A brake lever arm is mounted to a base member, with the base member fixed to a bicycle handlebar. The lever arm is pivotal about a pivot point on the base. The lever arm includes an adjusting mechanism that adjusts the position of the lever arm when the lever arm is in a brake dis-engaged position. The adjusting mechanism is slideable in grooves in the lever arm such that the adjusting mechanisms may be moved to positions that are differing distances away from the pivot point. The adjusting mechanism includes a contact member that engages a brake cable connected to the lever arm when the lever arm is moved from the brake disengaged position toward a brake engagement position. The position of the contact member with respect to the pivot point determines the effect movement of the lever arm has on the cable. In this manner, the adjusting mechanism adjusts the length of the stroke or travel of the lever arm from the brake disengaged position to the brake engagement position.
|
1. A brake lever mechanism comprising:
a base member formed with a cable guide and said base member having a pivot point defined thereon spaced apart from said cable guide;
a lever arm formed with a handle portion and a support portion, said support portion mounted for pivotal movement on said pivot point from a brake dis-engagement position to a brake engagement position and said handle portion formed with a cable connector;
an adjusting mechanism mounted in said support portion, said adjusting mechanism having a cable contact point, wherein said adjusting mechanism adjusts the relative position between said cable contact point and said pivot point;
wherein said support portion is formed with a first slot and a second slot generally parallel to said first slot, and said adjusting mechanism is formed with a pin extending through said first slot and said adjusting mechanism includes a screw extending through said second slot, and said adjusting mechanism confined to selective movement along said first and second slots.
2. The brake lever mechanism as in
3. The brake lever mechanism as in
4. The brake lever mechanism as in
5. The brake lever mechanism as in
6. The brake lever mechanism as in
7. The brake lever mechanism as in
8. The brake lever mechanism as in
|
A. Field of the Invention
The invention relates to a brake lever arm having an adjusting mechanism therein which adjusts the reach of the brake lever arm and the length of the movement of the brake lever arm.
B. Description of the Related Art
At one time, brake actuating mechanisms for bicycles were merely levers coupled to the handle bar of a bicycle with is therefore has a generally hollow interior and has defined by generally parallel opposing sides 31 and 32. The side 32 includes a first slot 35 and a third slot 36, as shown in FIG. 1B. The side 31 includes a second slot 38, which has an irregular shape, as will be described in greater detail below. Disposed between the two sides 31 and 32 is an adjusting mechanism 40, which is also described in greater detail below.
The lever arm 30 is also formed with a cable retainer 42 which accommodates and retains the ball end 44 of a cable (not shown in FIGS. 1A and 1B). In
With reference to
The adjusting mechanism 40 is shown in cross section in
The contact body 60 generally has a T-shape, as shown in
With the adjusting mechanism 40 disposed within the lever arm 30, the pin 56 extends into the first slot 35 formed in the side 32. Further, the screw 58 extends into the third slot 36 formed in the side 32 and the head 58a of the screw 58 extends through the second slot 38 formed in the side 31. When the screw 58 is loosened, the adjusting mechanism 40 is able to slide freely within the length of the slots 35, 36 and 38.
The adjusting mechanism 40 is configured to move to three positions within the lever arm 30. Correspondingly, the second slot 38 is formed with three rounded sections 38a, 38b and 38c to accommodate a screw head 58a formed on the end of the screw 58. In order to change the position of the adjusting mechanism 40, the screw 58 must be loosened so that the head 58a of the screw 58 extends above the surface of the side 31 of the lever arm 30. With the screw 58 loose, the adjusting mechanism 40 is able to slide within the confines of the first slot 35 and the second slot 38. The screw 58 may be tightened so that the head 58a extends into one of the three rounded sections 38a, 38b or 38c, each of the rounded sections corresponding to the three positions, which are described in greater detail below. It should be appreciated that the second slot 38 may be provided with only two rounded sections or may be formed with four or more rounded sections to provide corresponding numbers of adjustment positions for the adjusting mechanism 40. It should further be appreciated that the screw 58 may be replaced with a spring loaded pin which may be urged by a spring into the rounded sections 38a, 38b or 38c and by pushing on the spring loaded pin, the adjusting mechanism 40 may be moved into a desired position.
In
With reference to
It should further be noted that for all measurements shown in
The various positions of the lever arm distance D1, D2, and D3 represent the reach of the lever arm 30.
As is shown in the figures, the following relationships are true:
There are several geometrical relationships that are fundamental to the operation of the bicycle brake mechanism 5. First, the reach distance D1, D2 or D3 is easily adjusted by moving the adjusting mechanism 40 into any one of the three rounded sections 38a, 38b or 38c. Adjustment of the reach distance D1, D2 or D3 also alters the stroke length or total movement of the lever arm 30 due to the setting of the adjustable lever distances A1, A2 or A3. The adjustable lever distances alter the stroke length of the lever arm 30 by contacting the cable at a points having differing distances from the pivot pin 25. The movement of the cable C is directly proportional to the size of the adjustable lever distances A1, A2 or A3. Hence, for the reach distance D1, the adjustable lever distance A1 has a relatively large value and therefore, as the lever arm 30 moves, the cable C will move about the pivot pin 25 a corresponding short stroke length until the brake mechanism (not shown) is engaged. For the reach distance D2, the adjustable lever distance A2 has an intermediate value and therefore, as the lever arm 30 moves, the cable C will move about the pivot pin 25 a corresponding intermediate stroke length until the brake mechanism (not shown) is engaged. For the reach distance D3 the adjustable lever distance A3 has a relatively small value and therefore, as the lever arm 30 moves, the cable C will move about the pivot pin 25 a corresponding long stroke length until the brake mechanism (not shown) is engaged.
Comparing the three positions of the adjusting mechanism 40 it is shown in the present invention that as the reach (D1, D2 or D3) gets smaller, the corresponding stroke length also decreases since the distance (either A1, A2 or A3) from the pivot pin 25 increases. Conversely, as the reach (D1, D2 or D3) gets larger, the corresponding stroke length also increases since the distance (either A1, A2 or A3) from the pivot pin 25 decreases.
Also, the brake disengage position distance D1 provides a short reach for a bicyclist, with the lever arm 30 being relatively close to the handlebar grip 20. Similarly, the brake disengage position distance D3 provides a long reach for a bicyclist, with the lever arm 30 being at a relatively large distance from the handlebar grip 20.
The adjusting screw 52 is shown contacting the adjusting mechanism 40. However, alternatively, the adjusting screw 52 may be configured to contact one or both of the sides 31 and 32. For instance, in
Another alternate embodiment is depicted in
In yet another embodiment depicted in
There are numerous advantages in the present invention. For instance, the present invention provides a simple and easy way to adjust the reach of a lever arm. The present invention also provides a simple and easy way to adjust the stroke length of a lever arm. The present invention provides a simple and easy means for simultaneously adjusting both the reach and the stroke of a lever arm.
The present invention also provides a means for fine adjusting a lever arm into a brake disengage position to accommodate various sized bicyclists with differing size hands.
Various details of the invention may be changed without departing from its spirit nor its scope. Furthermore, the foregoing description of the embodiments according to the present invention is provided for the purpose of illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Patent | Priority | Assignee | Title |
8863612, | Aug 22 2011 | Lever positioner assembly |
Patent | Priority | Assignee | Title |
4611500, | Dec 29 1983 | Shimano Industrial Company Limited | Brake operating device |
4916967, | Jan 31 1989 | Throttle operating device for jet-propelled small-sized boats | |
5448927, | May 03 1994 | SRAM, LLC | Adjustable leverage brake lever |
5515743, | May 03 1994 | SRAM, LLC | Adjustable leverage brake lever |
5537891, | Jul 21 1993 | Shimano Inc | Bicycle brake lever mechanism |
5575178, | Aug 22 1995 | Brake handle | |
JP79693, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 07 2002 | Shimano Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 08 2008 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 01 2012 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 07 2010 | 4 years fee payment window open |
Feb 07 2011 | 6 months grace period start (w surcharge) |
Aug 07 2011 | patent expiry (for year 4) |
Aug 07 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 07 2014 | 8 years fee payment window open |
Feb 07 2015 | 6 months grace period start (w surcharge) |
Aug 07 2015 | patent expiry (for year 8) |
Aug 07 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 07 2018 | 12 years fee payment window open |
Feb 07 2019 | 6 months grace period start (w surcharge) |
Aug 07 2019 | patent expiry (for year 12) |
Aug 07 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |