with at least a portion of at least one conductive region.
2. The magnetic/metallic security device of
3. The magnetic/metallic security device of
4. The magnetic/metallic security device of
5. The magnetic/metallic security device of
6. The magnetic/metallic security device of
7. The magnetic/metallic security device of
8. The magnetic/metallic security device of
9. The magnetic/metallic security device of
10. The magnetic/metallic security device of
11. The magnetic/metallic security device of
12. The magnetic/metallic security device of
13. The magnetic/metallic security device of
14. The magnetic/metallic security device of
15. The magnetic/metallic security device of
16. The magnetic/metallic security device of
17. The magnetic/metallic security device of
18. The magnetic/metallic security device of
20. The magnetic security device of
21. The magnetic security device of
22. The magnetic security device of
0. 24. The metallic security device of
0. 25. The metallic security device of
27. The method of
28. The method of
29. The method of
30. The method of
32. The method of
33. The method of
34. The method of
35. The method of
36. The method of
applying an additional layer over said pattern formed by said magnetic chemical resist and said portion of said metallic layer underlying said magnetic chemical resist.
39. The method of
40. The method of
41. The method of
42. The method of
43. The method of
45. The method of
46. The method of
48. The magnetic/metallic security device of
0. 57. The magnetic/metallic security device of
0. 59. The magnetic/metallic security device of
0. 61. The magnetic/metallic security device of
0. 63. The magnetic/metallic security device of
0. 65. The magnetic/metallic security device of
|
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/067,228 filed Dec. 2, 1997, fully incorporated herein by reference.
The present invention relates to security devices and in particular, to a security device or element having multiple security features for use with valuable merchandise or items.
Counterfeiting and tampering with secure documents or instruments, such as bank notes, checks, tickets, credit cards and the like, and other valuable merchandise or items is a common problem in many fields or enterprises. To prevent counterfeiting, many secure documents and other items of value include a security device or element, such as a security thread, disposed on or in the document. The security device typically includes one or more security features, such as metallic security features, magnetic security features, or luminescent security features, that authenticate the document and prevent counterfeiting and/or tampering.
To authenticate the document, many conventional security devices merely require that the existence of a single security feature be detected. Thus, counterfeiters need only recognize the security feature in a document or item and reproduce that one security feature in a counterfeit document or item such that the security feature is detectable to authenticate the counterfeit document. Advances in technology have brought even new and easier ways of identifying these security features and reproducing the valuable documents or instruments with the security device. Thus, a need exists for more covert security features that are not easily identified and reproduced.
One type of security thread includes metallic features, such as metallic graphic indicia, disposed on a carrier substrate. According to conventional chemical etching techniques, a chemical resist is printed on a metallic layer in the form of the graphical indicia, either positively or negatively, and de-metalization of the areas of the metallic layer not covered by the chemical resist causes the graphic indicia to be formed either negatively or positively by the remaining metallic layer. Security threads having only a metallic security feature, formed according to this method, do not provide adequate protection because the counterfeiter can easily recognize and reproduce the metallic graphic indicia.
Attempts have been made to combine multiple security features, such as metallic and magnetic features, to make counterfeiting more difficult. In one example, magnetic ink is used to print graphic indicia that can be read by MICR detectors. However, if magnetic ink is used to print graphic indicia on or with metallic security features, the magnetic features and metallic features are easily distinguishable and identified. A counterfeiter could recognize that both magnetic and metallic security features have been used and need to be reproduced.
Other types of security threads have also used hybrid metals or alloys to form graphic indicia having both magnetic and metallic security features. However, the hybrid metals and the process for depositing or applying the hybrid metals to form the graphic indicia is costly. Also, using hybrid metals limits the ability to vary the magnetic properties that can be used.
Accordingly, a need exists for a security device having multiple security features, such as metallic and magnetic security features, that are not easily distinguishable and recognizable upon observing the security device. A need also exists for a security device in which the security feature(s) is capable of providing machine readable encoded data, e.g., pertaining to the security device or document, in addition to detectable features for authentication of the security document. What is also needed is a method of making a magnetic/metallic security device using existing chemical etching or de-metalization techniques.
The present invention features a magnetic/metallic security device for use with an item to provide multiple security features. The security device includes a carrier substrate, a metallic layer disposed on the carrier substrate, for providing metallic security features, and a magnetic layer disposed on and in substantially identical registration with at least a portion of some of the metallic layer, for providing magnetic security features. The metallic layer and the magnetic layer together form graphic indicia on the carrier substrate, either positively or negatively. In one embodiment, a coating layer is disposed over the graphic indicia formed by the metallic layer and the magnetic layer.
The magnetic/metallic security device has different embodiments in which the magnetic layer provides magnetic security features. In one embodiment, the graphic indicia is formed as magnetic characters readable by MICR detectors. In another embodiment, the magnetic layer includes a hard magnetic substance capable of being magnetized for recording data on the magnetic layer.
In a further embodiment, the magnetic layer includes at least one type of magnetic substance having at least one predetermined magnetic characteristic that is detectable, for authenticating an item having said security device. In one example, the magnetic substance is a soft magnetic pigment capable of holding a level of magnetism for a limited period of time.
In a further embodiment, the magnetic layer includes at least first and second types of magnetic substances having at least first and second predetermined magnetic characteristics respectively. The first and second types of magnetic substances are arranged in the magnetic layer in a predetermined pattern representing data encoded with the magnetic layer such that the first and second predetermined characteristics are detectable to read the predetermined pattern and decode the data. In one example, the first and second predetermined magnetic characteristics represent binary integers, and the predetermined pattern of the first and second types of magnetic substances represents data in a binary coded format. One example of the first and second types of magnetic substances include first and second soft magnetic pigments having first and second predetermined magnetic decay rates and/or predetermined levels of magnetism.
The magnetic/metallic security device also has different embodiments in which the metallic layer provides metallic security features. In one embodiment, at least a portion of the metal layer includes at least one predetermined characteristic that is detectable, for authenticating an item having the security device.
In another embodiment, the metal layer forms a plurality of conductive regions on the substrate. The conductive regions are separated by non-conductive regions and have at least two different predetermined lengths forming a predetermined pattern for representing encoded data. The predetermined lengths of the conductive regions are detectable to read the predetermined pattern and decode the data. In one example, the conductive regions include first and second predetermined lengths representing binary integers, and the predetermined pattern of the first and second lengths of the conductive regions encodes the data in a binary coded format.
The present invention also features a magnetic security device for use with an item. The magnetic security device comprises a carrier substrate, and a plurality of magnetic regions disposed on the carrier substrate. The plurality of magnetic regions have different predetermined magnetic characteristics and are arranged in a predetermined pattern representing data encoded by the magnetic regions. The first and second predetermined characteristics are detectable to read the predetermined pattern and decode the data.
The present invention also features a metallic security device for use with an item. The metallic security device comprises a carrier substrate, and a plurality of conductive regions disposed on the carrier substrate. The conductive regions are separated by non-conductive regions and have at least two different predetermined lengths forming a predetermined pattern for representing encoded data. The predetermined lengths of the conductive regions are detectable to read the predetermined pattern and decode the data.
The present invention also features a method of making a magnetic/metallic security device having a plurality of security features. The method comprises: providing a carrier substrate having first and second surfaces; applying a metallic layer to at least a portion of the first surface of the carrier substrate; applying a magnetic layer over at least a portion of the metallic layer; and etching the magnetic layer and the metallic layer such that the magnetic layer and the metallic layer are in substantially identical registration and together form graphic indicia on the carrier substrate.
The preferred method of making a magnetic/metallic security device comprises: providing a carrier substrate having first and second surfaces; applying a metallic layer to at least a portion of the first surface of the carrier substrate; applying a magnetic chemical resist to at least a portion of the metallic layer, wherein the magnetic chemical resist forms a pattern of graphic indicia on the metallic layer; and chemically etching the metallic layer to remove exposed portions of the metallic layer, wherein chemical etching is resisted by the magnetic chemical resist such that the magnetic chemical resist and a portion of the metallic layer underlying the magnetic chemical resist together form the pattern of graphic indicia on the carrier substrate. The method can also include applying an additional layer over the graphical indicia formed by the magnetic chemical resist and the portion of the metallic layer underlying the magnetic chemical resist.
These and other features and advantages of the present invention will be better understood by reading the following detailed description, taken together with the drawings wherein:
A security device 10,
The security device 10 can be used in secure documents including, but not limited to, banknotes, currencies, passports, visas, titles, licenses, registrations, checks, money orders, original documents, certificates of authority, event tickets and gift certificates. The security device 10 provides authentication of the secure document and/or is encoded with data pertaining to the secure document or the security device itself.
The security device 10 can also be used in labels, tags or packaging material including, but not limited to, pressure sensitive labels, glue-on labels, in-mold labels, heat-shrink labels, woven labels, tear tapes, shrink-caps and collars, and stickers. In this example, the magnetic/metallic security device 10 authenticates and/or is encoded with data relating to the articles to which the labels or packaging material is attached, such as liquor or other commodities of value.
The security device 10 can further be used with a laminated article including, but not limited to, passports, ID Cards, access cards, licenses, and credit/debit cards. In this example, the security device 10 is used to authenticate the laminated article and/or is encoded with data relating to the article or the owner of the article.
The security device 10 can also be used in tickets or passes including, but not limited to, event tickets, transit tickets, lottery tickets, and admittance passes. According to this example, the security device 10 can provide authentication of the ticket or pass itself and/or can be encoded with data relevant to the event. The present invention also contemplates other uses and applications for the security device 10 to prevent counterfeiting, reproduction or otherwise provide security for items or articles of value.
According to the exemplary embodiment, the security device 10 is formed as a thread or strip that extends partially or entirely along the item 12 in any direction. The security device 10 can be embedded within the item 12, adhered to the item 12, woven in the item 12, or laminated between multiple layers of the item 12. The item 12 can also include multiple security devices 10 according to the present invention.
The security device 10,
In the exemplary embodiment, the security device 10 includes graphic indicia 16 formed from a metallic/magnetic medium disposed on the carrier substrate 14. The graphic indicia 16 can be formed positively on the carrier substrate 14, i.e. the graphic indicia 16 is composed of the magnetic/metal medium. The graphic indicia 16 can also be formed in the reverse, i.e. the area 18 surrounding the graphic indicia 16 is composed of the magnetic/metallic medium. The magnetic/metallic security device 10 can also be formed with a combination of positive and reverse graphic indicia 16. The graphic indicia 16 can be printed as line work in which solid areas are printed in the desired shape or as halftone in which tiny dots are printed with varying spacing to vary the shading. Although the graphic indicia 16 are shown as alphanumeric characters, the present invention contemplates any type of symbol, design, shape or other graphic indicia.
The method of making the exemplary security device 10,
Next, a magnetic chemical resist 22 is applied to the metallic layer 20 according to the desired pattern of graphic indicia 16, e.g. printed in positive, reverse or both. The magnetic chemical resist 22 includes film-forming chemical resisting resins containing ferromagnetic and or other magnetic pigments. Examples of the chemical resist include, but are not limited to, solvent based, water based or solid based, ultra violet (UV) or electron beam (EB) polymerized resin systems or other conventional chemical resist resins. The magnetic pigments include both hard and soft magnetic pigments, as will be described in greater detail below, typically ranging from about 200 oersteds to 10,000 oersteds.
An etching process is then performed on the magnetic/metallic security device 10,
Alternatively, the graphical indicia 16 can be formed using other types of techniques including, but not limited to, lasers, mechanical scribing, abrading, and the like. In one example, a substrate containing a metallic layer is overcoated with a magnetic layer and subjected to a laser etching process. The laser etching selectively removes both the magnetic and metallic layers and forms the desired graphical indicia 16 having the magnetic security feature superimposed substantially identically over the metallic security feature.
The present invention also contemplates using an additional coating or laminate 24,
The security device 10,
The magnetic security feature is capable of authenticating an item or encoding data pertaining to the item in multiple ways. In one example, the graphic indicia 16 are formed as magnetic characters that can be read by conventional MICR detectors. In this example, the graphic indicia 16 are preferably formed as positive text.
According to another example, the magnetic chemical resist 22 includes a hard magnetic pigment that is capable of being magnetized in the same manner as a magnetic recording tape. In this example, graphic indicia 16,
According to a further example, the magnetic chemical resist 22 includes a soft magnetic that can be magnetized and holds a level of magnetism for a limited period of time depending upon the characteristics or properties of the soft magnetic. Using the soft magnetic allows the magnetic security feature to be further concealed because the magnetic properties will not be detected unless the soft magnetic is first magnetized. Soft magnetics typically have predetermined magnetic characteristics, such as a level of magnetism that they can achieve and rate of decay of magnetic charge. Soft magnetics can be used to provide authentication, by first magnetizing the magnetic/metallic security device 10 and then detecting the existence of the magnetic, the level of magnetism, or the rate of decay.
By providing soft magnetics with varying magnetic characteristics, such as different levels of magnetism which can be attained or rates of decay, the graphic indicia 16,
According to one method of the present invention, different formulations of the magnetic chemical resist 22 having magnetic pigments with different magnetic properties or characteristics are printed onto the metallic layer 20 using multiple print stations, such as an offset printing press similar to the type used for multicolor printing. Using multiple print stations allows graphic indicia to be printed in any desired pattern using various combinations of magnetic chemical resists having various different magnetic properties.
The present invention also contemplates simultaneously using the level of magnetism and decay rate properties of the soft magnetics, as well as a mixture of hard and soft magnetics to achieve any desired combination of magnetic characteristics or properties for authenticating an item or encoding data pertaining to an item. Although the exemplary embodiment described above refers to two different magnetic properties for encoding data in BCD format, any number of different properties can be used to encode data in other numerical formats. For example,
The device 30,
When the security device 10 includes magnetic security features having soft magnetics, the device 30 further includes a magnetic charger 32 that charges the soft magnetic pigments prior to the reader 34 detecting the features of the magnetics, such as the existence of magnetics, the level of magnetization, the decay rate of the magnetic, or other detectable magnetic characteristics. Authentication can be made based upon whether the soft magnetic is present, whether the soft magnetic has a predetermined level of magnetization, or whether the soft magnetic has a predetermined decay rate.
Decoding is performed by determining the pattern of the different magnetic characteristics read by the reader 34. For example, if the magnetic/metallic security device 10 shown in
The metallic security feature 40,
Each conductive region 42 has one of at least two predetermined lengths, for example, long conductive regions 42a and short conductive regions 42b. Each predetermined length corresponds to a predetermined value so that the data can be determined by detecting the length of each conductive region 42 and determining a corresponding value.
In one example, long conductive regions 42a correspond to a “1” and the short conductive regions 42b corresponds to a “0”. According to this example, the long and short conductive regions 42a, 42b are used to encode data in BCD format. The long and short conductive regions 42a, 42b are arranged in a predetermined series corresponding to the binary representation of the data to be encoded. In this example, the detector/reader 34 detects the length of each conductive region 42 in the series (e.g. long or short) and determines the corresponding binary representation. To provide authentication, the binary representation will be matched to a predefined verification code for an item 12. To read encoded data, the binary representation will be further decoded.
Accordingly, depending upon the arrangement of the conductive regions 42 having varying lengths, a virtually unlimited number of verification codes or data can be encoded using the machine readable metallic security features 40. The machine readable metallic security feature 40 according to the present invention allows encoded data to be easily varied by varying the sequence of the conductive regions 42a, 42b. The conductive regions can be formed according to various designs provided that they are conductive over one of the predetermined lengths, as will be described in greater detail below. Although only two lengths are discussed herein for simplification, the present invention contemplates using conductive regions of any number of different lengths for encoding data. For example, octal data can be encoded using eight (8) different length conduction regions.
One method of reading and verifying the machine readable metallic security feature 40,
The conductive regions 42 of the machine readable encoded metallic security feature 40 are preferably formed from a metallic material, such as aluminum. Exemplary methods include, but are not limited to, forming the conductive regions 42 by metalization of a polyester film, hot stamped foil, and printing the conductive regions 42 with a metallic ink. The present invention contemplates other types of metallic material and methods of forming the metallic conductive regions and non-conductive breaks.
The machine readable encoded metallic security feature 40 and the security device 10 in which it is used are preferably designed to allow minimal “stretching,” for example, approximately 5% or less variation in length. Also, the detection of the lengths of the conductive regions 42a, 42b should account for the potential stretching of the security device and machine readable encoded metallic security feature 40, for example, by accounting for the potential percentage of change in length.
According to another embodiment of the machine readable encoded metallic security feature 40a,
According to another embodiment of the machine readable encoded metallic security feature 40b,
A further embodiment of the machine readable encoded metallic security feature 40c,
The present invention contemplates using the magnetic security features and metallic security features alone or together on a security device. Any number of the magnetic or metallic properties described above can be used individually or combined with other properties to provide authentication of an item, encode data pertaining to an item, or both.
According to the various embodiments of the present invention, one or more security devices or threads 10,
One example of the instrument 70 is a ticket used for sporting events, concerts, theater, shows, lotteries, transportation, theme parks, fairs, and other events. The security device 10 in the ticket can be encoded with a predetermined authentication code or encoded data that can be read when the security instrument 70 is presented, e.g. upon admission to a particular event. In one example, one full code 72 appears in approximately 2.5 in.
Accordingly, the security device of the present invention authenticates an item and/or is encoded with data pertaining to the item in numerous ways with one or more security features, such as metallic security features and magnetic security features that generally appear together as one single security feature. The security features and encoded data are thus more difficult to identify and reproduce. The method of making the security device using chemical etching and a magnetic chemical resist results in a magnetic security feature that is substantially indistinguishable from a metallic security feature. The method of printing graphic indicia using a magnetic chemical resist also facilitates the use of magnetic pigments having different magnetic characteristics or properties by printing different formulations of the magnetic chemical resist.
Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention which is not to be limited except by the claims which follow.
Gartner, Gerald J., Cote, Paul F., Curdo, Stephen B., Wolpert, Gary R.
Patent | Priority | Assignee | Title |
10127410, | Jun 27 2014 | Eastman Chemical Company | Fibers with physical features used for coding |
10452873, | Jun 27 2014 | Eastman Chemical Company | Fibers with surface markings used for coding |
10515256, | Sep 12 2017 | Eastman Chemical Company | Cellulose acetate tow bands and filters with surface markings |
10527593, | Jun 27 2014 | Eastman Chemical Company | Method of making fibers with chemical markers and physical features used for coding |
7918485, | Nov 28 2006 | Xerox Corporation | Security system using conductive and non-conductive regions |
8464875, | Jun 06 2007 | De La Rue International Limited | Apparatus for analysing a security document |
8472676, | Jun 06 2007 | De La Rue International Limited | Apparatus and method for analysing a security document |
8550340, | Sep 21 2009 | GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH | Elongated security feature comprising machine-readable magnetic regions |
8740094, | Nov 22 2006 | GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH | Security element for protecting documents of value |
9336640, | Jun 04 2007 | GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH | Security element for securing documents of value |
9442074, | Jun 27 2014 | Eastman Chemical Company | Fibers with surface markings used for coding |
9633579, | Jun 27 2014 | Eastman Chemical Company | Fibers with physical features used for coding |
9863920, | Jun 27 2014 | Eastman Chemical Company | Fibers with chemical markers and physical features used for coding |
9865182, | Jun 27 2014 | Eastman Chemical Company | Fibers with surface markings used for coding |
9916482, | Jun 27 2014 | Eastman Chemical Company | Fibers with physical features used for coding |
Patent | Priority | Assignee | Title |
4044231, | May 27 1975 | EMCO GRAPHICS, INC | Secure property document and method of manufacture |
4183989, | Dec 07 1976 | Portals Limited | Security papers |
4446204, | May 30 1980 | GAO Gesellschaft fur Automation und Organisation mbH. | Security paper with authenticity features |
4511616, | Feb 14 1983 | VAN LEER METALLIZED PRODUCTS USA LIMITED A CORP OF THE UNITED KINGDOM | Anticounterfeit magnetic metallized labels |
4584529, | Jun 02 1983 | WAIFE CO , LTD | Method and apparatus for discriminating between genuine and suspect paper money |
4631222, | Jun 20 1984 | Messrs. Leonhard Kurz GmbH & Co. | Embossing foils |
4631223, | Jun 20 1984 | NORTHEAST PACKAGING CORP , A CORP OF NY | Embossing foils having a magnetic layer |
4652015, | Dec 05 1985 | Crane Company | Security paper for currency and banknotes |
4869778, | Jul 20 1987 | TECHNICAL GRAPHICS, INC | Method of forming a patterned aluminum layer and article |
4943093, | Dec 04 1987 | PORTALS LIMITED OF OVERTON MILL | Security paper for bank notes and the like |
4980569, | Mar 05 1990 | CRANE & CO , INC , A MA CORP | Security paper verification device |
5016919, | Mar 10 1989 | Check and magnetic strip arrangement | |
5042842, | Jun 26 1990 | Avery International Corporation | High security label |
5043201, | Jul 20 1987 | Gar Doc, Inc. | Method of forming a patterned aluminum layer and article |
5093184, | Jun 02 1989 | Portals Limited | Security paper with metallic patterned elongated security element |
5112672, | Dec 21 1989 | GAO GESELLSCHAFT FUR AUTOMATION UND | Security document having an electrically conductive security element embedded therein |
5113062, | Apr 26 1989 | Kyodo Printing Co., Ltd. | Magnetic card having thermal recording layer and arrangement of magnetic bars for recording security information |
5190318, | Jun 22 1990 | PENTAGON TRADING LTD | Document with forgery-prevention means |
5196681, | Nov 27 1989 | FABRIANO SECURITIES S R L | Magnetic ink medium and corresponding reading unit, and method for using same |
5265916, | Mar 19 1992 | Moore Business Forms, Inc. | Secure event tickets |
5279403, | Jul 23 1992 | AUTHENTICATION TECHNOLOGIES, INC | Microwave security thread detector |
5284363, | Aug 15 1991 | Gar-Doc, Inc. | Multi-layer hinged label |
5308992, | Dec 31 1991 | AUTHENTICATION TECHNOLOGIES, INC | Currency paper and banknote verification device |
5354099, | Dec 20 1990 | GAO Gesellschaft fur Automation und Organisation mbH | Magnetic metallic safeguarding thread with negative writing |
5388862, | Dec 04 1990 | Portals Limited | Security articles |
5394969, | Dec 31 1991 | AUTHENTICATION TECHNOLOGIES, INC | Capacitance-based verification device for a security thread embedded within currency paper |
5417316, | Mar 18 1993 | AUTHENTICATION TECHNOLOGIES, INC | Capacitive verification device for a security thread embedded within currency paper |
5419424, | Apr 28 1994 | CRANE & CO , INC | Currency paper security thread verification device |
5457382, | Jul 17 1990 | GAO Gesellschaft fur Automation und Organisation mbH | Apparatus for testing documents having magnetic properties |
5486022, | Apr 04 1994 | Crane & Co., Inc. | Security threads having at least two security detection features and security papers employing same |
5516153, | Jan 17 1991 | GAO Gesellschaft fur Automation und Organisation mbH | Security document and a method for producing it |
5535871, | Aug 29 1995 | CRANE & CO , INC | Detector for a security thread having at least two security detection features |
5543911, | Sep 13 1994 | VANTICO INC | Method of currency or document validation by use of an anti-counterfeiting magnetic viewing strip |
5545885, | Jun 01 1992 | Eastman Kodak Company | Method and apparatus for detecting and identifying coded magnetic patterns on genuine articles such as bank notes |
5583631, | Feb 11 1993 | FEDRIGONI S P A | Anticounterfeit security device . . . including two security elements |
5599047, | Dec 20 1990 | GAO Gesellschaft fur Automation und Organisation mbH | Magnetic metallic safeguarding thread with negative writing and a method of making same |
5601931, | Dec 02 1993 | NHK Spring Company, Ltd. | Object to be checked for authenticity and a method for manufacturing the same |
5614824, | May 15 1995 | Crane & Co., Inc. | Harmonic-based verifier device for a magnetic security thread having linear and non-linear ferromagnetic characteristics |
5697649, | May 11 1995 | CRANE & CO, INC | Articles employing a magnetic security feature |
5786587, | Aug 10 1995 | OPSEC SECURITY GROUP, INC | Enhancement of chip card security |
5803503, | Dec 20 1990 | Gao Gesellschaft fur Automation und Organisation MGH | Magnetic metallic safeguarding thread with negative writing |
5949050, | Jan 22 1997 | MATTEL, INC , A DELAWARE CORPORATION | Magnetic cards having a layer being permanently magnetized in a fixed configuration |
EP330733, | |||
GB2221425, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 01 2003 | Technical Graphics, Inc. | (assignment on the face of the patent) | / | |||
Mar 18 2005 | Technical Graphics Security Products, LLC | TECHNICAL GRAPHICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018075 | /0295 | |
Dec 22 2008 | TECHNICAL GRAPHICS, INC | TORONTO DOMINION TEXAS LLC | SECURITY AGREEMENT | 022235 | /0613 | |
Jul 12 2013 | TECHNICAL GRAPHICS, INC | CRANE SECURITY TECHNOLOGIES, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 033616 | /0287 | |
Sep 29 2014 | TORONTO DOMINION TEXAS LLC | CRANE SECURITY TECHNOLOGIES, INC F K A TECHNICAL GRAPHICS, INC | RELEASE OF SECURITY INTEREST IN PATENTS AND PATENT APPLICATIONS | 033887 | /0168 | |
Sep 29 2014 | CRANE SECURITY TECHNOLOGIES, INC | HIGHBRIDGE PRINCIPAL STRATEGIES, LLC, AS COLLATERAL AGENT | GRANT OF A SECURITY INTEREST -- PATENTS | 033846 | /0591 | |
Sep 29 2014 | Visual Physics, LLC | HIGHBRIDGE PRINCIPAL STRATEGIES, LLC, AS COLLATERAL AGENT | GRANT OF A SECURITY INTEREST -- PATENTS | 033846 | /0591 | |
Sep 29 2014 | CRANE & CO , INC | HIGHBRIDGE PRINCIPAL STRATEGIES, LLC, AS COLLATERAL AGENT | GRANT OF A SECURITY INTEREST -- PATENTS | 033846 | /0591 | |
Dec 01 2016 | HIGHBRIDGE PRINCIPAL STRATEGIES, LLC | CRANE SECURITY TECHNOLOGIES, INC | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL FRAME 033846 0591 ON SEPTEMBER 29, 2014 | 040801 | /0330 | |
Dec 01 2016 | HIGHBRIDGE PRINCIPAL STRATEGIES, LLC | Visual Physics, LLC | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL FRAME 033846 0591 ON SEPTEMBER 29, 2014 | 040801 | /0330 | |
Dec 01 2016 | HIGHBRIDGE PRINCIPAL STRATEGIES, LLC | CRANE & CO , INC | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL FRAME 033846 0591 ON SEPTEMBER 29, 2014 | 040801 | /0330 | |
Dec 01 2016 | Visual Physics, LLC | JPMORGAN CHASE BANK, NA, AS ADMINISTRATIVE AGENT | PATENT SECURITY AGREEMENT | 040791 | /0079 | |
Dec 01 2016 | CRANE SECURITY TECHNOLOGIES, INC | JPMORGAN CHASE BANK, NA, AS ADMINISTRATIVE AGENT | PATENT SECURITY AGREEMENT | 040791 | /0079 | |
Dec 01 2016 | CRANE & CO , INC | JPMORGAN CHASE BANK, NA, AS ADMINISTRATIVE AGENT | PATENT SECURITY AGREEMENT | 040791 | /0079 | |
Jan 10 2018 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | CRANE & CO , INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 044587 | /0145 | |
Jan 10 2018 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Visual Physics, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 044587 | /0145 | |
Jan 10 2018 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | CRANE SECURITY TECHNOLOGIES, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 044587 | /0145 |
Date | Maintenance Fee Events |
Dec 01 2008 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 03 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 20 2010 | 4 years fee payment window open |
Aug 20 2010 | 6 months grace period start (w surcharge) |
Feb 20 2011 | patent expiry (for year 4) |
Feb 20 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 20 2014 | 8 years fee payment window open |
Aug 20 2014 | 6 months grace period start (w surcharge) |
Feb 20 2015 | patent expiry (for year 8) |
Feb 20 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 20 2018 | 12 years fee payment window open |
Aug 20 2018 | 6 months grace period start (w surcharge) |
Feb 20 2019 | patent expiry (for year 12) |
Feb 20 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |