The modular conveyor system comprises N interconnected track sections, forming a continuous track, wherein each track section features a plurality of individually controlled coils stretching along the length thereof. Plural pallets, each having thrust producing magnets, travel independently alone the track. The track also comprises multiple linear encoder readers spaced at fixed positions therealong, and each pallet includes a linear encoder strip having a length R greater than the spacing E between the readers. track section controllers associate the encoder strips with only one reader at any time in order to resolve the position of the pallets based on the fixed position of the readers and the relative positions of the strips in relation thereto. The section controllers also regulate and commutate the coils of the corresponding track sections in order to independently control each pallet. Communication links interface adjacent section controllers situated in adjacent track sections. The electromagnetic structure and distributed control architecture of the conveyor system enable it to independently control multiple practical pallets yet be constructed out of modular track sections, with little practical restriction on the length of the conveyor system or the number of pallets controlled thereby.
|
0. 46. A modular conveyor system, comprising:
a plurality of interconnectable track sections, each track section having a respective track section controller for regulating and commutating a plurality of individually controllable coils disposed along the length of its respective track section to provide a separate moving magneto-motive force to any one of a plurality of separately and independently moving elements traveling along the track section, each track section controller including bidirectional communication means for interfacing with section controllers of adjacent track sections to transfer servo responsibility for a given moving element to an adjacent track section controller, and including position detecting means for detecting the position of each moving element traveling thereon.
0. 14. A moving-magnet type linear motor, comprising:
a plurality of moving elements traveling along a track;
a stator armature provided substantially along the entire traveling track of moving elements;
wherein each moving element travels separately and independently and comprises n permanent magnets disposed face to face with the stator armature, said magnets being arranged in alternating North and South sequence and having a pole pitch P;
wherein the stator armature comprises a plurality of individual coils arranged in a substantially continuous sequence of individual polyphase-like sets, each set comprising p overlapping coils having centers thereof spaced apart by a distance P/p, wherein p>=2; and
a servocontrol system for regulating and commutating the coils so as to produce a separate moving mmf for each moving element and independently control each moving element.
0. 48. Apparatus for detecting the position of moving elements relative to a stationary element, in combination with a moving-magnet type linear motor, said apparatus comprising:
a plurality of position detecting sensors spaced generally along the stationary element at fixed positions relative thereto;
position-indicating means mounted on said moving elements detectable by said sensors; and
circuitry connected to each position detecting sensor for resolving and providing readings of the position of each moving element;
said linear motor comprising:
a stator armature provided substantially along the entire traveling track of moving elements;
wherein each moving element travels separately and independently and comprises n permanent magnets disposed face to face with the stator armature, said magnets being arranged in alternating North and South sequence and having a pole pitch P;
wherein the stator armature comprises a plurality of individual coils arranged in a substantially contiguous sequence of individual polyphase-like sets, each set comprising p overlapping coils having centers thereof spaced apart by a distance P/p, where p>=2; and
a servocontrol system for regulating and commutating the coils so as to produce a separate moving mmf for each moving element and independently control each moving element.
7. Apparatus for detecting the positions of plural moving elements relative to a stationary element, said apparatus comprising:
a single row of linear encoder readers spaced generally along the stationary element at fixed positions relative thereto;
a device readable by the linear encoder readers mounted on each moving element, each readable device having a length which is greater than the spacing between any given pair of adjacent linear encoder readers;
a guide for aligning the readable devices in order to interact with the single row of linear encoder readers; and
circuitry, connected to each linear encoder reader, for associating any given readable device with only one linear encoder reader at any time and for resolving and providing a reading of the overall position of the corresponding moving element based on the fixed position of the associated linear encoder reader and a relative position of the given readable device in relation to the associated linear encoder reader;
wherein, in a condition where a given readable device is associated with a given linear encoder reader and simultaneously begins to interact with an adjacent linear encoder reader, the circuitry is operative to switch the association of the given readable device with the given linear encoder reader to the adjacent linear encoder reader once the given readable device has reached a pre-specified distance through one of the given linear encoder reader and the adjacent linear encoder reader.
1. Apparatus for detecting the position of a moving element relative to a stationary element, said apparatus comprising:
a plurality of linear encoder readers spaced generally along the stationary element at fixed positions relative thereto;
a device readable by the linear encoder readers, the readable device being mounted on the moving element and having a length which is greater than the spacing between any given pair of adjacent linear encoder readers;
a guide for aligning the readable device in order to interact with the linear encoder readers; and
circuitry, connected to each linear encoder reader, for associating the readable device with only one linear encoder reader in a state of interaction with the readable device at any time and for resolving and providing a reading of the overall position of the moving element based on the fixed position of the associated linear encoder reader and a relative position of the readable device in relation to the associated linear encoder reader;
wherein, in a condition where the readable device is associated with a given linear encoder reader and simultaneously begins to interact with an adjacent linear encoder reader, the circuitry is operative to switch the association of the readable device with the given linear encoder reader to the adjacent linear encoder reader once the readable device has reached a pre-specified distance through one of the given linear encoder reader and the adjacent linear encoder reader, the circuitry being operative to initialize the adjacent linear encoder reader prior to the interaction of the readable device with the adjacent linear encoder reader.
0. 25. A modular conveyor system, comprising:
n interconnected track sections, forming a substantially continuous track, wherein each track section comprises a stator armature having a plurality of individually controllable coils disposed substantially along the entire length of the track section;
a plurality of moving elements traveling separately and independently along the continuous track, each moving element having at least two thrust producing magnets arranged in alternating North and South sequence and disposed face to face with the stator armatures of the track sections;
n track section controllers, one per track section, for regulating and commutating the coils of the corresponding stator armature in order to produce a separate moving mmf for each moving element located in the corresponding track section and independently control each moving element located therein; and
communication means for interfacing the section controllers of adjacent track sections, wherein a given section controller is operative to utilize the communication means in order to transfer a servo responsibility for resolving the position of a given moving element to an adjacent section controller when the given moving element straddles the corresponding track sections, and wherein each of the given and adjacent section controller pair provides at least one coil regulating signal to the other of said pair in the event any portion of the magnets of the given moving element spans any portion of at least one coil situated in the track section corresponding to the other of said pair, provided that the responsibility for resolving the position of the given moving element has not yet been transferred to the other of said pair.
0. 47. Apparatus for detecting the position of moving elements relative to a stationary element in a conveyor system, comprising:
a plurality of position detecting sensors spaced generally along the stationary element at fixed positions relative thereto;
position-indicating means mounted on said moving elements detectable by said sensors; and
circuitry connected to each position detecting sensor for resolving and providing readings of the position of each moving element;
said conveyor system comprising:
a track;
a plurality of said moving elements traveling separately and independently along said track, wherein said conveyor system comprises:
said track, formed from n interconnected track sections, forming a substantially continuous track, wherein each track section comprises a stator armature having a plurality of individually controllable coils disposed substantially along the entire length of the track section;
said moving elements each having at least two thrust producing magnets arranged in alternating North and South sequence and disposed face to face with the stator armatures of the track sections;
n track section controllers, one per track section, for regulating and commutating the coils of the corresponding stator armature in order to produce a separate moving mmf for each moving element located in the corresponding track section and independently control each moving element located therein; and
communication means for interfacing the section controllers of adjacent track sections, wherein a given section controller is operative to utilize the communication means in order to transfer a servo responsibility for resolving the position of a given moving element to an adjacent section controller when the given moving element straddles the corresponding track sections, and wherein each of the given and adjacent section controller pair provides at least one coil regulating signal to the other of said pair in the event any portion of the magnets of the given moving element spans any portion of at least one coil situated in the track section corresponding to the other of said pair, provided that the responsibility for resolving the position of the given moving element has not yet been transferred to the other of said pair.
0. 39. A modular conveyor system, comprising:
n interconnected track sections, forming a substantially continuous track, wherein each track section comprises a stator armature having a plurality of individually controlled coils disposed substantially along the entire length of the track section, and wherein each track section comprises a plurality of linear encoder readers spaced at fixed positions there along;
a plurality of moving elements traveling separately and independently along the continuous track, each moving element having a plurality of thrust producing magnets arranged in alternating North and South sequence and disposed face to face with the stator armatures of the track sections, each moving element including a linear encoder strip having a length greater than the spacing between any given pair of adjacent linear encoder readers, the length of each moving element being sized to prevent linear encoder strips from adjacent moving elements to interact with the same linear encoder readers;
n track section controllers, one per track section, each section controller providing:
(a) position-detection processing means for associating any given linear encoder strip of any moving element located in the corresponding track section with only one linear encoder reader located therein at any time and for resolving the position of such moving element based on the fixed position of the associated linear encode reader and a relative position of the given linear encoder strip in relation to the associated linear encoder reader, and
(b) servo means, connected to the position-detection processing means, for regulating and commutating the coils of the corresponding stator armature in order to produce a separate moving mmf for each moving element located in the corresponding track section to thereby independently control each such moving element; and
communication means for interfacing the section controllers of adjacent track sections, wherein a given section controller is operative to utilize the communication means in order to transfer a responsibility of resolving the position of a given moving element to an adjacent section controller when the given moving element straddles the corresponding track sections, and wherein each of the given and adjacent section controller pair provides at least one coil regulating signal to the other of said pair in the event any portion of the magnets of the given moving element spans any portion of at least one coil situated in the track section corresponding to the other of said pair, provided that the responsibility for resolving the position of the given moving element has not yet been transferred to the other of said pair.
0. 2. Apparatus according to
0. 3. Apparatus according to
0. 4. Apparatus according to
0. 5. Apparatus according to
6. Apparatus according to claim 4 1, wherein, immediately after the association of the readable device is switched to the adjacent linear encoder reader, the circuitry is operative to require the readable device to backtrack for at least a minimum distance before the association of the readable device is switched back to the given linear encoder reader, to thereby provide a hysteresis effect.
0. 8. Apparatus according to
0. 9. Apparatus according to
0. 10. Apparatus according to
0. 11. Apparatus according to
12. Apparatus according to claim 11 7, wherein the processing circuitry is operative to initialize the adjacent linear encoder reader prior to the interaction of the given readable device with the adjacent linear encoder reader.
13. Apparatus according to claim 11 7, wherein, immediately after the association of the given readable device is switched to the adjacent linear encoder reader, the circuitry requires the given readable device to backtrack for at least a minimum distance before the association of the given readable device is switched back to the given linear encoder reader, to thereby provide a hysteresis effect.
0. 15. A linear motor according to
0. 16. A linear motor according to
0. 17. A linear motor according to
0. 18. A linear motor according to
0. 19. A linear motor according to
0. 20. A linear motor according to
0. 21. A linear motor according to
0. 22. A linear motor according to
a single row of linear encoder readers spaced generally along the stator armature at fixed positions relative thereto;
a device readable by the linear encoder readers mounted on each said moving element, each readable device having a length which is greater than the spacing between any given pair of adjacent linear encoder readers;
guide means for aligning the readable devices in order to interact with the single row of linear encoder readers; and
plural processing means, for associating any given readable device with only one linear encoder reader at any time and for resolving and providing a reading of the overall position of the corresponding moving element based on the fixed position of the associated linear encoder reader and a relative position of the given readable device in relation to the associated linear encoder reader.
0. 23. A linear motor according to
a trajectory generator providing a position set point signal for each moving element;
a position compensator, connected to the moving-element position-detecting means and the trajectory generator, providing a position error minimizing signal for each moving element; and
a commutation controller, connected to the moving-element position-detecting means and the position compensator, for determining which of the coils are situated underneath each moving element and providing a current set point signal for those coils in accordance with the position error minimizing signal associated with each moving element; and
current control loop means, connected to the commutation controller, for regulating the coils in accordance with the current set point signals.
0. 24. A linear motor according to
0. 26. A modular conveyor system according to
0. 27. A modular conveyor system according to
0. 28. A modular conveyor system according to
0. 29. A modular conveyor system according to
the magnets of each moving elements have a pole pitch P;
the electrical pole pitch of each of the coils is P; and
the coils of each track section stator armature are arranged in a substantially contiguous sequence of individual polyphase-like sets, each set comprising p overlapping coils having centers thereof spaced apart by a distance P/p, where p>=2, and wherein coils associated with one track section do not overlap onto an adjacent track section.
0. 30. A modular conveyor system according to
each track section comprises a single row of linear encoder readers spaced at fixed positions there along;
each moving element includes a device readable by the linear encoder readers mounted thereon, each readable device having a length which is greater than the spacing between any given pair of adjacent linear encoder readers; and
each section controller provides a moving-element position-detection processing means for associating any given readable device of a moving element located in the corresponding track section with only one linear encoder reader located therein at any time and for resolving the position of the corresponding moving element based on the fixed position of the associated linear encoder reader and a relative position of the given readable device in relation to the associated linear encoder reader.
0. 31. A modular conveyor system according to
0. 32. A modular conveyor system according to
0. 33. A modular conveyor system according to
a trajectory generator providing a position set point signal for each moving element located in the corresponding track section;
a position compensator, connected to the moving-element position-detecting processing means and the trajectory generator, providing a position error minimizing signal for each such moving element; and
a commutation controller, connected to the moving-element position-detecting processing means and the position compensator, for determining which of the coils in the corresponding track section are situated underneath each such moving element and for providing a current set point signal for such coils in accordance with the position error minimizing signal associated with each such moving element; and
current control loop means, connected to the commutation controller, for regulating the coils located in the corresponding track section in accordance with the current set point signals.
0. 34. A modular conveyor system according to
0. 35. A modular conveyor system according to
(a) the measured position of the given moving element, and
(b) one of:
(i) the position error minimizing signal, and
(ii) the current set point signals for the spanned coils.
0. 36. A modular conveyor system according to
0. 37. A modular conveyor system according to
0. 38. A modular conveyor system according to
0. 40. A modular conveyor system according to
a trajectory generator providing a position set point signal for each moving element located in the corresponding track section;
a position compensator, connected to the trajectory generator, providing a position error minimizing signal for each such moving element;
a commutation controller, connected to the position compensator, for determining which coils located in the corresponding track section are situated underneath each such moving element and providing a current set point signal for such coils in accordance with the position error minimizing signal associated with each such moving element; and
current control loop means, connected to the commutation controller, for regulating the coils in accordance with the current set point signals.
0. 41. A modular conveyor system according to
(a) the measured position of the given moving element, and
(b) one of:
(i) the position error minimizing signal in respect of the given moving element, and
(ii) at least the current set point signal in respect of each such spanned coil.
0. 42. A modular conveyor system according to
0. 43. A modular conveyor system according to
0. 44. A modular conveyor system according to
0. 45. A modular conveyor system according to
|
The invention generally relates to conveyor systems, and more specifically to conveyor systems in the form of modular linear motors having multiple moving elements under independent control.
There are a number of fundamental limitations with well-known conventional conveyor systems which employ a belt for transporting pallets between processing stations. First, the speed of the belt is typically quite limited. This is largely due to the fact that the pallets are typically stopped, e.g., in order to be processed at a processing station, by mechanical stop mechanisms. Thus, if the belt conveyor is operated at a high speed, the strong impact between a pallet and mechanical stop is likely to jar whatever parts the pallet may be carrying for processing. Second, it is generally not possible to vary the acceleration and velocity profiles for individual pallets. For instance, if a first pallet is empty and a second pallet is loaded with delicate parts, it is generally not possible to aggressively accelerate the first pallet to a high speed while controlling the second pallet using more gentle acceleration and velocity profiles. This limitation affects the latency and possibly the throughput of the manufacturing line. Third, belt conveyor is typically not bidirectional, which may result in a suboptimal design of the manufacturing line. Fourth, the belt conveyor typically provides limited flexibility or programmability, such as being able to very quickly change the positions of processing stations. Finally, the data acquisition capabilities provided by the belt conveyor are typically quite limited. For example, it is typically not possible to know where the pallets and their constituent loads are located along the conveyor at all times. Thus, for instance, it may be difficult to know how many pallets are queued at a particular processing station. For these and other reasons, a conveyor system having multiple moving elements or pallets under substantially independent control may be desirable for various types of applications.
Conveyor systems having multiple pallets under substantially independent control are known in the art, but suffer from a variety of limitations. For example, U.S. Pat. No. 4,841,869 issued Jun. 27, 1989 to Takeuchi et al. discloses a conveyor system utilizing a linear induction motor, comprising a conveyor cart and a guide rail for movably supporting the conveyor cart. The guide rail includes primary coils, and the conveyor cart includes a flexible secondary conductor extending longitudinally of the cart so as to follow the guide rail. The primary coils comprise a station primary coil disposed at each loading and unloading station for stopping and starting the conveyor cart, two primary coils adjacent opposite ends of the station primary coil for decelerating the conveyor cart that is to be stopped at the stat ion by the station primary coil and for accelerating the conveyor cart having started from the station to a target running speed, and a plurality of intermediate accelerating primary coils disposed between two adjacent stations for accelerating the conveyor cart to maintain the latter at the target running speed.
A major shortcoming with the Takeuchi et al. system is that the carts or pallets thereof cannot be positioned to stop at any point along the conveyor, but only where the linear motors thereof are disposed. This makes changing the location of a station a troublesome endeavour. In addition, the system is not capable of pinpointing the location of a moving pallet at any time. In view of these limitations, the Takeuchi et al. system does not feature truly independent and total control of multiple moving elements.
U.S. Pat. No. 5,023,495 issued Jun. 11, 1991 to Ohsaka et al. discloses a moving-magnet type linear d.c. brushless motor having plural moving elements disposed for motion along a track. The track includes a coreless stator armature having a plurality of contiguously arranged coils thereon. Each moving element includes a thrust-generating field magnet having P contiguous magnetic poles of alternating N and S polarity (i.e. polypolar magnet) having one side facing the stator armature. Each moving element may also include a polypolar position-detecting magnet. The track includes a row of position/commutation sensors, each row of position/commutation sensors being provided for detecting the magnetic poles of only the position-detecting magnet of a corresponding moving element. The position/commutation sensors are used in control circuitry for generating an electric current in the stator armature to move the moving elements in predetermined directions separately and independently.
The Ohsaka et al. system also has a number of shortcomings, particularly with respect to the modularity or scaling properties of the system. First, due to the fact that a separate track of position/commutation sensors is required for each moving element, the system can only accommodate a relatively small number of moving elements. Second, the length of the linear motor is limited by a servocontrol mechanism, described as a single microcomputer, which can only process and accommodate a limited number of the position/commutation sensors and associated electric current generating control circuitry. Third, use of the magnetic position-detecting elements provides a relatively poor resolution for measuring the position of the moving element. Fourth, the winding arrangement of the stator armature is essentially that of a linear stepper motor, which presents an uneven magnetic reluctance along the stator armature resulting in relatively noticeable cogging effects and a jerky thrust production. Finally, the, coreless design of the stator armature also results in a relatively low average thrust production which may not be suitable for typical conveyor system applications.
The invention seeks to avoid many of the limitations of the prior art in order to provide a conveyor system having multiple moving elements under independent control, and particularly such a conveyor system which can be constructed out of discrete, self-contained, modular track sections, with little practical restriction on the length of the conveyor system or the number of pallets controlled thereby.
One aspect of the invention relates to apparatus for detecting the positions of plural moving elements, such as pallets, relative to a stationary element, such as a track. This apparatus comprises a plurality of linear encoder readers spaced at fixed positions along the stationary element. A device, such as a reflective optical or magnetic strip, readable by the linear encoder readers is mounted on each moving element, with each readable device having a length which is greater than the spacing between any given pair of adjacent linear encoder readers. Guide means align the readable devices in order to interact with the linear encoder readers. Plural processing means, such as a digital signal processor connected to each linear encoder reader, associates any given readable device with only one linear encoder reader at any time and resolves the position of the corresponding moving element based on the fixed position of the associated linear encoder reader and a relative position of the given readable device in relation to the associated linear encoder reader.
Another aspect of the invention relates to a moving-magnet type linear motor, comprising a plurality of moving elements traveling along a track, and a stator armature provided substantially along the entire traveling track of moving elements. Each moving element travels separately and independently and comprises n permanent magnets disposed face to face with the stator armature, the magnets being arranged in alternating North and South sequence and having a pole pitch P. The stator armature comprises a plurality of individual coils arranged in a substantially contiguous sequence of individual polyphase-like sets, each set comprising p overlapping coils having centers thereof spaced apart by a distance P/p, where p>=2. A servocontrol system is provided for regulating and commutating the coils so as to produce a separate moving MMF for each moving element in order to independently control each moving element.
A further aspect of the invention relates to a modular linear motor, comprising:
n interconnected track sections, forming a continuous track, wherein each track section comprises a stator armature having a plurality of individually controllable coils disposed substantially along the entire length of the track section;
a plurality of moving elements traveling separately and independently along the continuous track, each moving element having at least two thrust producing magnets arranged in alternating North and South sequence and disposed face to face with the stator armatures of the track sections;
n track section controllers, one per track section, for regulating and commutating the coils of the corresponding stator armature in order to produce a separate moving MMF for each moving element located in the corresponding track section and independently control each moving element located therein; and
communication means for interfacing the section controllers of adjacent track sections, wherein a given section controller is operative to utilize the communication means in order to transfer a servo responsibility for resolving the position of a given moving element to an adjacent section controller when the given moving element straddles the corresponding track sections, and wherein each of the given and adjacent section controller pair provides at least one coil regulating signal to the other of said pair in the event any portion of the magnets of the given moving element spans any portion of at least one coil situated in the track section corresponding to the other of said pair, provided that the responsibility for resolving the position of the given moving element has not yet been transferred to the other of said pair.
A still further aspect of the invention relates to a modular conveyor system, comprising:
n interconnected track sections, forming a continuous track, wherein each track section comprises a stator armature having a plurality of individually controllable coils disposed substantially along the entire length of the track section, and wherein each track section comprises a plurality of linear encoder readers spaced at fixed positions therealong;
a plurality of moving elements traveling separately and independently along the continuous track, each moving element having a plurality of thrust producing magnets arranged in alternating North and South sequence and disposed face to face with the stator armatures of the track sections, each moving element including a linear encoder strip having a length greater than the spacing between any given pair of adjacent linear encoder readers, the length of each moving element being sized to prevent linear encoder strips from adjacent moving elements to interact with the same linear encoder readers;
n track section controllers, one per track section, each section controller providing (a) position-detection processing means for associating any given linear encoder strip of any moving element located in the corresponding track section with only one linear encoder reader located therein at any time and for resolving the position of such moving element based on the fixed position of the associated linear encoder reader and a relative position of the given linear encoder strip in relation to the associated linear encoder reader, and (b) servo means, connected to the position-detection processing means, for regulating and commutating the coils of the corresponding stator armature in order to produce a separate moving MMF for each moving element located in the corresponding track section to thereby independently control each such moving element; and
communication means for interfacing the section controllers of adjacent track sections, wherein a given section controller is operative to utilize the communication means in order to transfer a responsibility of resolving the position of a given moving element to an adjacent section controller when the given moving element straddles the corresponding track sections, and wherein each of the given and adjacent section controller pair provides at least one coil regulating signal to the other of said pair in the event any portion of the magnets of the given moving element spans any portion of at least one coil situated in the track section corresponding to the other of said pair, provided that the responsibility for resolving the position of the given moving element has not yet been transferred to the other of said pair.
In the preferred embodiment of the conveyor system, the magnets of each moving elements have a pole pitch P; the electrical pole pitch of each of the coils is P; and the coils of each track section stator armature are arranged in a substantially contiguous sequence of individual polyphase-like sets, each set comprising p overlapping coils having centers thereof spaced apart by a distance P/p, where p>=2, and where coils associated with one track section do not overlap onto an adjacent track section. This enables the track sections to be self contained and modular in nature.
In the preferred embodiment of the conveyor system, the transfer of the responsibility for resolving the position of a given moving element to an adjacent section controller when the given moving element straddles the corresponding track sections occurs when an aforesaid linear encoder strip is associated with a first linear encoder reader and simultaneously begins to interact with a second, adjacent linear encoder in a second, adjacent track section. The position-detection processing means of each section controller, in combination with the transfer between section controllers of the responsibility for detecting the position of moving elements which cross track sections, enables multiple elements to be tracked along the entirety of the track without requiring any further infrastructure, thereby not posing any undue limits on the number of moving elements which can be tracked. In addition, it will be appreciated that the moving elements are passive devices which, due to not being tethered in any way, have unrestricted mobility along the track.
In the preferred embodiment of the conveyor system, the section controllers are operative to transfer static data concerning the straddling moving element, such as its destination, to the adjacent section controller prior to the transfer of the responsibility for resolving the position of the straddling moving element. Furthermore, the section controllers are operative to transfer dynamic or memory based servocontrol data concerning the straddling moving element to the adjacent section controller substantially simultaneously with the transfer of the responsibility for resolving the position of the straddling moving element. In this manner, a distributed servocontrol system is presented which enables multiple moving elements to be controlled over a long track.
In the preferred embodiment of the conveyor system, the sections controllers are connected to a central controller which initializes the system and performs a diagnostic monitoring function. In addition, each section controller is directly connected to a station controller, such as a programming logic controller. The station controllers instruct the track section controllers for the purpose of carrying out station-specific tasks and coordinating the movement of the moving elements with other station machinery. The station controllers can also provide the section controllers with the next destinations for the moving elements, thereby alleviating the central controller from this task. The distributed control architecture provided by these additional components further enhance the scaling properties of the system.
The foregoing and other aspects of the invention are discussed in greater detail below with reference to the drawings, provided for the purpose of description and not limitation, where like objects are referenced by like reference numbers, and wherein:
The description of the conveyor system 20 is organized as follows: (1) an introduction to the operating principles thereof; (2) brief description of the physical structure of the system, which comprises a plurality of track sections or units 26; (3) description of the preferred electromagnetic structure of the system; (4) introduction to a preferred distributed control architecture for control of the system; (5) detailed description of a preferred servocontrol system for each track unit 26; (6) detailed description of a preferred servocontrol subsystem for detecting the position of each pallet 22 along each track unit 26; (7) detailed description of a method according to the preferred embodiment for synchronizing the servocontrol system of adjacent track sections 26 when any given pallet 22 crosses therebetween.
Principle of Operation
Referring additionally to
Physical Structure
Mechanically, the track 24 is composed of a plurality of track sections or units 26 which are mechanically self-contained and quickly and easily separable from one another so as to be modular in nature. In the preferred embodiment, the track units 26 are mounted on a substrate (not shown) so as to merely align and abut one another in order to form the continuous track 24. This preferred feature requires that stator armature coils 35 from one track unit not overlap or project onto the stator armature of an adjacent track unit, as explained in greater detail below. Also, each track unit 26 houses all of the electronic circuitry 38 required to control the track unit.
As seen best in
Each pallet 22 features load-bearing wheels 54 which ride along rails 56 of track 24. Each pallet also features spring-loaded bearings 58 for constraining the pallet to stay on the rails 56 and maintain the alignment between optical components 45 and 50.
Electromagnetic Structure
The magnetic structure of each pallet 22 comprises at least two thrust-producing permanent magnets arranged in alternating North-South sequence. The permanent magnet material, which may include Neodymium-Iron-Boron, Alnico and ceramic (ferrite) base magnets, is selected on the basis of air gap flux densities required and the physical dimensions of the pallet magnetic structure. In the preferred embodiment, each pallet 22 carries two Neodymium-Iron-Boron permanent magnets 28 spaced apart by pole pitch P. This provides each pallet with a permanent magnet pole pair 60 which provides magnetic flux vectors 30 and 31 pointing in opposite directions. For reasons explained shortly below, and referring additionally to
The magnetic structure of the stator armature 32 comprises a yoke 68, constructed out of electrical steel, which features a plurality of substantially equidistantly spaced slots 70 disposed in relative close proximity to one another. A representative slot spacing is 3 mm and representative slot dimensions are 1.5×7×75 mm. The turns of the stator armature coils 35 are mounted in the yoke slots.
The turns of each coil are formed (
The electrical pole pitch (
The coils 35 are arranged as a sequence of individual polyphase-like windings or coil sets, wherein coils in each set are overlapped such that the coil centres are spaced apart a distance P/p, where p is the number of quasi-phases. The preferred embodiment, as seen in FIG. 2 and in
Another advantage provided by the individual polyphase-like windings or coil sets lies in the fact that the track 24 can be modularly constructed in discrete sections as described above such that no coil from one stator section overlaps, projects or otherwise encroaches upon an adjacent stator section. In contrast, a conventional convolute polyphase a.c. stator winding has an essentially endless coil overlapping arrangement such that turns cannot be mechanically separated.
In alternative embodiments, a coil set may comprise a short segment of a conventional polyphase a.c. winding, preferably provided that length of each segment is approximately equal to the length of the magnetic structure of the pallet. Thus, a stator armature according to this embodiment comprises a series of individually controlled polyphase a.c. windings.
The magnetic circuit provided by the pallet and stator armature is as follows (FIG. 2): the magnetic flux circulates through the pallet backplate 62, through the permanent magnets 28, across an air gap to and through the stator armature poles (i.e. coils 35), through the yoke 68, back through the stator poles, and back through the permanent magnets 28, returning to the pallet backplate 62.
FIG. 5(b) illustrates a conduction cycle 80 for a single coil 35 of any given coil pair 75. FIG. 5(a) indicates that the conduction cycle 80 begins just as a leading edge 82 of pallet permanent magnet pole pair 60 (shown in solid lines) reaches a leading outer turn of the coil 35 and terminates just as a trailing edge 84 of the pallet pole pair 60 (shown in stippled lines) passes over a receding outer winding of the coil. Distances along the position axis of FIG. 5(b) correspond to the relative distance between a centre point 86 of coil 35 and a centre point 87 of the pallet pole pair 60. The conduction cycle 80 corresponds to a 540 degree electrical cycle. It should also be noted that the preferred conduction cycle illustrated in FIG. 5(b), in association with the design of the stator armature 32 as described above, yields a relatively constant MMF, having a ripple of only about 5-10%.
Distributed Control Architecture
Each section controller 90 is also connected to a central controller 94, such as a computer workstation, through a supervisory network employing a multi-drop bus 96. The central controller 94 and supervisory network provides an efficient means for initializing the section controllers. The central controller may also communicate destination data to the section controllers for the pallets (which are preferably uniquely addressed) and receive acknowledgement messages in return when pallets have reached their destinations. As such, the central controller may be used for process (i.e. manufacturing-line) control. The central controller also fulfils a supervisory diagnostic role by monitoring the section controllers (e.g. by engaging in a continuous polling process) in order to determine whether any section controller has failed.
Each section controller 90 may also (but does not necessarily) include a cell port 98 for interfacing section controller 90 to a e station controller such as an external programmable logic controller (PLC) 100. The PLCs provide manufacturing-line station-processing instructions to the track 24, such as directing the next destination for a pallet along the track, or providing station-specific motion instructions in respect of a given pallet stopped adjacent to or in a processing station (not shown). For instance, a typical two-axis station controller or PLC operates by providing pulse signals in order to synchronize the motion of a pallet along the track with the motion of a station end effector or dispenser moving along a transverse axis, whereby each pulse represents an incremental pallet move command. It will be appreciated that the provision of the station controller or PLC reduces the amount of bandwidth that would otherwise be required to communicate this information to the central controller 94, thereby substantially eliminating a potential limitation on the length and processing capabilities of the conveyor system.
As illustrated, each section controller 90 is connected to all of the stator armature coils 35 in the corresponding track unit 26 and, as described in greater detail below, is responsible for commutating the coils in the control zone in accordance with an independent trajectory or “move” command for each pallet located therein. However, unlike a conventional convolute two phase stator armature winding, the commutation is complicated by the fact that a given pallet, (such as illustrated pallet 22′) may straddle two coil pairs 75 whereby both coil pairs have to be simultaneously excited in order to produce a suitable moving MMF along the track 24.
Each section controller 90 is also connected to all of the optical read heads 50 situated in its control zone. The section controller is responsible for resolving the absolute position of each pallet 22 located in its control zone, as described in greater detail below.
Servocontrol System
The power boards 104 comprises a plurality of current amplifiers 114, one for each coil 35 controlled by the section controller. (There are eighteen coils in the illustrated embodiment.) Each current amplifier 114 comprises an inverter such as a two phase or H-bridge 116, drivers 118 for converting logic level signals to analog level signals in order to drive the power switches of the H-bridge, and current sensing circuitry 120 for sensing the coil current. Each power board also includes an FPGA 122 which is used to interface the DSP 105 with the current amplifiers 114. More particularly, as shown in
The current sensing circuitry 120 comprises a current sensor 136 which is used to measure the current flowing through a given coil 35 for all commutation phases of the H-bridge. A suitable current sensor is disclosed for instance in co-pending U.S. Ser. No. 08/873,158, filed Jun. 11, 1997, by Derek C. Schuurman and assigned to an assignee of the instant application. A variety of alternative current sensing devices may be used, such as current transformers or open and closed loop Hall effect devices. The output of the current sensor 136 is connected to an analog filter 138 which is connected to an analog multiplexer 140 (not shown in FIG. 7). The analog multiplexer 140 multiplexes the current sensing signals from multiple current sensors associated with the other current amplifiers 114 located on the power board 104 and provides these signals to an analog to digital converter (A/D) 142 which is connected to a latch 144 addressable by the DSP 105. The FPGA 122 provides a channel selection means 146 for continuously sampling the current sensing signals from each current amplifier 114. The FPGA 122 also provides circuitry 148 for generating the appropriate control signals to the A/D 142. It will be noted (
Each power board 104 also includes a temperature sensor 147 and a voltage sensor 149 which are connected to the A/D 142 and interfaced to the DSP 105 by the FPGA 122. The central controller 94 periodically polls each section controller 90 in order to obtain diagnostics data provided by these sensors.
The DSP 105 of each section controller 90 is used to implement a closed-loop digital servocontrol system which is shown in systemic form in FIG. 9. The servocontrol system comprises a trajectory generator 150, as known in the art per se, for computing a pallet position set point vector {right arrow over (S)} (S1, S2, . . . , SK), where component or signal represents the position set point for a given pallet located in the control zone serviced by the given section controller and K is the number of pallets in the control zone at any given time. The trajectory generator 150 produces set points for each pallet in accordance with pre-specified acceleration and velocity profiles for the pallets which are downloaded by the central controller 94 to the section controller 90 during system initialization. For example, the trajectory generator 150 may employ a trapezoidal acceleration profile to smoothly accelerate the pallet from an initial rest position to a terminal velocity and then smoothly de-accelerate the pallet to a destination position. In the preferred embodiment, the pallet position set point vector {right arrow over (S)} is computed at a rate of approximately 1 KHz.
The pallet set points are compared against the measured positions, {right arrow over (X)} (X1, X2, . . . , XK), of the pallets as determined by a pallet position feedback subsystem 152 which also samples pallet positions at a rate of approximately 1 KHz. This comparison results in the computation of a pallet position error vectors Δ{right arrow over (S)} (ΔS1, ΔS2, . . . , ΔSK). The pallet position error vectors Δ{right arrow over (S)} is fed into a position compensator 154 which computes a force vector, {right arrow over (F)} (F1, F2, . . . , FK), specifying the force required to be applied to each pallet in order to minimize the pallet position error. The force vector {right arrow over (F)} is also computed at a rate of about 1 KHz.
In the preferred embodiment, the position compensator 154 employs a well-known proportional, integral, derivative (p.i.d.) control law, however, alternative control methods such as the state space technique may employed.
The force vector {right arrow over (F)} and pallet position vector {right arrow over (X)} are fed (
The current set point vector {right arrow over (I)}S is compared (
Parallel Position Feedback Subsystem
The pallet position feedback subsystem 152 which supplies measured pallet position data to the trajectory generator 150, position compensator 154 and commutation controller 155 is now discussed in greater detail. Referring to
As depicted in
As shown in
A “zone 2” state 200 represents a steady state condition wherein the reflective strip of a given pallet i engages a given encoder, encoder(n), and is not yet near encoder(n−1) or encoder(n+1). Considering the situation where the given pallet moves to the right in
A similar process occurs when the given pallet moves leftward. “Reset-left”, “zone 1”, and “left hand-off” states 208, 210 and 212 are the respective counterparts to the “reset-right”, “zone 3”, and “right hand-off” states 202, 204 and 206.
The preferred method provides a hysteresis effect when the given pallet backtracks soon after the hand-off is accomplished. The extra distance XR by which the length R of each reflective strip exceeds the encoder spacing E enables the control state patterns 215 and 215′ (
The preferred method is carried out by each section controller 90 for each pallet located in the corresponding control zone.
Those skilled in the art will appreciate that devices other than the optical linear encoder reader 50 and the reflective strip 45 may be used in alternative embodiments. For example, the passive readable device can be a magnetic strip and the linear encoder readers can be corresponding magnetic detectors. Such an alternative embodiment could provide very fine resolution, e.g. graduations of about a micron, however the cost of such linear encoders is typically very high and may not be required for most applications given the good resolution, typically a thousandth of inch, provided by the optically reflective strips.
Synchronizing Servocontrol Systems
The length of track 24 that a given section controller 90 can control is limited by various practical considerations, thereby complicating the production of moving MMFs for the pallets, which have to cross control zones. Accordingly, the preferred embodiment provides a means for synchronizing the servocontrol systems of adjacent section controllers and for passing control of a pallet crossing therebetween.
When the given pallet moves to the right in
At point t2, the leading edge of the pallet permanent magnet pole pair 60 reaches the leading turn of a border coil pair located in zone N+1. (See, for example, FIG. 5(a).) Upon the occurrence of this event, a message, termed PM_COILSTART, is transmitted by controller(n) to controller(n+1), and controller(n) enters a “Send Coil Control” state 256. Correspondingly, controller(n+1) receives the PM_COILSTART message and enters a “Receive Coil Control” state 258. During the time period t2-t3 represented by the conterminous states of the section controllers, controller(n) is still responsible for executing the position control loop for the given pallet, which includes computing a force set point component Fi for the given pallet and measuring the position Xi thereof. Controller(n) uses this data as described above to regulate the border coil pair 75 in zone N. The force set point Fi and position Xi are also communicated to controller(n+1) at a rate of approximately 1 KHz over the peer-to-peer communication link 92. Controller(n+1) uses this data in its commutation controller 155 and current compensator 184 in order to produce current step point components I1 and I2 in zone N+1 and regulate the border coil pair 75 in zone N+1 so as to properly servocontrol the given pallet. In this manner, controller(n) and controller(n+1) are synchronized to cooperatively execute the current control loop for the given pallet by regulating the border coil pairs in their respective zones.
At point t2, the leading edge of the reflective strip of the given pallet reaches a point, as described above, where the ownership of the given pallet should be handed-off from a border encoder in zone N to a border encoder in zone N+1. Upon the occurrence of this event, a message, termed EM_CHANGE_ACTIVE_ENCODER, is transmitted by controller(n) to controller(n+1), and controller(n) enters the “Receive Coil Control” state 258. Correspondingly, controller(n+1) receives the EM_CHANGE_ACTIVE_ENCODER message and enters the “Send Coil Control” state 256. During the time period t3-t4 represented by the substantially conterminous states of the section controllers, a number of steps occur:
At point t4, the trailing edge of the pallet permanent magnet pole pair 60 passes the last turn of the border coil located in zone N. Upon the occurrence of this event, a message, termed PM_COILSTOP, is transmitted by controller(n+1) to controller(n), whereby controller(n+1) enters into a “Pallet Control” state 254 and controller(n) enters into the “Pallet Ready” state 26. As soon as this point is reached, position control loop set point data is no longer transferred from controller(n+1) to controller(n). Since there is no longer any need to regulate the border coil in Zone N. At point t5 controller(n+1) enters into the steady “Solo Pallet” state, wherein a message, termed PM_DESTROY, is sent to controller(n) to terminate its data structure for the given pallet.
In the preferred method, the point at which any of the above described section controller states is triggered or entered into differs depending upon the direction the given pallet is moving. This provides a hysteresis effect, similar to that described above, for enabling a more stable control system by preventing the inefficient oscillation or flip-flopping between states when a pallet straddles two track sections and is commended to move relatively small distances to and fro.
The above process has been described a tone border between track units. A similar process can simultaneously occur at the opposite border between track units when a pallet travels thereacross.
It will be appreciated by those skilled in the art that while the preferred embodiment passes a position error minimizing signal such as Fi between adjacent section controllers when a pallet crosses control zones, an alternative embodiment may instead compute the current set points for the coil pair in an adjacent control zone which are spanned by a crossing pallet, and pass this data to the adjacent section controller. The current set point signals are linearly related to the position error minimizing set point or signal, and both types of signals can be viewed as instances of coil regulating signals. The advantage of the preferred embodiment is that less information has to be passed over the relative slow (compared to the processing speed of the DSP 105) serial communication link 92.
The preferred conveyor system 20 provides a number of advantages over the herein-disclosed prior art. For instance, the electromagnetic structure of the conveyor system provides relatively smooth thrust production capabilities, and the conveying speed is much improved over typical belt conveyor systems. For example, in a prototype system developed by the applicants, the pallets attained a 2 g acceleration and steady velocity of 2 m/s. In addition, the pallet position-detecting subsystem enables the absolute position of each pallet to be determined at high resolution at all times anywhere along the track, thereby enabling the pallets to be precisely positioned to any point along the track. Furthermore, the preferred distributed control system enables each pallet to be individually and separately controlled yet interface with manufacturing process controllers. Finally, these elements, in combination with the physical structure of the conveyor system, enable it to be constructed out of discrete, self-contained, modular track sections, with little practical restriction on the length of the conveyor system or the number of pallets controlled thereby.
The preferred embodiment has been disclosed with a certain degree of particularity for the purpose of description but not of limitation. Those skilled in the art will appreciate that numerous modifications and variation can be made to the preferred embodiment without departing from the spirit and scope of the invention.
Lankin, Robert Gordon, Robinson, Wayne Michael, MacKay, David Kyle, Fortuna, Jeffrey John, Madusuthanan, Sajeev, Lindsay, Scott Charles, Cybulski, Michael A., Hancock, Michael J., Holl, Robert A., Mowat, Donald J., Peltier, Laura
Patent | Priority | Assignee | Title |
10029855, | Sep 23 2016 | Rockwell Automation Technologies, Inc. | Multi-rail/roller compliance system for independent mover products |
10112777, | Jan 23 2009 | Magnemotion, Inc. | Transport system powered by short block linear synchronous motors |
10300793, | Jul 29 2010 | ATS AUTOMATION TOOLING SYSTEMS INC. | System and method for providing power to a moving element |
10367404, | Sep 29 2017 | Rockwell Automation Technologies, Inc.; ROCKWELL AUTOMATION TECHNOLOGIES, INC | Mid-bus voltage generation via idle phases in a linear motor track system |
10432117, | Jun 22 2018 | Rockwell Automation Technologies, Inc. | System and method for monitoring mover status in an independent cart system |
10454355, | Jun 29 2017 | B&R INDUSTRIAL AUTOMATION GMBH | Long stator linear motor and method for moving a transport unit of a long stator linear motor |
10717365, | Jul 13 2018 | Rockwell Automation Technologies, Inc. | System and method for limiting motion in an independent cart system |
10720864, | Jun 22 2018 | Rockwell Automation Technologies, Inc. | System and method for monitoring mover status in an independent cart system |
10810534, | May 13 2016 | WAL-MART STORES, INC ; Walmart Apollo, LLC | Systems and methods for sortation of products using a conveyor assembly |
10835928, | Jan 25 2019 | Walmart Apollo, LLC | Conveyor systems and methods for sorting merchandise using interchangeable and assignable sortation modules |
10908361, | Jun 06 2018 | Apple Inc. | Capacitive position sensing for capacitive drive MEMS devices |
10944315, | Sep 29 2017 | Rockwell Automation Technologies, Inc. | Mid-bus voltage generation via idle phases in a linear motor track system |
10967892, | Nov 08 2018 | Rockwell Automation Technologies, Inc.; ROCKWELL AUTOMATION TECHNOLOGIES, INC | Independent cart system and method of operating the same |
11097908, | Dec 06 2017 | KYOTO SEISAKUSHO CO ,LTD | Linear conveyor |
11531953, | May 13 2016 | WAL-MART STORES, INC | Systems and methods for sortation of products using a conveyor assembly |
11626824, | May 08 2019 | Yamaha Hatsudoki Kabushiki Kaisha | Linear conveyor system, a linear module, a control method for a linear module |
11643120, | Nov 08 2018 | Rockwell Automation Technologies, Inc. | Independent cart system and method of operating the same |
11851221, | Apr 21 2022 | Curium US LLC | Systems and methods for producing a radioactive drug product using a dispensing unit |
11868947, | May 13 2016 | Walmart Apollo, LLC | Systems and methods for sortation of products using a conveyor assembly |
11878862, | Jan 25 2019 | Walmart Apollo, LLC | Conveyor systems and methods for sorting merchandise using interchangeable and assignable sortation modules |
11916499, | Aug 02 2018 | BECKHOFF AUTOMATION GMBH | Method for identifying a carriage of a linear transport system |
8397896, | Mar 03 2009 | ATS AUTOMATION TOOLING SYSTEMS INC | Multi-mode and multi-pitch conveyor system |
8626329, | Nov 20 2009 | AGR AUTOMATION LTD | Product assembly system and control software |
8653766, | Sep 30 2009 | THK CO , LTD | Linear motor driving system and linear motor control method |
8789678, | Mar 03 2009 | ATS AUTOMATION TOOLING SYSTEMS INC. | Multi-mode and multi-pitch conveyor system |
8794426, | Mar 31 2011 | ATS AUTOMATION TOOLING SYSTEMS INC. | Pallet-based position adjustment system and method |
8872449, | Aug 28 2009 | THK CO , LTD | Distributed-arrangement linear motor and control method of distributed-arrangement linear motor |
8875865, | Mar 09 2011 | TENSION INTERNATIONAL, INC | Linear dispensing system with universal escapement |
9096386, | Mar 03 2009 | ATS AUTOMATION TOOLING SYSTEMS INC | Multi-mode scroll cam conveyor system |
9333875, | Jul 29 2010 | ATS AUTOMATION TOOLING SYSTEMS INC | System and method for providing power to a moving element |
9346371, | Jan 23 2009 | Magnemotion, Inc. | Transport system powered by short block linear synchronous motors |
9483897, | Mar 09 2011 | Tension International, Inc. | Linear dispensing system with universal escapement |
9771000, | Jan 23 2009 | Magnemotion, Inc. | Short block linear synchronous motors and switching mechanisms |
9784558, | Jan 20 2014 | Apple Inc. | Sensing of mirror position using fringing fields |
9802507, | Sep 21 2013 | ROCKWELL AUTOMATION TECHNOLOGIES, INC | Linear motor transport for packaging and other uses |
9957116, | Sep 30 2011 | ATS AUTOMATION TOOLING SYSTEMS INC. | Method for providing vacuum to a moving element |
9989380, | Apr 22 2016 | Siemens Aktiengesellschaft | Method, linear drive and installation |
Patent | Priority | Assignee | Title |
4151447, | Nov 29 1976 | Papst Licensing GmbH | Linear motor |
4274020, | Sep 27 1978 | Siemens Aktiengesellschaft | Synchronous linear motor |
4595870, | Aug 07 1984 | Anorad Corporation | Linear motor |
4633148, | Jan 25 1985 | Chrysler Motors Corporation | Linear drive motor multiple carrier control system |
4675582, | Dec 24 1985 | E. I. du Pont de Nemours and Company | System useful for controlling multiple synchronous secondaries of a linear motor along an elongated path |
4698996, | Nov 27 1984 | Angewandte Digital Elektronik GmbH | Method for calibrating an electronic position transmitter |
4760294, | Sep 13 1982 | Linear motor with independently controlled coils | |
4794866, | Oct 13 1986 | Maschinenfabrik Scharf GmbH | Linear motor driven railway car |
4841869, | Jan 27 1986 | Daifuki, Co., Ltd. | Conveyor system utilizing linear motor |
4853602, | Dec 24 1985 | E. I. DuPont de Nemours and Company | System for using synchronous secondaries of a linear motor to biaxially draw plastic films |
4901058, | Jun 17 1988 | SHERAM ENTERPRISES, INC | Sobriety interlock with bypass detection |
4924164, | Apr 08 1988 | RILEY, RON J | Software zoning of conveyor control |
4926753, | Apr 29 1986 | Murata Machinery, Ltd | Flexible material transport system |
4998798, | May 10 1988 | Canon Kabushiki Kaisha | Encoder having long length measuring stroke |
5023495, | Apr 17 1990 | Hitachi Metals & Shicoh Engine | Moving-magnet type linear d.c. brushless motor having plural moving elements |
5118055, | Jul 05 1990 | UTDC, Inc. | Reduced voltage braking system in a linear motor in-track transit system |
5121830, | Jun 01 1989 | Mazda Motor Corporation | Conveyor means using linear motor |
5141183, | Nov 01 1989 | MAGNETEK, INC | Apparatus and method for determining one or more operating characteristics of a rail-mounted vehicle |
5225725, | Feb 13 1990 | Hitachi Metals, Ltd.; Shicoh Engineering Co., Ltd. | Linear direct current motor |
5229669, | Oct 16 1990 | Nippon Thompson Co., Ltd. | Compact linear motor drive unit |
5416396, | Jun 12 1992 | Nippon Thompson Co., Ltd. | Linear encoder and a guide unit on which it is equipped |
5433155, | Nov 18 1991 | High speed transport system | |
5440183, | Jul 12 1991 | DENNE DEVELOPMENTS, LTD | Electromagnetic apparatus for producing linear motion |
5536983, | Apr 08 1993 | Hitachi Metals, Ltd | Linear motor |
5606256, | Jun 08 1992 | Nippon Thompson Co., Ltd. | Linear encoder and a guide unit on which it is equipped |
5939845, | Mar 23 1998 | E I DU PONT DE NEMOURS AND COMPANY | Method for controlling tenter clip gap spacing during simultaneous biaxial stretching using linear synchronous motors |
DE2310812, | |||
DE2713004, | |||
DE3316144, | |||
DE3504520, | |||
DE4229278, | |||
EP188657, | |||
EP265570, | |||
EP287211, | |||
EP294541, | |||
EP400663, | |||
EP701316, | |||
JP6171754, | |||
JP63188711, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 01 1998 | ATS AUTOMATION TOOLING SYSTEMS INC. | (assignment on the face of the patent) | / | |||
Aug 29 2008 | ATS AUTOMATION TOOLING SYSTEMS INC | BANK OF NOVA SCOTIA, AS AGENT, THE | SECURITY AGREEMENT | 021531 | /0467 |
Date | Maintenance Fee Events |
Aug 11 2008 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 24 2012 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 31 2010 | 4 years fee payment window open |
Jan 31 2011 | 6 months grace period start (w surcharge) |
Jul 31 2011 | patent expiry (for year 4) |
Jul 31 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 31 2014 | 8 years fee payment window open |
Jan 31 2015 | 6 months grace period start (w surcharge) |
Jul 31 2015 | patent expiry (for year 8) |
Jul 31 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 31 2018 | 12 years fee payment window open |
Jan 31 2019 | 6 months grace period start (w surcharge) |
Jul 31 2019 | patent expiry (for year 12) |
Jul 31 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |