A flexible thin layer open liquid state electrochemical cell which can be used as a primary or rechargeable power supply for various miniaturized and portable electrically powered devices of compact design. The cell includes a wet electrolyte, yet maintains a fexible, thin and open configuration, thus devoid of accumulation of gases upon storage. The cell comprising a first layer of insoluble negative pole, a second layer of insoluble positive pole and a third layer of aqueous electrolyte, the third layer being disposed between the first and second layers and including a deliquescent material for keeping the open cell wet at all times; an electroactive soluble material for obtaining required ionic conductivity; and, a watersoluble polymer for obtaining a required viscosity for adhering the first and second layers to the third layer. The electrochemical cell of the present invention is preferably produced using a suitable printing technology.
|
26. A method of making a flexible thin layer open liquid state electrochemical cell comprising the steps of:
(a) wetting a porous substance having a first side and a second side with an aqueous solution containing a deliquescent material, an electroactive soluble material and a watersoluble polymer;
(b) applying onto said first side a layer of negative pole; and
(c) applying onto said second side a layer of positive pole.
0. 1. A flexible thin layer open liquid state electrochemical cell comprising a first layer of insoluble negative pole, a second layer of insoluble positive pole and a third layer of aqueous electrolyte, said third layer being disposed between said first and second layer and including:
(a) a deliquescent material for keeping the open cell wet at all times;
(b) an electroactive soluble material for obtaining required ionic conductivity; and
(c) a watersoluble polymer for obtaining a required viscosity for adhering said first and second layers to said third layer.
0. 2. A cell as in
3. A cell as in
(a) a deliquescent material for keeping the open cell wet at all times;
(b) an electroactive soluble material for obtaining required ionic conductivity; and
(c) a watersoluble polymer for obtaining a required viscosity for adhering said first and second layers to said third layer; wherein said first layer of insoluble negative pole includes zinc powder, said second layer of insoluble positive pole includes manganese-dioxide powder, and said electroactive soluble material is selected from the group consisting of zinc-chloride, zinc-bromide, zinc-fluoride and potassium-hydroxide.
4. A cell as in
(a) a deliquescent material for keeping the open cell wet at all times;
(b) an electroactive soluble material for obtaining required ionic conductivity; and
(c) a watersoluble polymer for obtaining a required viscosity for adhering said first and second layers to said third layer, wherein said first layer of insoluble negative pole includes silver-oxide powder zinc powder and said second layer of insoluble positive pole includes zinc powder silver-oxide powder.
6. A cell as in
(a) a deliquescent material for keeping the open cell wet at all times;
(b) an electroactive soluble material for obtaining required ionic conductivity; and
(c) a watersoluble polymer for obtaining a required viscosity for adhering said first and second layers to said third layer, wherein said first layer of insoluble negative pole includes cadmium powder and said second layer of insoluble positive pole includes nickel-oxide powder.
8. A cell as in
(a) a deliquescent material for keeping the open cell wet at all times;
(b) an electroactive soluble material for obtaining required ionic conductivity; and
(c) a watersoluble polymer for obtaining a required viscosity for adhering said first and second layers to said third layer, wherein said first layer of insoluble negative pole includes iron powder and said second layer of insoluble positive pole includes nickel-oxide powder.
10. A cell as in
(a) a deliquescent material for keeping the open cell wet at all times;
(b) an electroactive soluble material for obtaining required ionic conductivity; and
(c) a watersoluble polymer for obtaining a required viscosity for adhering said first and second layers to said third layer, wherein said first layer of insoluble negative pole and said second layer of insoluble positive pole include lead-oxide powder, the cell is charged by voltage applied to said poles.
12. A cell as in
(a) a deliquescent material for keeping the open cell wet at all times;
(b) an electroactive soluble material for obtaining required ionic conductivity; and
(c) a watersoluble polymer for obtaining a required viscosity for adhering said first and second layers to said third layer, wherein said deliquescent material and said electroactive soluble material are the same material.
13. A cell as in
14. A cell as in
(a) a deliquescent material for keeping the open cell wet at all times;
(b) an electroactive soluble material for obtaining required ionic conductivity; and
(c) a watersoluble polymer for obtaining a required viscosity for adhering said first and second layers to said third layer, wherein said deliquescent material is selected from the group consisting of calcium-chloride, calcium-bromide, potassium-biphosphate and potassium-acetate.
15. A cell as in
(a) a deliquescent material for keeping the open cell wet at all times;
(b) an electroactive soluble material for obtaining required ionic conductivity; and
(c) a watersoluble polymer for obtaining a required viscosity for adhering said first and second layers to said third layer, wherein said watersoluble polymer is selected from the group consisting of polyvinylalcohol, polyacrylamide, polyacrylic acid, polyvinylpyrolidone, polyethylenoxide, agar, agarose, starch, hydroxyethylcellulose and combinations and copolymers thereof.
16. A cell as in
(a) a deliquescent material for keeping the open cell wet at all times;
(b) an electroactive soluble material for obtaining required ionic conductivity; and
(c) a watersoluble polymer for obtaining a required viscosity for adhering said first and second layers to said third layer, wherein said watersoluble polymer and said deliquescent material are the same material.
17. A cell as in claim 1 16, wherein said same material is selected from the group consisting of dextrane, dextranesulfate and combinations and copolymers thereof.
18. A cell as in
(a) a deliquescent material for keeping the open cell wet at all times;
(b) an electroactive soluble material for obtaining required ionic conductivity; and
(c) a watersoluble polymer for obtaining a required viscosity for adhering said first and second layers to said third layer, further comprising terminals, each of said terminals being in electrical contact with one of said first and second pole layers.
20. A cell as in
(a) a deliquescent material for keeping the open cell wet at all times;
(b) an electroactive soluble material for obtaining required ionic conductivity; and
(c) a watersoluble polymer for obtaining a required viscosity for adhering said first and second layers to said third layer, further comprising at least one conductive layer improving the electronic conductivity of at least one of said first and second pole layers.
21. A cell as in
22. A cell as in
(a) a deliquescent material for keeping the open cell wet at all times;
(b) an electroactive soluble material for obtaining required ionic conductivity; and
(c) a watersoluble polymer for obtaining a required viscosity for adhering said first and second layers to said third layer, further comprising an external layer selected from the group consisting of an adhesive backing layer, a lamina protective layer and a combination of adhesive backing layer and a lamina protective layer.
23. An electrical power supply comprising two cells as in
(a) a deliquescent material for keeping the open cell wet at all times;
(b) an electroactive soluble material for obtaining required ionic conductivity; and
(c) a watersoluble polymer for obtaining a required viscosity for adhering said first and second layers to said third layer.
24. An electrical power supply as in
25. An electrical power supply as in
27. A method as in
28. A method as in
29. A method as in
30. A method as in
|
This is a continuation of application U.S. patent application Ser. No. 08/575,190, filed Dec. 20, 1995 now U.S. Pat. No. 5,652,043.
The present invention relates to electrochemical cells which are used as battery power sources by converting chemical energy to electrical energy. More particularly, the present invention relates to a primary or rechargeable electrochemical cell to be used as a regular or rechargeable battery which accomplishes the conversion of chemical energy to electrical energy using a wet (e.g., liquid state) electrolyte, yet maintains a flexible thin layer and open configuration.
The ever-growing development of miniaturized and portable electrically powered devices of compact design such as, for example, cellular phones, voice recording and playing devices, watches, motion and still cameras, liquid crystal displays, electronic calculators, IC cards, temperature sensors, hearing aids, pressure sensitive buzzers, etc., generates an ever-growing need of compact thin layer batteries for their operation. Therefore, there is a need for reliable thin layer electrochemical cells to be used as batteries.
Batteries can be broadly classified into two categories in which the batteries of the first category include wet electrolytes (i.e., liquid state batteries), whereas batteries of the second category include solid state electrolytes. Although solid state batteries have an inherent advantage, they do not dry out and do not leak, they suffer major disadvantages when compared with liquid state batteries since, due to limited diffusion rates of ions through a solid, their operation is temperature dependent to a much larger extent, and many operate well only under elevated temperatures. And, the limited diffusion rates thus described characterize solid state batteries with low ratios of electrical energy generated vs. their potential chemical energy. Liquid state thin layer batteries typically include a positive and negative active insoluble material layer put together with a separator interposed therebetween, which separator is soaked with a liquid electrolyte solution, thus functioning as an electrolytic liquid layer. Such batteries, an example of which is disclosed in U.S. Pat. No. 4,623,598 to Waki et al., and in Japanese Pat. No. JP 61-55866 to Fuminobu et al., have to be sealed within a sheathing film to prevent liquid evaporation, and are therefore closed electrochemical cells. Being closed cells, these batteries tend to swell upon storage due to evolution of gases which is a fatal problem in thin layer batteries having no mechanical support. The pressure imposed by the accumulated gases leads to layer separation, thus turning the battery inoperative. Means to overcome this problem include (1) the use of a polymer increased viscosity agent, such as hydroxyethylcellulose, applied to adhere (i.e., glue) the battery layers together, to overcome the inherent problem of such batteries imposed by lack of solid support; and, (2) addition of mercury to prevent the formation of gases, especially hydrogen. However, the polymer is limited in its effectiveness and the mercury is environmental hazardous.
A way to solve the above described limitation was disclosed in U.S. Pat. No. 3,901,732 to Kis et al. in which a gas-permeable electrolyte-impermeable polymeric material which allows venting of undesirable gases formed within the battery while preventing any electrolyte loss from the battery is used as a sheathing film to enclose the battery cell.
However, a more direct and efficient way to avoid undesired gas accumulation in liquid state thin layer batteries would be to provide these batteries as open cells for facilitated release of gases, while at the same time to provide means to avoid liquid evaporation and drying out of the battery.
There is thus a widely recognized need for, and it would be highly advantageous to have, a flexible thin layer open electrochemical cell devoid of both accumulation of gases and liquid evaporation limitations.
According to the present invention there is provided a flexible thin layer open liquid state electrochemical cell which can be used as a primary or rechargeable power supply for various miniaturized and portable electrically powered devices of compact design. There is further provided a method of manufacturing such a cell. The flexible thin layer open electrochemical cell of the present invention includes a wet electrolyte, yet maintains a flexible, thin and open configuration, thus devoid of accumulation of gases upon storage.
According to further features in preferred embodiments of the invention described below, the cell comprising a first layer of insoluble negative pole, a second layer of insoluble positive pole and a third layer of aqueous electrolyte, the third layer being disposed between the first and second layers and including: (a) a deliquescent material for keeping the open cell wet at all times; (b) an electroactive soluble material for obtaining required ionic conductivity; and, (c) a watersoluble polymer for obtaining a required viscosity for adhering the first and second layers to the third layer.
According to still further features in the described preferred embodiments the electrolyte layer is engaged by a porous substance.
According to still further features in the described preferred embodiments the porous substance is selected from the group consisting of a filter paper, a plastic membrane, a cellulose membrane and a cloth.
According to still further features in the described preferred embodiments the first layer of insoluble positive pole includes manganese-dioxide powder and the second layer of insoluble negative pole includes zinc powder.
According to still further features in the described preferred embodiments the first layer of insoluble negative pole and/or the second layer of insoluble positive pole further includes carbon powder and the electroactive soluble material is selected from the group consisting of zinc-chloride, zinc-bromide, zinc-fluoride and potassium-hydroxide.
According to still further features in the described preferred embodiments the first layer of insoluble negative pole includes silver-oxide powder and the second layer of insoluble positive pole includes zinc powder and the electroactive soluble material is potassium-hydroxide.
According to still further features in the described preferred embodiments the first layer of insoluble negative pole includes cadmium powder and the second layer of insoluble positive pole includes nickel-oxide powder and the electroactive soluble material is potassium-hydroxide.
According to still further features in the described preferred embodiments the first layer of insoluble negative pole includes iron powder and the second layer of insoluble positive pole includes nickel-oxide powder and the electroactive soluble material is potassium-hydroxide.
According to still further features in the described preferred embodiments the first layer of insoluble negative pole and the second layer of insoluble positive pole include lead-oxide powder, the cell is charged by voltage applied to the poles and the electroactive soluble material is sulfuric-acid.
According to still further features in the described preferred embodiments the deliquescent material and the electroactive soluble material are the same material and are selected from the group consisting of zinc-chloride, zinc-bromide, zinc-fluoride and potassium-hydroxide.
According to still further features in the described preferred embodiments the deliquescent material is selected from the group consisting of calcium-chloride, calcium-bromide, potassium-biphosphate and potassium-acetate.
According to still further features in the described preferred embodiments the watersoluble polymer is selected from the group consisting of polyvinylalcohol, polyarcylamide, polyacrylic acid, polyvinylpyrolidone, polyethylenoxide, agar, agarose, starch, hydroxyethylcellulose and combinations and copolymers thereof.
According to still further features in the described preferred embodiments the watersoluble polymer and the deliquescent material are the same material and are selected from the group consisting of dextrane, dextranesulfate and combinations and copolymers thereof.
According to still further features in the described preferred embodiments the cell further comprising terminals, each of the terminals being in electrical contact with one of the first and second pole layers.
According to still further features in the described preferred embodiments the terminal are made of graphite or a metal.
According to still further features in the described preferred embodiments the metal is selected from the group consisting of iron, nickel, titanium, copper, stainless steel and mixtures thereof, and the terminals are applied to the cell by a suitable printing technology such as, but not limited to, silk print, offset print, jet printing, lamination, materials evaporation or powder dispersion.
According to still further features in the described preferred embodiments the cell further comprising at least one conductive layer improving the electronic conductivity of at least one of the first and second pole layers.
According to still further features in the described preferred embodiments the conductive layer is selected from the group consisting of a graphite paper and carbon cloth.
According to still further features in the described preferred embodiments the cell further comprising an external layer selected from the group consisting of an adhesive backing layer, a lamina protective layer and a combination of adhesive backing layer and a lamina protective layer.
According to still further features in the described preferred embodiments provided is an electrical power supply comprising at least two cells featured as above, the cells are connected in a head to tail orientation in a bipolar-connection.
According to still further features in the described preferred embodiments the connection is by an adhesive selected from the group consisting of a conductive double sided adhesive tape and a conductive glue layer.
According to still further features in the described preferred embodiments the conductive double sided adhesive tape and the conductive glue layer are applied by a printing technology.
According to still further features in the described preferred embodiments the cell comprising a first layer of insoluble negative pole, a second layer of insoluble positive pole and a third layer of aqueous electrolyte, the third layer being disposed between the first and second layers and including: (a) a watersoluble polymer for obtaining a required viscosity for adhering the first and second layers to the third layers and for obtaining a required hygroscopicality for keeping the open cell wet at all times; and (b) an electroactive soluble material for obtaining a required ionic conductivity.
According to still further features in the described preferred embodiments the method of making a flexible thin layer open liquid state electrochemical cell comprising the steps of (a) wetting a porous substance having a first side and a second side with an aqueous solution containing a deliquescent material, an electroactive soluble material and a watersoluble polymer; (b) applying onto the first side a layer of negative pole; and (c) applying onto the second side a layer of positive pole.
According to still further features in the described preferred embodiments the wetting is by a dipping or printing technologies.
According to still further features in the described preferred embodiments the layers of negative and positive poles include active insoluble powder materials mixed with the deliquescent material, electroactive soluble material and watersoluble polymer, the application of the layers of negative and positive poles is by a printing technology.
The present invention successfully addresses the short-comings of the presently known configurations by providing a flexible thin layer open electrochemical cell which does not accumulate gases upon storage, yet it is maintained wet and intact by the use of a deliquescent material for keeping it wet at all times and a watersoluble polymer for obtaining the required viscosity for adhering the pole layers to the aqueous electrolyte layer. Further qualities of the cell include having no outer rigid casting therefore it is thin light and flexible and may be manufactured in any size, shape, color and applied patterns, hence it is suitable for a variety of applications; cost effectiveness; made of environmental and human friendly materials; and, self sticking via an adhesive backing.
The invention herein described, by way of example only, with reference to the accompanying drawings, wherein:
The present invention is of a flexible thin layer open electrochemical cell which can be used as a primary or rechargeable power supply for various miniaturized and portable electrically powered devices of compact design. The flexible thin layer open electrochemical cell of the present invention includes a wet electrolyte, yet maintains a flexible, thin and open configuration, thus devoid of accumulation of gases upon storage.
The principles and operation of a flexible thin layer open electrochemical cell according to the present invention may be better understood with reference to the drawings and accompanying descriptions.
Referring now to the drawings,
The aqueous electrolyte layer 12 typically includes a porous insoluble substance, such as but not limited to, filter paper, plastic membrane, cellulose membrane, cloth, etc., the porous substance is wetted by an aqueous solution including three components: a deliquescent material; an electroactive soluble material; and a watersoluble polymer.
The deliquescent material by being hygroscopic maintains cell 10 moisturized at all times. The level of moisture within open cell 10 may vary depending on deliquescent material selection, its concentration and air humidity. Suitable deliquescent materials include, but are not limited to, calcium-chloride, calcium-bromide, potassium-biphosphate, potassium-acetate and combinations thereof.
The electroactive soluble material is selected in accordance with the materials of which the negative and positive pole layers are made. A list of frequently used electroactive soluble materials suitable for the present invention includes for example zinc-chloride, zinc-bromide and zinc-fluoride for various primary cells and potassium-hydroxide and sulfuric-acid for rechargeable cells.
The watersoluble polymer is employed as an adhesive agent to adhere (i.e., glue) pole layers 14 and 16 to the aqueous electrolyte layer 12. Many types of polymers are suitable ones, such as for example polyvinylalcohol, polyacrylamide, polyacrylic acid, polyvinylpyrolidone, polyethylenoxide, agar, agarose, starch, hydroxyethylcellulose and combinations and copolymers thereof.
Each of negative and positive pole layers 14 and 16 includes a mix of a suitable (negative or positive, respectively) active insoluble powder material with an aqueous solution similar to the solution described hereinabove, including a deliquescent material; an electroactive soluble material; and a watersoluble polymer.
It is clear to those with skills in the art that while the electroactive soluble material should not change, the deliquescent material and the watersoluble polymer may be selected otherwise in the later solution, in other words, the electroactive soluble material should be kept the same in all three layers 12, 14 and 16, whereas the deliquescent material and the watersoluble polymer may be varied between layers according to the specific application.
Appropriate selection of active insoluble powder materials for the negative 14 and positive 16 pole layers with a matching electroactive soluble material, as exemplified hereinbelow in the Examples, provides flexible thin layer cell 10 which can be used as a power supply (i.e., a battery), which cell 10 is open and therefore does not accumulate gases upon storage, yet the hygroscopicality of the deliquescent material ensures that cell 10 is kept wet at all times although open. Suitable pairs of materials to be used in negative 14 and positive 16 poles include, but are not limited to, manganese-dioxide/zinc; silver-oxide/zinc; cadmium/nickel-oxide; and iron/nickel-oxide (the manganese-dioxide and the silver-oxide are optionally mixed with a conductive carbon powder as known in the art).
It is clear to those with skills in the art that a single material may function both as a deliquescent material and as the electroactive soluble material. Such a material should however acquire suitable electroactive and hygroscopic characteristics. Suitable materials of this type include, but are not limited to, zinc-chloride and zinc-bromide.
It is further clear to those with skills in the art that a single material may function as a deliquescent material and as a watersoluble polymer. Such a material should however acquire suitable hygroscopic adhesivness characteristics. Suitable materials of this type include, but are not limited to, dextrane, dextranesulfate and combinations and copolymers thereof.
The three layers 12, 14 and 16, presented in FIG. 1 and described hereinabove may be manufactured thin and are flexible, therefore cell 10 is flexible and as thin as 0.5-1.5 mm or less. It is presently preferred and will be further detailed below that cell 10 will be manufactured by a suitable printing technology. Suitable printing technologies include, but are not limited to, silk print, offset print, jet printing, lamination, materials evaporation and powder dispersion.
Another possible configuration is shown in
Yet another configuration is shown in
The present invention further includes a method of making a flexible thin layer open liquid state electrochemical cells similar to the cells described above, the method includes the steps of (a) wetting a porous substance an aqueous solution containing a deliquescent material, an electroactive soluble material and a watersoluble polymer; wetting may be achieved by either dipping or printing technologies; (b) applying onto one side of the porous substance a negative pole layer; and, (c) applying onto the second side of the porous substance a positive pole layer. The negative and positive pole layers include active insoluble powder substances mixed with the deliquescent material, electroactive soluble material and watersoluble polymer preferably of the same types as under (a), and are preferably applied using a suitable printing technology selected for example from the ones listed above.
The method may further include adding to the cell additional layers and parts, such as but not limited to, externally located adhesive backing(s) and/or lamina protective layer (s), and negative and a positive terminals. Yet, the method may further include bi-polar joining of two or more cells, for example with a conductive double sided adhesive tape or a conductive glue layer applied for example by a suitable printing technology, to form a power supply with an increased power (e.g., substantially doubled, tripled, etc.). According to the present invention such bi-polar joining may be performed by joining together in a head to tail orientation two or more premanufactured cells, or alternatively, directly manufacturing two or more cells thus oriented, by applying suitable layer one after the other, preferably using a suitable printing technology as described above.
The flexible thin layer open electrochemical cell of the present invention has a major advantage over prior art thin layer cells. Since it is an open cell it does not accumulate gases upon storage, yet it is maintained wet and intact by the use of a deliquescent material for keeping it wet at all times and a watersoluble polymer for obtaining the required viscosity for adhering the pole layers to the aqueous electrolyte layer.
The flexible thin layer open electrochemical cell of the present invention has other qualities as follows. First, it has no outer rigid casting therefore it is thin light and flexible and may be manufactured in any size, shape, color and applied patterns, hence it is suitable for a variety of applications. Second, by using a suitable printing technology for its manufacturing its cost is reduced and therefore it may be disposed after use partly since large sheets can be produced and cut to any desired size following printing and partly since this technology is inherently cost effective. Third, it is preferably made of environmental and human friendly materials (it preferably contains no mercury or heavy metals). And finally, it may be manufactured self sticking via an adhesive backing.
Reference in now made to the following examples, which together with the above descriptions, illustrate the invention.
A solution containing 120 mg of polyvinylalcohol (an aqueous soluble polymer) and 1680 mg of zinc-chloride (a deliquescent material and an electroactive soluble material) in 1.2 ml of water was prepared. This solution had a glue like viscous appearance. A 4.5 cm×7 cm strip of a filter paper was thoroughly wetted with this solution by a printing or dipping technologies. A mixture of 300 mg zinc powder with the above solution was prepared and was printed on one side of the paper strip serving as the negative pole layer. On the other side printed was a mixture of 250 mg manganese-dioxide and 50 mg of a conductive carbon powder, together with the above solution, serving as the positive pole layer. When electrical contacts were made with both sides and were connected over a load an electrical current was measured. A current of 12 microampers per cm2 at a voltage of 1.7+1.2 volts was easily maintained for five days continuously under room conditions.
An open cell was prepared as described under Example 1 above and was connected to a voltmeter. As shown in
A saturated potassium-hydroxide solution is prepared and brought to the viscosity of a glue by mixing with a water soluble polymer. A porous substance (e.g., a filter paper) is thoroughly wetted with this solution and a mixture of the solution with nickel-oxide powder is pasted on one side of the porous substance to form a positive pole layer and, a similar mixture with cadmium powder is pasted on the other side of the porous substance to form a negative pole layer. By connecting a voltmeter to the two sides a voltage of 1.2 volts is measured and a high current is measured when the two layers are contacted over a load. The cell does not dry out in the open and can be recharged if so desired.
The same potassium-hydroxide solution as in Example 3 is prepared and a porous substance is wetted with it. A mixture of the solution with zinc powder is pasted on one side of the porous substance to form a negative pole layer and a similar mixture with silver-oxide powder containing some carbon powder if so desired is pasted on the other side of the porous substance to form a positive pole layer. By connecting a voltmeter to the two sides a voltage of 1.2 volts is measured and appreciable current is measured when the two layers are contacted over a load. The cell does not dry out in the open and can be recharged if so desired.
The same potassium-hydroxide solution as in Example 3 is prepared and a porous substance is wetted with it. A mixture of the solution with zinc powder is pasted on one side of the porous substance to form a negative pole layer and a similar mixture with manganese-dioxide powder containing some carbon powder if so desired is pasted on the other side of the porous substance to form a positive pole layer. By connecting a voltmeter to the two sides a voltage of 1.5 volts is measured and appreciable current is measured when the two layers are contacted over a load. The cell does not dry out in the open. Recharging thus formed cell may be troublesome.
The same potassium-hydroxide solution as in Example 3 is prepared and a porous substance is wetted with it. A mixture of the solution with nickel-oxide powder is pasted on one side of the porous substance to form a positive pole layer and a similar mixture with iron powder is pasted on the other side of the porous substance to form a negative pole layer. By connecting a voltmeter to the two sides a voltage of 0.9 volts is measured and a current can be measured when the two layers are contacted over a load. The cell does not dry out in the open and some recharged is possible if so desired.
A 30% sulfuric acid solution is prepared and brought to the viscosity of a glue by mixing with a water soluble polymer. A porous substance (e.g., a filter paper) is thoroughly wetted with this solution and a mixture of the solution with lead-oxide is pasted on both sides of the porous substance. Both sides are connected to a power supply and a voltage higher than 2 volts is applied by which the cell is charged. Charge and discharge cycles can be repeated without the cell drying out in the open.
While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications and other applications of the invention may be made.
Patent | Priority | Assignee | Title |
10617306, | Nov 01 2012 | BLUE SPARK INNOVATIONS, LLC | Body temperature logging patch |
10631731, | Dec 31 2014 | BLUE SPARK INNOVATIONS, LLC | Body temperature logging patch |
10849501, | Aug 09 2017 | BLUE SPARK INNOVATIONS, LLC | Body temperature logging patch |
8029927, | Mar 22 2005 | BLUE SPARK INNOVATIONS, LLC | Thin printable electrochemical cell utilizing a “picture frame” and methods of making the same |
8268475, | Mar 22 2005 | BLUE SPARK INNOVATIONS, LLC | Thin printable electrochemical cell and methods of making the same |
8441411, | Jul 18 2007 | BLUE SPARK INNOVATIONS, LLC | Integrated electronic device and methods of making the same |
8574754, | Dec 19 2007 | BLUE SPARK INNOVATIONS, LLC | High current thin electrochemical cell and methods of making the same |
8722233, | May 06 2005 | BLUE SPARK INNOVATIONS, LLC | RFID antenna-battery assembly and the method to make the same |
8722235, | Apr 21 2004 | BLUE SPARK INNOVATIONS, LLC | Thin printable flexible electrochemical cell and method of making the same |
8734980, | May 06 2005 | BLUE SPARK INNOVATIONS, LLC | Electrical device-battery assembly and the method to make the same |
8765284, | May 21 2012 | BLUE SPARK INNOVATIONS, LLC | Multi-cell battery |
9027242, | Sep 22 2011 | BLUE SPARK INNOVATIONS, LLC | Cell attachment method |
9088050, | Aug 29 2011 | PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO , LTD | Electrode group for thin batteries, thin battery, and electronic device |
9444078, | Nov 27 2012 | BLUE SPARK INNOVATIONS, LLC | Battery cell construction |
9693689, | Dec 31 2014 | BLUE SPARK INNOVATIONS, LLC | Body temperature logging patch |
9782082, | Nov 01 2012 | BLUE SPARK INNOVATIONS, LLC | Body temperature logging patch |
Patent | Priority | Assignee | Title |
2798896, | |||
3023259, | |||
3353999, | |||
3375136, | |||
3379574, | |||
3871921, | |||
3901732, | |||
3969148, | Apr 19 1971 | Albert C., Nolte, Jr. | Adapter for dry cell batteries |
4037026, | May 06 1974 | Mabuchi Motor Co. Ltd. | Adapter for non-standard sized battery |
4080728, | Aug 08 1974 | Polaroid Corporation | Method of making flat battery |
4105815, | Aug 08 1974 | Polaroid Corporation | Flat battery with electrodes in slurry form |
4119770, | Aug 08 1974 | Polaroid Corporation | Electrical cells and batteries |
4195121, | Mar 28 1978 | EVEREADY BATTERY COMPANY, INC , A CORP OF DE | Thin flexible electrodes and the method for producing them |
4294898, | May 05 1980 | LENOVO SINGAPORE PTE LTD | Solid state battery |
4371593, | May 29 1981 | SAN-BAR CORPORATION | Pressure energized portable power source, and apparatus incorporating same |
4493880, | Dec 19 1983 | DURACELL INC , A CORP OF DE | Battery switch |
4505996, | Oct 07 1983 | DERMISH, IBRAHIM M | Primary flat cell |
4614695, | Mar 14 1983 | Fanuc Ltd. | Battery and method of producing same |
4623598, | Feb 22 1985 | Matsushita Electric Industrial Co., Ltd. | Flat battery |
4703754, | Apr 19 1983 | Insole employing sheetlike battery | |
4749875, | Jul 26 1983 | Casio Computer Co., Ltd. | Compact electronic equipment |
4816354, | Mar 09 1988 | Alkaline cell battery and method for manufacture thereof | |
5014946, | Aug 17 1988 | Holding, retaining and adhering means | |
5019467, | Nov 13 1987 | Kimoto & Co., Ltd. | Thin primary cell |
5035965, | May 01 1989 | Brother Kogyo Kabushiki Kaisha | Printed circuit board having a thin film cell incorporated therein |
5102753, | Nov 26 1990 | GOULD ELECTRONICS INC | Constant current source power supply |
5147985, | Aug 14 1990 | The Scabbard Corporation | Sheet batteries as substrate for electronic circuit |
5149602, | Jun 20 1991 | Motorola, Inc. | Self-correcting cell locating compressive pad |
5156932, | May 02 1991 | Johnson Controls Technology Company | Simple optimized lead-acid battery |
5180645, | Mar 01 1991 | Motorola, Inc. | Integral solid state embedded power supply |
5203709, | May 18 1992 | Device for coupling a battery to an electric appliance | |
5208121, | Jun 18 1991 | Wisconsin Alumni Research Foundation | Battery utilizing ceramic membranes |
5254414, | Nov 04 1992 | Battery Technologies International | Metal air storage battery |
5326652, | Jan 25 1993 | Round Rock Research, LLC | Battery package and method using flexible polymer films having a deposited layer of an inorganic material |
5350645, | Jun 21 1993 | Round Rock Research, LLC | Polymer-lithium batteries and improved methods for manufacturing batteries |
5411592, | Jun 06 1994 | CHEVRONTEXACO TECHNOLOGY VENTURES LLC | Apparatus for deposition of thin-film, solid state batteries |
5432027, | Mar 02 1994 | Round Rock Research, LLC | Button-type battery having bendable construction, and angled button-type battery |
641335, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 29 2004 | Power Paper Ltd. | (assignment on the face of the patent) | / | |||
Aug 23 2009 | POWER PAPER LTD | KREOS CAPITAL III LIMITED | SECURITY AGREEMENT | 023355 | /0791 | |
Jun 13 2013 | KREOS CAPITAL III LIMITED | POWER PAPER LTD IN LIQUIDATION | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 030619 | /0834 | |
Jul 23 2013 | POWER PAPER LTD | POWER FLEX LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031691 | /0307 |
Date | Maintenance Fee Events |
Apr 22 2010 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Apr 22 2010 | M2556: 11.5 yr surcharge- late pmt w/in 6 mo, Small Entity. |
Date | Maintenance Schedule |
Jun 05 2010 | 4 years fee payment window open |
Dec 05 2010 | 6 months grace period start (w surcharge) |
Jun 05 2011 | patent expiry (for year 4) |
Jun 05 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 05 2014 | 8 years fee payment window open |
Dec 05 2014 | 6 months grace period start (w surcharge) |
Jun 05 2015 | patent expiry (for year 8) |
Jun 05 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 05 2018 | 12 years fee payment window open |
Dec 05 2018 | 6 months grace period start (w surcharge) |
Jun 05 2019 | patent expiry (for year 12) |
Jun 05 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |