The compressor in a refrigeration system is controlled solely by a variable speed drive which controls the motor of the compressor by virtue of the varying of the frequency of the electricity provided to the motor. To minimize the initial cost and to minimize operating costs, the variable speed drive is cooled by refrigerant from the refrigeration system which permits the use of a smaller drive, and the variable speed drive is operated at, or approaching, a unity power factor.

Patent
   RE39597
Priority
Jul 02 2001
Filed
Oct 09 2003
Issued
May 01 2007
Expiry
Jul 02 2021
Assg.orig
Entity
Large
27
75
all paid
9. A method for selecting the compressor, motor and variable speed drive for refrigeration system comprising the steps of:
for a given design refrigeration requirement, selecting a compressor having a design speed and being capable of providing the necessary refrigerant delivery;
selecting a motor operating at the compressor design speed with a power factor of at least 0.89 when delivering the design amount of refrigerant;
selecting a variable speed drive for controlling said motor by varying the frequency of electric power supplied to said motor such that said variable speed drive operates at an input power factor of at least 0.99 when driving said motor to drive said compressor to deliver the design amount of refrigerant.
1. A refrigerant system having:
a closed fluid circuit serially including a screw compressor, a discharge line, a condenser, an expansion device, a chiller and a suction line leading back to said compressor;
water passing through said chiller in a heat exchange relationship and being cooled;
said compressor being unloaded solely by regulating the speed of said compressor;
motor means for driving said compressor;
means for varying the speed of said motor means by controlling the frequency of electrical current supplied to said motor;
means for providing cooling to said means for varying the speed;
means for sensing the temperature of water leaving said chiller;
means for controlling said means for varying the speed responsive to the sensed temperature of water leaving said chiller.
0. 18. A refrigeration system having:
a closed fluid circuit serially including a compressor, a discharge line, a condenser, an expansion device, a chiller and a suction line leading back to said compressor;
water passing through said chiller in a heat exchange relationship and being cooled;
said compressor being unloaded solely by regulating the speed of said compressor;
motor means for driving said compressor;
means for varying the speed of said motor means by controlling the frequency of electrical current supplied to said motor;
means for providing cooling to said means for varying the speed;
means for sensing the temperature of water leaving said chiller;
means for controlling said means for varying the speed responsive to the sensed temperature of water leaving said chiller.
0. 23. A refrigeration system having:
a closed fluid circuit serially including a compressor, a discharge line, a condenser, a first expansion device, an economizer, a second expansion device, a chiller and a suction line leading back to said compressor;
a branch line connected to said economizer and extending into said compressor;
water passing through said chiller in a heat exchange relationship and being cooled;
said compressor being unloaded solely by regulating the speed of said compressor;
motor means for driving said compressor;
means for varying the speed of said motor means by controlling the frequency of electric current supplied to said motor;
means for providing cooling to said means for varying the speed;
means for sensing the temperature of water leaving said chiller;
means for controlling said means for varying the speed responsive to the sensed temperature of water leaving said chiller.
6. A refrigeration system having:
a closed fluid circuit serially including a screw compressor, a discharge line,
a condenser, a first expansion device, an economizer, a second expansion device, a chiller and a suction line leading back to said compressor;
a branch line connected to said economizer and extending into said compressor;
water passing through said chiller in a heat exchange relationship and being cooled;
said compressor being unloaded solely by regulating the speed of said compressor;
motor means for driving said compressor;
means for varying the speed of said motor means by controlling the frequency of electric current supplied to said motor;
means for providing cooling to said means for varying the speed;
means for sensing the temperature of water leaving said chiller;
means for controlling said means for varying the speed responsive to the sensed temperature of water leaving said chiller.
2. The refrigeration system of claim 1 wherein liquid refrigerant from said condenser is supplied by said means for providing cooling to said means for varying the speed of said motor.
3. The refrigeration system of claim 2 wherein liquid refrigerant used to provide cooling to said means for varying the speed is at least partially evaporated and supplied to said chiller.
4. The refrigeration system of claim 1 wherein said means for controlling said means for varying the speed acts solely responsive to the sensed temperature of water leaving side chiller.
5. The refrigeration system of claim 1 wherein said means for varying the speed of said motor has a constant output over a range of frequency and voltage inputs.
7. The refrigeration system of claim 6 wherein liquid refrigerant from said condenser is supplied by said means for providing cooling to said means for varying the speed of said motor.
8. The refrigeration system of claim 6 wherein said means for varying the speed of said motor has a constant output over a range of frequency and voltage inputs.
10. The method of claim 9 wherein the step of selecting a compressor includes the selection of a compressor without mechanical unloading structure.
11. The refrigeration system of claim 3 wherein said motor means has a power factor of at least 0.89 and said means for varying the speed of said motor means varies the frequency of electric power supplied to said motor means such that said means for varying the speed of said motor means operates at an input power factor of at least 0.99 when driving said motor means.
12. The refrigeration system of claim 4 wherein said motor means has a power factor of at least 0.89 and said means for varying the speed of said motor means varies the frequency of electric power supplied to said motor means such that said means for varying the speed of said motor means operates at an input power factor of at least 0.99 when driving said motor means.
13. The refrigeration system of claim 5 wherein said motor means has a power factor of at least 0.89 and said means for varying the speed of said motor means varies the frequency of electric power supplied to said motor means such that said means for varying the speed of said motor means operates at an input power factor of at least 0.99 when driving said motor means.
14. The refrigeration system of claim 7 wherein said motor means has a power factor of at least 0.89 and said means for varying the speed of said motor means operates at an input power factor of at least 0.99 when driving said motor means.
15. The refrigeration system of claim 8 wherein said motor means has a power factor of at least 0.89 and said means for varying the speed of said motor means operates at an input power factor of at least 0.99 when driving said motor means.
16. The method of claim 10 further including the step of selecting means for cooling said variable speed drive with refrigerant from said refrigeration system.
17. The method of claim 16 further including the steps of:
selecting means for sensing the temperature of water leaving the chiller; and
selecting means for controlling the speed of said motor solely responsive to the sensed temperature of the water leaving the chiller.
0. 19. The refrigeration system of claim 18 wherein liquid refrigerant from said condenser is supplied by said means for providing cooling to said means for varying the speed of said motor.
0. 20. The refrigeration system of claim 19 wherein liquid refrigerant used to provide cooling to said means for varying the speed is at least partially evaporated and supplied to said chiller.
0. 21. The refrigeration system of claim 18 wherein said means for controlling said means for varying the speed acts solely responsive to the sensed temperature of water leaving said chiller.
0. 22. The refrigeration system of claim 18 wherein said means for varying the speed of said motor has a constant output over a range of frequency and voltage inputs.
0. 24. The refrigeration system of claim 23 wherein liquid refrigerant from said condenser is supplied by said means for providing cooling to said means for varying the speed of said motor.
0. 25. The refrigeration system of claim 23 wherein said means for varying the speed of said motor has a constant output over a range of frequency and voltage inputs.

A second reissue application, 11/397,888, for U.S. Pat. No. 6,434,960, has been filed on Apr. 4, 2006.

In screw compressors the bores for the rotors overlap. The overlapping bores create cusps in the nature of the waist of a figure eight. One of the cusps in the normal lactation for one form of a mechanical unloader which forms a portion of the bore and coacts with the rotors as it moves axially in the cusp to unload and to control the V1 or discharge volume to suction volume ratio, of the compressor. The unloader is normally driven by a solenoid. To provide a greater degree of control, it is common to provide a variable speed drive which controls the motor by changing the frequency of the electric power being supplied to the motor by the variable speed drive.

The cost of a variable speed drive is on the order of that of a compressor. So, adding a variable speed drive to a conventional compressor greatly increases the cost and adds a degree of redundancy since the unloader valve, or other mechanical unloading structure, has some functional overlap with the variable speed drive in that both can control compressor capacity. While the variable speed drive is external to the compressor, an unloader valve is internal to the compressor. Being internal to the compressor, the unloader valve requires additional manufacturing steps to accommodate it in the compressor. Specifically, the unloader valve is located in a cusp and effectively forms a portion of the bores. This requires precision machining to achieve the requisite sealing with the rotors and introduces a leakage path along the interface of the unloader valve with the rotor bores. Other types of mechanical unloaders such as poppets also require additional manufacturing steps in order to be accommodated in a compressor.

The present invention eliminates the mechanical unloader structure and thereby simplifies the manufacture of the compressor while reducing costs. All of the control of the compressor is through the variable speed drive so that further efficiency increases and cost reductions can be achieved by properly selecting the variable speed drive, motor, compressor and chiller for a particular application. The required drive amperage of the variable speed drive, and also its cost, is directly related to the chiller performance and to the motor power factor. Improvements in the chiller performance and motor power factor lowers the average cost of a variable speed drive for an application.

In the case of the compressor, considerations for unloading include the amperage or load requirements over the range of operation, efficiency over the range of operation and the minimum speed requirements for bearing life which is dependent upon lubrication circulation with the refrigerant. The motor must be matched with both the variable speed drive and the compressor in order to optimize the speed of the compressor. For example, the ideal compressor speed for a given load is not usually the same as the synchronous speed. Also, the variable speed drive may be required to compensate for the various input frequencies and voltages used around the world and one motor voltage can be used for all applications over a range of supply voltages. For example, one variable speed drive and motor combination might be efficiently used for power supplied at 50 Hz or 60 Hz and over a voltage range of 346 volts to 480 volts since the variable speed drive output would remain the same. The system current usage can be minimized through a unity, or approaching unity, input power factor of the variable speed drive. The variable speed drive output can be increased by using system refrigerant for cooling such as is taught in commonly assigned U.S. Pat. No. 6,116,040. This permits the use of a smaller and therefore less expensive variable speed drive to produce a desired output.

The foregoing factors are optimized to achieve a given performance at a minimized installed cost with the following being affected: the compressor size, speed and configuration; the variable speed drive size, input, output and cooling configuration; the motor size and speed; and the input wire sizes.

It is an object of this invention to control compressor output in a refrigeration system solely by use of a variable speed drive.

It is another object of this invention to reduce the initial cost of a refrigeration system employing a variable speed drive.

It is an additional object of this invention to add a variable speed drive to a refrigeration system at a cost penalty no greater than 5% of the cost of a compressor with mechanical unloading.

It is a further object of this invention to integrate a variable speed drive into a refrigeration system. These objects, and others as will become apparent, hereinafter, are accomplished by the present invention.

Basically, the compressor in a refrigeration system is controlled solely by a variable speed drive which controls the motor of the compressor by virtue of the varying of the frequency of the electric current provided to the motor. To minimize the initial cost and to minimize operating costs, the variable speed drive is cooled by refrigerant from the refrigeration system which permits the use of a smaller drive, and the variable speed drive is operated at, or approaching, a unity power factor.

For a fuller understanding of the present invention, reference should now be made to the following detailed description thereof taken in conjunction with the accompanying= drawing wherein:

The FIGURE is a schematic representation of a refrigeration system employing the present invention.

For a refrigeration system a particular system capacity is the starting point in designing the system. A compressor capable of producing the required capacity will be chosen based upon factors such as cost, efficiency and operating speed. The selection of the compressor will be in conjunction with the selection of the motor. Motors are available having power factors in the range of 0.80 to 0.93 and the motor will be selected based upon cost, power factor, efficiency at design compressor speed. Variable speed drives are available which have power factors running from 0.99 to unity. However, the differences between the standard sizes of the variable speed drives are relatively large such that a considerably oversized variable speed drive might be the smallest standard drive available sufficient to meet design requirements. By cooling the variable speed drive with refrigerant from the condenser, it may be operated at higher than its air cooled drive design capacity because of the greater cooling available. For example, a 100 ampere drive that supplies 80 amperes when air cooled could supply from 80 to 100 amperes for driving the compressor when refrigerant cooled.

In the FIGURE, the numeral 10 generally designates a refrigeration system. Refrigeration system 10 has a screw compressor 12 which has no mechanical unloading structure. Refrigeration system 10 includes a closed fluid circuit serially including compressor 12, discharge line 14, condenser 16, line 18 containing expansion device 20 and flash tank economizer 22, line 24 containing expansion device 26, chiller 28 and suction line 30. Line 32 branches from flash tank economizer 22 and provides fluid communication with a trapped volume in compressor 12 at an intermediate pressure.

Compressor 12 is driven by motor 11 under the control of variable speed drive 40 which is connected to the electrical power grid (not illustrated). Variable speed drive 40 controls the alternating frequency of the current supplied to motor 11 thereby controlling the speed of motor 11 and the output of compressor 12. In chiller 28, water is chilled by refrigerant circulating in the closed fluid circuit of refrigeration system 10. The chilled water provides the cooling to the zones. The temperature of the water leaving chiller 28 via line 29 is sensed by thermal sensor 50 and supplied to microprocessor 100. Microprocessor 100 controls variable speed drive 40 and thereby motor 11 and compressor 12 to maintain a desired water temperature for the water leaving chiller 28. Microprocessor 100 can control variable speed drive 40 solely responsive to the temperature sensed by thermal sensor 50 or it may also receive zone inputs from the zones being cooled and regulate the rate of water circulation through the chiller 26, and thereby the amount of available cooling. If desired, microprocessor 100 may also control expansion devices 20 and 26.

While refrigeration system 10, as described above, has many features common with conventional refrigeration systems, there are a number of significant differences. Screw compressor 12 is simpler than conventional refrigeration compressors in that it has no mechanical unloading structure. Accordingly, the rotors only seal with each other and the bores. There is no slide valve which replaces portions of the bores in the region of a cusp with the attendant extra manufacturing costs and potential for leakage between the slide valve and adjacent structure or any other mechanical unloading structure. The output of compressor 12 is controlled through motor 11 whose speed is controlled by variable speed drive 40. The motor 11 is matched to the variable speed drive 40 and compressor 12. There is an ideal compressor speed for the design compressor output. So the motor is chosen to have efficient operation at the ideal compressor speed and to have an optimized power factor. On the input side of the variable speed drive, a near unity power factor reduces energy usage and the cost of the energy because of the reduced energy demand at, or approaching, unity power factor. This is because the power factor of the variable speed drive, not the power factor of the motor, is seen by the utility, since the variable speed drive isolates the motor from the utility.

In the operation of refrigeration system 10, gaseous refrigerant is induced into compressor 12 via suction line 30 and compressed with the resultant hot, high pressure refrigerant gas being supplied via discharge line 14 to condenser 16. In condenser 16, the gaseous refrigerant condenses as it gives up heat due to heat transfer via air, water or brine-cooled heat exchangers (not illustrated). The condensed refrigerant passes from condenser 16 into line 18 and serially passes through expansion device 20 into flash tank economizer 22. A portion of the refrigerant flowing into economizer 22 is diverted into line 32 at an intermediate pressure and passes via line 32 to a trapped volume in compressor 12. The remaining liquid refrigerant in economizer 22 passes through expansion device 26 thereby undergoing a pressure drop and partially flashing as it passes via line 24 into chiller 28. In chiller 28, the remaining liquid refrigerant evaporates due to heat transfer to the water passing through chiller 28 via line 29. The economizer flow into compressor 12 via line 32 increases the capacity of compressor in that it increases the mass of refrigerant gas being compressed.

Microprocessor 100 receives a signal form thermal sensor 50 indicative of the temperature of the water leaving chiller 28 via line 29 to provide cooling to one or more zones (not illustrated). Responsive to the water temperature sensed by sensor 50, the microprocessor 100 sends a signal to variable speed drive 40 to cause it to change the speed of motor 11 to increase or decrease the cooling capacity of compressor 12, as required. Variable speed drive 40 increases or decreases the speed, and therefore the capacity, of compressor 12 by changing the frequency of the current supplied to power motor 11. By having a motor 11 operating at an optimum power factor the electrical usage and demand are minimized and the size of the variable speed drive 40 required is reduced. Additionally, a portion of the liquid refrigerant in condenser 16 is diverted via line 17 to the variable speed drive 40 where the electronic components are cooled and the refrigerant evaporated. The evaporated refrigerant passes from variable speed drive 40 via line 41 to chiller 28. The rate of flow of refrigerant to variable speed drive 40 from condenser 16 is controlled by valve 42 responsive to the temperature of the refrigerant leaving variable speed drive sensed by sensor 43. Because the variable speed drive 40 is cooled by the liquid refrigerant, a still smaller variable speed drive 40 can be used.

Although a preferred embodiment of the present invention has been illustrated and described, other changes will occur to those skilled in the art. For example, the economizer may be omitted and/or zone temperature, water flow rates, the expansion devices can be connected to the microprocessor. It is therefore intended that the present invention is to be limited only by the scope of the appended claims.

Rousseau, William H.

Patent Priority Assignee Title
10072876, Sep 30 2009 Thermo Fisher Scientific (Asheville) LLC Refrigeration system having a variable speed compressor
10119738, Sep 26 2014 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
10627124, Feb 21 2014 Johnson Controls Tyco IP Holdings LLP Systems and methods for auto-commissioning and self-diagnostics
10753661, Sep 26 2014 Waterfurnace International, Inc. Air conditioning system with vapor injection compressor
10816243, Sep 30 2009 Thermo Fisher Scientific (Asheville) LLC Refrigeration system having a variable speed compressor
10845097, Sep 30 2009 Thermo Fisher Scientific (Asheville) LLC Refrigeration system having a variable speed compressor
10866002, Nov 09 2016 CLIMATE MASTER, INC Hybrid heat pump with improved dehumidification
10871314, Jul 08 2016 CLIMATE MASTER, INC Heat pump and water heater
10935260, Dec 12 2017 CLIMATE MASTER, INC Heat pump with dehumidification
11156231, Mar 23 2018 Honeywell International Inc. Multistage compressor having interstage refrigerant path split between first portion flowing to end of shaft and second portion following around thrust bearing disc
11435095, Nov 09 2016 Climate Master, Inc. Hybrid heat pump with improved dehumidification
11448430, Jul 08 2016 Climate Master, Inc. Heat pump and water heater
11480372, Sep 26 2014 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
11506430, Jul 15 2019 CLIMATE MASTER, INC Air conditioning system with capacity control and controlled hot water generation
11592215, Aug 29 2018 WATERFURNACE INTERNATIONAL, INC Integrated demand water heating using a capacity modulated heat pump with desuperheater
7856834, Feb 20 2008 Trane International Inc. Centrifugal compressor assembly and method
7975506, Feb 20 2008 TRANE INTERNATIONAL, INC. Coaxial economizer assembly and method
8037713, Feb 20 2008 TRANE INTERNATIONAL, INC. Centrifugal compressor assembly and method
8418486, Apr 08 2005 Carrier Corporation Refrigerant system with variable speed compressor and reheat function
8459963, Oct 10 2007 Carrier Corporation Screw compressor pulsation damper
8627680, Feb 20 2008 TRANE INTERNATIONAL, INC. Centrifugal compressor assembly and method
9353765, Feb 20 2008 Trane International Inc. Centrifugal compressor assembly and method
9556875, Feb 20 2008 Trane International Inc. Centrifugal compressor assembly and method
9581985, Feb 21 2014 Johnson Controls Tyco IP Holdings LLP Systems and methods for auto-commissioning and self-diagnostics
9683758, Feb 20 2008 Trane International Inc. Coaxial economizer assembly and method
9835347, Dec 08 2014 Johnson Controls Tyco IP Holdings LLP State-based control in an air handling unit
9835360, Sep 30 2009 Thermo Fisher Scientific (Asheville) LLC Refrigeration system having a variable speed compressor
Patent Priority Assignee Title
1270037,
2410341,
2481527,
2652192,
2674089,
2888442,
3355906,
3410405,
3555843,
3589139,
3780532,
3848987,
3966371, Nov 02 1973 Rotary, positive displacement progressing cavity device
4181474, Mar 02 1978 Dunham-Bush, Inc. Vertical axis hermetic rotary helical screw compressor with improved rotary bearings and oil management
4242067, Sep 15 1977 Imo-Industri Aktiebolag Hydraulic screw machine with balance plunger
4371324, Sep 06 1978 AB Bonnierforetagen Helical gear machine with improved high pressure port
4478054, Jul 12 1983 DUNHAM-BUSH, INC Helical screw rotary compressor for air conditioning system having improved oil management
4504203, Jan 18 1983 H F M HENGELO BEHEER B V Apparatus adapted for use as a screw compressor for motor
4515540, Nov 22 1983 Frick Company Variable liquid refrigerant injection port locator for screw compressor equipped with automatic variable volume ratio
4623305, Jun 20 1984 STC plc Device for pumping oil
4720981, Dec 23 1986 AMERICAN STANDARD INTERNATIONAL INC Cooling of air conditioning control electronics
4776779, Mar 21 1984 WASSAN PTY LTD , D B A MANUFACTURES Fluid motor or pump
4913634, Jul 01 1986 Hitachi, Ltd. Screw compressor with slide valve movement preventing structure
5052472, Jul 19 1989 HITACHI, LTD , A CORP OF JAPAN LSI temperature control system
5086626, Jan 13 1988 Kabushiki Kaisha Toshiba Air conditioner with function for temperature control of radiant heat exchanger
5165881, Sep 16 1991 Opcon Autorotor AB Rotor for a screw rotor machine
5222874, Jan 09 1991 Sullair Corporation Lubricant cooled electric drive motor for a compressor
5224354, Oct 18 1991 Hitachi, Ltd. Control system for refrigerating apparatus
5245836, Jan 09 1989 Sinvent AS Method and device for high side pressure regulation in transcritical vapor compression cycle
5246349, Mar 18 1991 Sullair Corporation Variable reluctance electric motor driven vacuum pump
5255529, Sep 14 1990 UUSI, LLC Environmental control system
5332376, Dec 22 1989 Opcon Autorotor AB Screw compressor for internal combustion engines
5490394, Sep 23 1994 MULTIBRAS S A ELETRODOMESTICOS Fan control system for the evaporator of refrigerating appliances
5537830, Nov 28 1994 Trane International Inc Control method and appartus for a centrifugal chiller using a variable speed impeller motor drive
5560218, Nov 26 1993 Samsung Electronics Co., Ltd. Control apparatus and method for an air conditioner
5568732, Apr 12 1994 Kabushiki Kaisha Toshiba Air conditioning apparatus and method of controlling same
5613369, Sep 28 1994 Kabushiki Kaisha Toshiba Air conditioner and control method for an air conditioner
5642992, Oct 30 1995 Multi-rotor helical screw compressor
5651260, Feb 09 1995 Matsushita Electric Industrial Co., Ltd. Control apparatus and method for actuating an electrically driven compressor used in an air conditioning system of an automotive vehicle
5653585, Jan 11 1993 Apparatus and methods for cooling and sealing rotary helical screw compressors
5657638, Oct 02 1995 General Electric Company Two speed control circuit for a refrigerator fan
5671607, Nov 07 1994 VERUM GESELLSCHAFT FUR VERFAHRENSTECHNIK REGENERATIVE ENERGIEN UND UMWELTSCHUTZ MBH Compression refrigeration machine
5694783, Oct 26 1994 Vapor compression refrigeration system
5782101, Feb 27 1997 Carrier Corporation Heat pump operating in the heating mode refrigerant pressure control
5797276, Jul 28 1993 HOST AMERICA CORPORATION Methods and devices for energy conservation in refrigerated chambers
5807091, Oct 30 1995 Multi-rotor helical-screw compressor
5845509, Sep 26 1997 Variable speed parallel centrifugal compressors for HVAC and refrigeration systems
5970729, Mar 01 1995 Nabtesco Corporation Cooling apparatus
6045344, Aug 11 1997 Kabushiki Kaisha Kobe Seiko Sho; KOBELCO RESEARCH INSTITUTE, INC. Oil-cooled type screw compressor
6073457, Mar 28 1997 Behr GmbH & Co. Method for operating an air conditioner in a motor vehicle, and an air conditioner having a refrigerant circuit
6085532, Feb 05 1999 Trane International Inc Chiller capacity control with variable chilled water flow compensation
6116040, Mar 15 1999 Carrier Corporation Apparatus for cooling the power electronics of a refrigeration compressor drive
6217304, Oct 30 1995 Multi-rotor helical-screw compressor
630848,
6397610, May 01 2001 CHENFENG MACHINERY & ENTERPRISE CO , LTD Method for controlling air conditioner/heater by coil temperature
6415617, Jan 10 2001 Johnson Controls Technology Company Model based economizer control of an air handling unit
6560980, Apr 10 2000 Thermo King Corporation Method and apparatus for controlling evaporator and condenser fans in a refrigeration system
6694763, May 30 2002 Praxair Technology, Inc. Method for operating a transcritical refrigeration system
6968708, Jun 23 2003 Carrier Corporation Refrigeration system having variable speed fan
960994,
DE2409554,
DE3701586,
EP1111187,
EP323834,
GB476377,
GB645055,
GB646344,
GB648055,
JP4203383,
JP5399504,
JP54100510,
JP56121801,
JP6056104,
JP6151401,
SE115234,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 09 2003Carrier Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Jan 29 2010M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 22 2014M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
May 01 20104 years fee payment window open
Nov 01 20106 months grace period start (w surcharge)
May 01 2011patent expiry (for year 4)
May 01 20132 years to revive unintentionally abandoned end. (for year 4)
May 01 20148 years fee payment window open
Nov 01 20146 months grace period start (w surcharge)
May 01 2015patent expiry (for year 8)
May 01 20172 years to revive unintentionally abandoned end. (for year 8)
May 01 201812 years fee payment window open
Nov 01 20186 months grace period start (w surcharge)
May 01 2019patent expiry (for year 12)
May 01 20212 years to revive unintentionally abandoned end. (for year 12)