A surgical stapling instrument comprises a frame having a body portion and a handle. A staple fastening assembly is provided in the distal region of the instrument and includes a cartridge device, which comprises at least one closed row (10, 12) of staples, and an anvil. The anvil is movable relative to the cartridge device and is adapted to cooperate with the cartridge device for forming the ends of the staples exiting from the cartridge device. A knife, which has a closed cutting edge, is contained within the cartridge device and is positioned such that there is at least one closed row (10, 12) of staples on the outside of the cutting edge. It can be moved towards the anvil. The line along which the closed row (10, 12) of staples is arranged has a stepped shape, leaving a plane perpendicular to the longitudinal axis of the staple fastening assembly, such that this line has a larger total length than the projection of this line onto this plane. This provides a greater flexibility of the anastomotic site and less tension during instrument removal, alleviating the incidence of clinical complications.

Patent
   RE39841
Priority
Nov 28 2001
Filed
Aug 07 2006
Issued
Sep 18 2007
Expiry
Nov 04 2022
Assg.orig
Entity
Large
238
18
all paid
1. A surgical stapling instrument having a distal end, a proximal end, and a longitudinal axis therebetween, said instrument comprising:
a flame having a body portion and a handle,
a staple fastening assembly (1) in the distal region of said instrument, the staple fastening assembly (1) including a cartridge device (2), said cartridge having a distal surface having a stepped configuration comprising a series of alternating gaps and protrusions such that said protrusions are distal to said gaps, said cartridge device further comprising at least one closed row (10, 12) of staples disposed along said series of alternating gaps and protrusions, and an anvil (4) which is movable relative to the cartridge device (2) and is adapted to cooperate with the cartridge device (2) for forming the ends of the staples exiting from the cartridge device (2), a moving device adapted to move the anvil (4) relative to the cartridge device (2), a staple driving device adapted to drive the staples out of the cartridge device (2) towards the anvil (4), a knife, which has a closed cutting edge, is contained within the cartridge device (2) and is positioned such that there is at least one closed row (10, 12) of staples on the outside of the cutting edge, and a knife actuating device adapted to move the knife towards the anvil (4).
2. stapling instrument according to claim 1, characterized in that the anvil (4) has a proximal surface having a stepped configuration comprising a series of alternating gaps and protrusions which matches the stepped configuration cartridge, such that said gaps on said cartridge match said protrusions on said anvil, and said protrusions on said cartridge match said gaps on said anvil.
3. stapling instrument according to claim 1, characterized in that said knife has a stepped shape which matches the stepped configuration of said distal surface of said cartridge.
4. stapling instrument according to claim 1, characterized in that the staple driving device (30) is adapted to drive the staples out of the cartridge device (2) such that each staple is moved essentially in parallel to the longitudinal axis of the staple fastening assembly (1).
5. stapling instrument according to claim 4, characterized in that the staple driving device (30) comprises pushers (36, 38, 39) for driving the staples.
6. stapling instrument according to claim 5, characterized by at least two groups of pushers (38, 39) having different lengths.
7. stapling instrument according to claim 5 or 6, characterized in that the pushers (36, 38, 39) are integrally combined in a sleeve structure (30).
8. stapling instrument according to claim 1, characterized in that the staple driving device (30) is adapted to drive the staples of a closed row (10, 12) of staples essentially simultaneously out of the cartridge device (2).
9. stapling instrument according to claim 1, characterized by at least two closed rows (10, 12) of staples, wherein the staples of adjacent rows (10, 12) are staggered with respect to each other.
10. stapling instrument according to claim 1, characterized in that the anvil (4) comprises a counterpart adapted to accommodate the cutting edge of the knife.
11. stapling instrument according to claim 1, characterized in that the staple fastening assembly (1) is removably mounted in the distal end region of the body portion.
12. stapling instrument according to claim 1, characterized in that the anvil (4) is removable.
13. stapling instrument according to claim 12, characterized in that the anvil comprises a shaft fitting onto a peg protruding from the cartridge device, which peg preferably comprises a mandrel.
14. stapling instrument according to claim 1, characterized in that the cartridge device (2) comprises a removable cartridge containing the staples.

The invention relates to a surgical stapling instrument, which can be used for applying surgical staples or clips to tissue and in particular for performing an anastomosis.

Generally, in the performance of a surgical anastomotic stapling operation, two pieces of lumen or tubular tissue, e.g., intestinal tissue, are attached together by a closed row of staples. In performing the anastomosis with a surgical stapling instrument, the two pieces of tubular tissue are clamped together between an anvil provided with an array of staple forming grooves and a staple holder or cartridge device provided with a plurality of staple receiving slots arranged in a closed row or array in which the staples are received. A staple pusher is advanced to drive the staples into the tissue and form the staples against the anvil. Moreover, a circular knife is advanced to cut the excess tissue clamped between the anvil and the staple holder. As a result, the donut-shaped section of tissue is severed from each lumen and remains on the anvil shaft. The tubular tissue joined by the closed row of staples is unclamped by moving the anvil relative to the staple holder, usually by advancing the anvil shaft distally to move the anvil away from the staple holder. The stapling instrument is removed by pulling the anvil through the opening between the pieces of tubular tissue attached by the array of staples.

Surgical stapling instruments of this kind are well-known. For example, U.S. Pat. No. 5,205,459 describes such an instrument in detail. As usual, the closed row of staples of the instrument disclosed has a planar, circular shape. U.S. Pat. No. 5,275,322 is a document showing a basic version of a circular stapling instrument.

Although the use of the known surgical stapling instruments is very beneficial and greatly facilitates the performance of an anastomosis, it involves some problems. Often it is difficult to retract the instrument from the site of the operation, because it is difficult to move the anvil through the opening bordered by the closed row of staples, which is somewhat stiff. Moreover, after the operation, the incidence of clinical stenosis at the site of the anastomosis is not rare.

In order to overcome these problems, it is proposed in WO 01/54594 A1 to arrange the closed row of staples in a wavy shape which leaves a plane perpendicular to the longitudinal axis of the instrument. In this way, the line along which the staples of the closed row are arranged has a larger total length than the projection of this line onto a plane. Consequently, the length of an anastomosis seam is larger than that of an anastomosis performed by means of conventional stapling instrument. Because of this increased length, the anastomotic site can assume a larger diameter and is more flexible, so that the anvil can be easily moved through the opening created by the knife, and the surgical stapling instrument can be retracted at the end of the surgery more easily. Additionally, the resulting larger anastomosis lumen will alleviate the incidence of clinical complications. On the other hand, if it is sufficient that the total length of the closed row of staples is comparable to that provided by a conventional stapling instrument, this instrument can be designed in a more compact size such that it can be easier inserted into a tubular organ and removed therefrom.

For optimum performance of the stapling instrument disclosed in WO 01/54594 A1, the individual staples are expelled from the cartridge device in a direction perpendicular to the local slope of the wavy shape, which generally is not parallel to the longitudinal axis of the instrument. This requires a more complicated staple drive mechanism which experiences load components transverse to the longitudinal axis of the instrument. Moreover, the alignment of the staple-forming grooves at the anvil to the pointed ends of the staples exiting from the cartridge device is only correct for a certain distance between the cartridge device and the anvil, i.e. for a certain thickness of the tissue clamped between the cartridge device and the anvil, which results in a loss of variability with respect to the tissue thickness.

EP 1 090 592 A1 discloses a linear surgical stapler, in which the anvil has two staple-forming surfaces which are spaced with respect to each other in the staple expelling direction. In this way, the anvil is formed with a stiffening rib which generally strengthens the cantilever design of the linear stapler.

The object of the invention is to provide a surgical stapling instrument for performing an anastomosis, which has the advantages of the instrument disclosed in WO 01/54594 A1, but allows for a simpler design and generally exhibits less restrictions with respect to tissue thickness.

The surgical stapling instrument according to the invention comprises a frame having a body portion and a handle as well as a staple fastening assembly in the distal region of the instrument. The staple fastening assembly includes a cartridge device which comprises at least one closed row of staples, and an anvil. The anvil is movable relative to the cartridge device and is adapted to cooperate with the cartridge device for forming the ends of the staples exiting from the cartridge device. A moving device is adapted to move the anvil relative to the cartridge device. A staple driving device is adapted to drive the staples out of the cartridge device towards the anvil. A knife, which has a closed cutting edge, is contained within the cartridge device and is positioned such that there is at least one closed row of staples on the outside of the cutting edge. A knife actuating device is adapted to move the knife towards the anvil. So far, these features are known from the prior art, e.g., from U.S. Pat. No. 5,205,459.

According to the invention, the line along which the closed row of staples is arranged has a stepped shape, leaving (i.e., not being confined to) a plane perpendicular to the longitudinal axis of the staple fastening assembly, such that said line has a larger total length than the projection of said line onto said plane. Preferably, this projection is circular.

Thus, the line along which the closed row of staples is arranged has a larger total length than the line defining the planar array of staples of a conventional prior art surgical stapling instrument in which the cartridge device has about the same size. Consequently, similar to the instrument disclosed in WO 01/54594 A1, the length of the anastomosis seam is larger than that of an anastomosis performed by means of a conventional stapling instrument. Because of this increased length, the anastomotic site can assume a larger diameter and is more flexible, so that the anvil can be easily removed through the opening created by the knife, and the surgical stapling instrument can be retracted at the end of the surgery more easily. Additionally, the resulting larger anastomosis lumen will alleviate the incidence of clinical complications. On the other hand, if it is sufficient that the total length of the line along which the closed row of staples is arranged is comparable to that provided by a conventional stapling instrument, the invention allows for the use of a smaller instrument, which generally can be more easily inserted into the tubular organ and removed therefrom.

So far, the advantages of the surgical stapling instrument according to the invention are similar to those of the instrument disclosed in WO 01/54594 A1.

Additional advantages result from the stepped shape of the line along which the closed row of staples is arranged. In particular, this allows for a design in which a local flat area, which is normal to the longitudinal axis of the instrument, is created for each staple. By applying a simple conventional axial drive mechanism, the staple driving device can be adapted to drive the staples out of the cartridge device such that each staple is moved essentially in parallel to the longitudinal axis of the staple fastening assembly, which is the optimum direction in view of the stepped shape of the closed row of staples. Such kind of drive mechanism avoids undesired transverse loads. Moreover, the pointed ends of staples exiting from the cartridge device stay aligned to the staple-forming grooves provided at the anvil, irrespective of the actual distance between the anvil and the cartridge device or the thickness of the tissue clamped between the anvil and the cartridge device. In other words, any anvil deflection or any staple height adjustability will not adversely effect staple location. When a simple axial drive mechanism is employed, the stroke or actuating behaviour of conventional instruments can be maintained, which is an advantage because surgeons are familiar with it. Finally, the invention allows for the application of existing circular stapler platforms, i.e. of existing components like frame, moving device, and staple driving device, and therefore saves considerable costs.

Preferably, the anvil has a stepped staple-forming surface which matches the stepped shape of the line along which the closed row of staples is arranged.

Whereas it is conceivable that the knife has a conventional (cylindrical) basic shape with a circular cutting edge, in a preferred version of the invention the line defining the cutting edge of the knife has a stepped shape and runs essentially in parallel to the line along which the closed row of staples is arranged. In this design, the knife has to be moved by a short distance only in order to completely cut the tissue clamped between the cartridge device and the anvil.

In an advantageous version of the invention, the staples of a closed row of staples are arranged at different positions, measured along the longitudinal axis of the staple fastening assembly. In this way, the staples are located at different steps of the stepped shape of the closed row of staples. Alternatively, or with respect to another closed row of staples, the staples of a closed row of staples can be arranged with gaps between adjacent staples, wherein each gap is defined by a recess in the surface of the cartridge device, and the anvil has a protrusion fitting into that recess. Or the staples can be arranged with protrusions between adjacent staples, wherein each protrusion emerges from the surface of the cartridge device, and the anvil has a recess for accomodating that protrusion. A corresponding closed row of staples having both protrusions and gaps or recesses between different pairs of adjacent staples is conceiveable as well. Thus, the line along which such closed rows of staples are arranged has a stepped shape, since this line also follows the gaps or protrusions, although the staples themselves may be located all in the same plane.

As already mentioned, in a preferred version of the invention, the staple driving device is adapted to drive the staples out of the cartridge device such that each staple is moved essentially in parallel to the longitudinal axis of the staple fastening assembly. This allows for a simple, reliable and less expensive design of the surgical stapling instrument. Preferably, the staple driving devices comprises pushers for driving the staples. For adjustment to the stepped shape of the closed row of staples, the pushers can have different lengths. In an advantageous version, the pushers are integrally combined in a sleeve structure. Providing pushers of different lengths allows for a simple design in which the staple driving device is adapted to drive the staples of a closed row of staples essentially simultaneously out of the cartridge device. Such actuating behaviour maintains the stroke of a conventional stapling instrument.

Preferably, there are at least two closed rows of staples, wherein the staples of adjacent rows are staggered with respect to each other. The staggered arrangement of the staples does not contradict the basic idea of the stepped shape of the closed rows of staples, which will become evident from the embodiment described below in more detail. An anastomosis seam containing two rows of staggered staples is tight and safe.

The anvil can comprise a counterpart adapted to accommodate the cutting edge of the knife. The counterpart preferably matches the stepped shape of the anvil and/or the knife. Such counterparts, which exert a reaction force onto the tissue during the cutting action and are cut by the knife, are generally known in the prior art, see, e.g., U.S. Pat. No. 4,289,133.

In an advantageous version of the invention, the staple fastening assembly is removably mounted in the distal end region of the body portion. This enables, e.g., the staple fastening assembly to be exchanged during the surgical operation or to be designed as a disposable part (whereas the frame including a major part of the mechanical components is sterilizable and reusable). Moreover, the cartridge device can comprise a removable cartridge containing the staples, such that, e.g., an empty cartridge can be replaced by a fresh one, if required, or the cartridge device can be designed as a re-usable component. Preferably, the anvil is removable as well, which is also essential for certain surgical techniques. To this end, the anvil can comprise a shaft fitting onto a peg protruding from the cartridge device. The peg preferably comprises a mandrel which is useful for piercing tissue in certain surgical techniques. These features are generally known from the prior art surgical stapling instruments.

The term “staple” is used herein in a very general sense. It includes metal staples or clips, but also surgical fasteners made of synthetic material and similar fasteners. Synthetic fasteners usually have a counterpart (retainer member) held at the anvil. In this sense, the term “anvil” also has a broad meaning which includes, in the case of two-part synthetic fasteners, the anvil-like tool where the retainer members are held, and similar devices.

In the following, the invention is described in more detail by means of an embodiment. The drawings show in

FIG. 1 a side view of the staple fastening assembly of an embodiment of the surgical stapling instrument according to the invention,

FIG. 2 an isometric view onto an end part which forms the distal surface of the cartridge device of the staple fastening assembly of FIG. 1,

FIG. 3 an isometric view of the distal portion of the staple driving device of the embodiment,

FIG. 4 an isometric view onto the staple-forming surface of the anvil of the embodiment of the stapling instrument,

FIG. 5 an isometric view onto the staple-forming surface of the anvil of another embodiment of the stapling instrument.

FIG. 1 is a side view of the staple fastening assembly 1 which forms the distal portion of a surgical stapling instrument. The staple fastening assembly 1 includes a cartridge device 2 (which comprises, in the embodiment, two closed rows of staples) and an anvil 4. The anvil 4 is mounted at the distal end of a shaft 5 and can be moved relative to the cartridge device 2, i.e. along the longitudinal axis of the staple fastening assembly 1, in order to adjust the size of the gap between the anvil 4 and the cartridge device 2.

The cartridge device 2 comprises a housing 6 which contains the staples, a circular knife, as well as components of a moving device (adapted to move the anvil 4 relative to the cartridge device 2), a staple driving device (adapted to drive the staples out of the cartridge device 2 towards the anvil 4), and a knife actuating device (adapted to move the knife towards the anvil 4). The end face of the cartridge device 2, i.e. the surface from which the staples exiting from the cartridge device 2 are expelled towards the anvil 4, is formed in an end part 7 inserted into the circumferential wall of the housing 6.

The staple fastening assembly 1 can be removably mounted on a shaft of the stapling instrument by means of a coupling 8 provided at the proximal end region of the cartridge device 2. The terms “proximal” and “distal” relate to the view of the person operating the stapling instrument.

Generally, the overall design and the mechanical components, drive mechanisms and safety features of the surgical stapling instrument are as in a conventional circular stapling instrument; the three-dimensional shape of the staple lines and some details of the staple driving device, however, are different, as explained in the following.

FIG. 2 shows the end part 7 in an isometric view. The distal surface of the end part 7 comprises slots from which the staples are expelled towards the anvil 4 when the stapling instrument is “fired”. These slots are arranged in two closed rows, thus defining a first closed row 10 of staples (the outer one in FIG. 2) and a second closed row 12 of staples (the inner one in FIG. 2).

Three of these exit slots of the first closed row 10 are designated by the reference numerals 14, 15, and 16. As shown in FIG. 2, the exit slots 14, 15, and 16 and all the other exit slots of the first closed row 10 lie in the same plane, i.e. a plane perpendicular to the longitudinal axis of the staple fastening assembly 1. Between the exit slots 14 and 15, there is a gap or recess 18, whereas a protrusion 19 emerges from the area between the exit slots 15 and 16. This pattern is repeated along the circumference of the first closed row 10. In this way, the line along which the first closed row 10 of staples is arranged, i.e. the line around the first closed row 10 following the surface topography of the end part 7 and descending into the recess 18 and ascending around the protrusion 19, has a stepped shape. It is this line which defines, in the area of the first closed row 10, the tissue contact between the cartridge device 2 and the anvil 4 when the stapling instrument is operated.

In a similar manner, the line along which the second closed row 12 of staples is arranged has a stepped shape as well. In this case, however, the exit slots of the staples are located in two different planes, each perpendicular to the longitudinal axis of the staple fastening assembly 1. As shown in FIG. 2, exit slots 20 and 22 are in the same plane which is more distal than the plane of the exit slots of the first closed row 10. Exit slot 21, which is arranged between the exit slots 20 and 22, is located in the other plane and is more proximal than the exit slots of the first closed row 10. This pattern is repeated along the circumference of the second closed row 12. In the embodiment, the peaks of the protrusions 19 are in the plane of the exit slots 20 and 22, whereas the grounds of the recesses 18 are in the plane of exit slot 21. Exit slot 21 and the corresponding exit slots of the second closed row 21 are radially aligned with the recesses 18. As shown in FIG. 2, the staples of the first closed row 10 and the staples of the second closed row 12 are staggered with respect to each other.

In FIG. 2, a staple guide part 24 is located below the distal surface of the end part 7. The staple guide part 24 comprises guide slots 26 for guiding the staples of the first closed row 10 and guide slots 28 for guiding the staples of the second closed row 12. Each of theses guide slots 26, 28 accommodates one staple, the pointed ends of the staple facing the corresponding exit slot. The staple guide part 24 as well as the end part 7 are preferably made of a medical grade resin by injection moulding and may be manufactured as one component.

The circular knife, which is not shown in the figures, is guided at the inner periphery of the end part 7. It is moved in distal direction when the stapling instrument is actuated, as usual with conventional circular staplers. In the embodiment, the cutting edge of the knife has a stepped shape which essentially follows the stepped shape of the line along which the second closed row 12 of staples is arranged.

FIG. 3 shows the distal portion 30 of the staple driving device of the stapling instrument. In the embodiment, this portion is designed as an integrally moulded sleeve structure. It includes an actuator shaft 32 distally ending at a base 34 which is reinforced by means of ribs 35. The proximal end of the actuator shaft 32 is coupled to an actuating rod inside the shaft of the stapling instrument when the staple fastening assembly 1 is mounted to the distal end of this shaft. When the instrument is “fired”, i.e. when an actuating trigger located at the handle of the instrument is operated, the actuating rod is moved in distal direction, thus pushing the sleeve structure 30 in distal direction as well.

For each staple, the staple driving device 30 comprises a pusher protruding in distal direction and parallel to the longitudinal axis of the staple fastening assembly 1. These pushers are arranged in two rows, i.e. the outer pushers 36 for the first closed row 10 of staples and the inner pushers 38 and 39 for the second closed row 12 of staples. In the assembled state of the staple fastening assembly 1, the pushers 36 are guided in the guide slots 26, whereas the pushers 38 and 39 are guided in the guide slots 28. As shown in FIG. 3, all of the pushers 36 have the same length, but the pushers 39 are shorter than the pushers 38. The end side of each pusher 36, 38 and 39 abuts at the crown of a staple such that the staples are expelled from the exit slots of the first closed row 10 and the second closed row 12 when the instrument is fired.

The shorter pushers 39 are assigned to exit slot 21 and the corresponding exit slots of the second closed row 12, whereas the longer pushers 38 are assigned to the exit slots 20, 22 and the other exit slots in the more distal plane for the second closed row 12. The length of the pushers 36 is between that of the pushers 38 and 39, corresponding to the location of the exit slots of the first closed row 10. This design results in an almost simultaneous exit of all staples from their exit slots when the instrument is fired.

FIG. 4 is an isometric view onto the proximal surface of the anvil 4, which includes a peripheral rim 40 and an end plate 42. The proximal end side of the rim 40 is designed as a staple-forming surface 43. For each staple, the staple-forming surface 43 comprises a pair of staple-forming grooves which form or bend the pointed ends of the staple when these ends are pushed against the staple-forming surface 43 upon firing the instrument.

The relief of the staple-forming surface 43 is essentially a negative of the relief of the end surface of end part 7. Thus, in the mounted state of the anvil 4, the grooves 44, 45, and 46 match to the exit slots 14, 15, and 16 of the first closed row 10, and a protrusion 48 between the grooves 44 and 45 fits into the recess 18, whereas a recess 49 accommodates the protrusion 19 when the anvil 4 is close to the cartridge device 2. Similarly, the locations of grooves 50, 51, and 52 match to the positions of the exit slots 20, 21, and 22 of the second closed row 12.

Generally, the stapling instrument is operated like a conventional circular stapler. By moving the anvil 4 towards the cartridge device 2, the tissue ends to be stapled are clamped between the end surface of end part 7 and the staple-forming surface 43 of the anvil 4. The tissue follows the stepped shapes of the lines along which the first closed row 10 and the second closed row 12 of staples are arranged and is forced by protrusions like the protrusion 48 or the staple-forming surface 51 on the anvil 4 into corresponding recesses like the recess 18 or the area of the exit slot 21, and vice versa. The width of the recesses like recess 49 or recess 18 is somewhat larger than the width of the corresponding protrusions like protrusion 19 or protrusion 48, such that the tissue is not squeezed in the protrusion/recess pairs.

When the instrument is fired, the staples of the first closed row 10 and the second closed row 12 are expelled almost simultaneously from the end surface of the end part 7, penetrate the tissue parts and are formed at the staple-forming surface 43 of the anvil 4. Immediately afterwards, the cutting edge of the circular knife, which is mounted on the staple driving device 30 inside the pushers 38 and 39 of the second closed row 12, cuts the tissue.

After firing, the distance between the anvil 4 and the cartridge device 2 is somewhat increased in order to release the anastomosis seam. Because of the stepped structures of the end surface of the end part 7 and the staple-forming surface 43 of the anvil 4, the staple lines of the anastomosis seam have a greater length than comparable staple lines resulting from corresponding smooth surfaces in a conventional circular stapler of the same outer diameter. Consequently, retraction of the instrument is easier.

FIG. 5 is an isometric view onto the proximal surface of the anvil 4′ of a second embodiment of the surgical stapling instrument. The anvil 4′ is the counterpart of a cartridge device having two closed raws of staples, in which the designs of the outer closed raw of staples and of the inner closed raw of staples are reversed with respect to the cartridge device 2 of the first embodiment. To facilitate comparison with FIG. 4, in FIG. 5 the same reference numerals are used as in FIG. 4, but they are primed.

The relief of the staple-forming surface 43′ is essentially a negative of the relief of the end surface of the cartridge device of the second embodiment. In a corresponding staple driving device, the lengths of the pushers are adjusted to the locations of the staples in the cartridge device of the second embodiment. The cartridge device and the staple driving device of the second embodiment are not shown in the figures because the details are evident from a comparison with the first embodiment.

Bilotti, Federico, Neurohr, Mark A., Omaits, Todd P., Csiky, Laszlo

Patent Priority Assignee Title
10022126, Jan 07 2015 Covidien LP Loading unit locking collar
10039549, Jan 07 2015 Covidien LP Loading unit retention clip for surgical stapling instrument
10085744, Dec 08 2014 Covidien LP Loading unit attachment band for surgical stapling instrument
10085756, Jul 24 2015 Covidien LP Anvil assembly and anvil assembly delivery system
10111668, Jul 02 2015 Covidien LP Anvil assembly with snap backup ring
10111684, Sep 25 2015 Covidien LP Adapter assembly including a removable trocar assembly
10117655, Jul 22 2015 Covidien LP Loading unit locking band for surgical stapling instrument
10117656, Jan 07 2015 Covidien LP Loading unit locking collar
10117675, Jul 28 2015 Covidien LP Trocar tip protector
10154845, Jun 24 2014 Covidien LP System for delivering an anvil assembly to a surgical site
10178994, Mar 15 2013 Covidien LP Surgical stapling apparatus with reusable components
10213205, Jul 06 2012 Covidien LP T-slot tilt anvil for circular stapling instrument
10245040, Jul 11 2013 Covidien LP Methods and devices for performing a surgical anastomosis
10271843, Jun 17 2013 Covidien LP Surgical instrument with lockout mechanism
10285701, Jun 19 2012 Covidien LP Spring loaded anvil retainer
10342534, Mar 23 2017 Covidien LP Surgical stapling device with releasable knife carrier
10390835, Dec 10 2015 Covidien LP Surgical fastener apparatus with linear position sensor
10398439, Feb 10 2016 Covidien LP Adapter, extension, and connector assemblies for surgical devices
10405864, Jul 04 2014 Covidien LP Loading unit with shipping member for surgical stapling device
10426470, Nov 04 2016 Covidien LP Stapling device with releasable knife carrier
10426480, Apr 29 2015 Covidien LP Cutting ring assembly with rigid cutting member
10463373, Mar 14 2013 Covidien LP Powered stapling apparatus
10470772, Jun 24 2014 Covidien LP Anvil assembly delivery systems
10499916, Dec 11 2014 Covidien LP Surgical stapling loading unit
10499921, Jun 12 2013 Covidien LP EEA anvil snap ring activator
10499922, Nov 04 2016 Covidien LP Stapling device with self-releasing knife carrier pusher
10507022, Jun 12 2014 Covidien LP Surgical stapling apparatus
10507039, Sep 25 2015 Covidien LP Adapter assembly including a removable trocar assembly
10512466, Nov 05 2015 Covidien LP Adapter assembly for surgical device
10517601, Feb 15 2015 Covidien LP Surgical stapling device with firing indicator of unitary construction
10524797, Jan 13 2016 Covidien LP Adapter assembly including a removable trocar assembly
10542985, Dec 17 2014 Covidien LP Surgical stapling device with firing indicator
10542992, Oct 19 2015 Covidien LP Loading unit with stretchable bushing
10542993, Feb 24 2017 Covidien LP Anvil assembly of circular stapling device including alignment splines
10568631, Mar 07 2007 Covidien LP Stapler for mucosectomy
10575847, Nov 06 2008 Covidien LP Circular surgical stapler with mating anvil and shell assembly
10595870, Nov 13 2013 Covidien LP Anvil assembly with frangible retaining member
10595871, May 10 2016 Covidien LP Insertion instrument, adapter assemblies and protector assemblies for a flexible circular stapler
10603042, Feb 10 2016 Covidien LP Flexible circular stapler
10639041, Oct 10 2012 Covidien LP Surgical instrument with preload assembly
10653414, Sep 11 2013 Covidien LP Anvil assembly with sliding sleeve
10695069, Aug 23 2017 Covidien LP Circular stapling device with offset spline tip
10743880, Sep 21 2015 Covidien LP Loading unit locking collar with rotational actuated release
10751049, Dec 08 2014 Covidien LP Loading unit attachment band for surgical stapling instrument
10751055, Jul 22 2015 Covidien LP Loading unit locking band for surgical stapling instrument
10772627, Dec 11 2014 Covidien LP Stapler with auto-matic lockout mechanism
10779833, Dec 09 2014 Covidien LP Anvil assembly delivery system
10828026, Jul 18 2018 Covidien LP Tiltable anvil assembly
10842495, Oct 21 2015 Covidien LP Annular knife for a surgical stapler
10874399, Feb 04 2016 Covidien LP Circular stapler with visual indicator mechanism
10881408, Apr 22 2015 Covidien LP Interlock assembly for replaceable loading units
10881409, May 02 2017 Covidien LP Rotation assembly for a surgical device
10881410, Jul 24 2015 Covidien LP Anvil assembly and anvil assembly delivery system
10932783, Nov 13 2015 Covidien LP Circular stapler with audible indicator mechanism
10932784, Jun 09 2017 Covidien LP Handheld electromechanical surgical system
10939903, Jul 02 2015 Covidien LP Anvil assemblies and delivery systems
10952734, Apr 23 2018 Covidien LP Stapling device with cut ring biasing member
10966714, Jun 12 2015 Covidien LP Surgical anastomosis apparatus
10973522, Oct 20 2015 Covidien LP Circular stapler with tissue gap indicator assembly
10973544, Oct 02 2018 Covidien LP Retaining mechanism for trocar assembly
10980540, Jun 19 2012 Covidien LP Spring loaded anvil retainer
10980542, Nov 14 2016 Cilag GmbH International Circular surgical stapler with recessed deck
10987107, Jul 05 2017 Covidien LP Surgical stapling device
11013514, Jul 02 2015 Covidien LP Anvil assembly with snap backup ring
11020119, Dec 07 2015 Covidien LP Anvil assembly and delivery system
11026679, Jun 17 2013 COVIDIEN CHINA MEDICAL DEVICES TECHNOLOGY CO , LTD Surgical instrument with lockout mechanism
11045199, Jun 09 2017 Covidien LP Handheld electromechanical surgical system
11045201, Jul 11 2013 Covidien LP Methods and devices for performing a surgical anastomosis
11065004, Jun 14 2013 Covidien LP Anvil assembly with sliding sleeve
11065005, Nov 07 2018 Covidien LP Reload assembly for a circular stapling device
11071549, Mar 23 2017 Covidien LP Circular stapling device with alignment splines
11076852, Mar 23 2017 Covidien LP Surgical stapling device with releasable knife carrier
11083461, Mar 15 2013 Covidien LP Surgical stapling apparatus with reusable components
11090054, Aug 07 2017 Covidien LP Stapling device with resettable tilt anvil assembly
11116507, Mar 09 2017 Covidien LP End effector assembly for a circular stapler apparatus
11123101, Jul 05 2019 Covidien LP Retaining mechanisms for trocar assemblies
11129619, Nov 13 2013 Covidien LP Anvil assembly and delivery system
11129620, Jan 13 2016 Covidien LP Adapter assembly including a removable trocar assembly
11141162, Jul 08 2016 Covidien LP Loading unit locking collar with linearly actuated release
11141163, Oct 04 2018 Covidien LP Circular stapling device with anvil rotation locking structure
11147561, Nov 28 2018 Covidien LP Reload assembly for a circular stapling device
11166728, Feb 08 2019 Covidien LP Reload assembly for a circular stapling device
11192227, Jul 16 2019 Covidien LP Reload assembly for circular stapling devices
11197676, Jun 28 2018 Covidien LP Tie-down method for anvil assembly delivery system
11234703, Sep 01 2017 Covidien LP Circular stapling device with position ribs
11241232, Jan 24 2017 Covidien LP Surgical stapling device with resettable anvil assembly
11241234, Aug 14 2018 Covidien LP Anvil assembly with self-retaining backup member
11246599, Apr 25 2019 Covidien LP End effector for circular stapling instrument
11253255, Jul 26 2019 Covidien LP Knife lockout wedge
11259812, Jun 24 2014 Covidien LP Anvil assembly delivery systems
11272998, Mar 04 2020 Covidien LP Strain gage fixation in tension
11278314, Sep 25 2015 Covidien LP Adapter assembly including a removable trocar assembly
11298152, Feb 28 2020 Covidien LP Trocar retaining mechanism including band support
11317945, Apr 16 2019 Covidien LP Trocar assemblies for adapter assemblies for surgical stapling instruments
11324507, Nov 03 2017 Covidien LP Device and method for attachment of a stomal sleeve
11324508, Feb 24 2017 Covidien LP Anvil assembly of circular stapling device including alignment splines
11331782, Mar 01 2019 Covidien LP Reload assembly for a circular stapling device
11337701, Mar 01 2019 Covidien LP Devices and methods for assembling adapter assemblies
11344330, Apr 16 2019 Covidien LP Trocar assemblies for adapter assemblies for surgical stapling instruments
11350939, Mar 24 2020 Covidien LP Retaining mechanisms for trocar assemblies
11357509, Jul 11 2019 Covidien LP Reload assembly for a circular stapling device
11376007, May 10 2016 Covidien LP Insertion instrument, adapter assemblies and protector assemblies for a flexible circular stapler
11382629, Mar 09 2017 Covidien LP Surgical stapling device with audible indicator mechanism
11382630, Feb 25 2020 Covidien LP Surgical stapling device with two part knife assembly
11389263, Dec 13 2018 Covidien LP Lockout mechanisms for surgical instruments
11399825, Oct 28 2019 Covidien LP Reload assembly with knife carrier lockout
11399838, Apr 22 2019 Covidien LP Reload assembly for circular stapling devices
11419631, Apr 16 2019 Covidien LP Trocar assemblies for adapter assemblies for surgical stapling instruments
11426169, Mar 24 2020 Covidien LP Retaining mechanisms for trocar assemblies
11426170, Mar 24 2020 Covidien LP Retaining mechanisms for trocar assemblies
11446035, Jun 24 2019 Covidien LP Retaining mechanisms for trocar assemblies
11446036, Sep 23 2013 Cilag GmbH International Methods and systems for performing circular stapling
11452522, Aug 15 2016 Covidien LP Circular stapling device with articulating anvil retainer assembly
11457921, Mar 26 2019 Covidien LP Anvil assembly for surgical stapling instrument
11464510, Jul 26 2019 Covidien LP Reload assembly with knife carrier lockout
11490894, May 12 2021 Covidien LP Surgical device with grease filter
11497501, Mar 26 2018 Covidien LP Circular stapling device with A-frame splines
11517317, Jan 06 2020 Covidien LP Trocar release assemblies for a surgical stapler
11518014, Jul 16 2019 Covidien LP Reload assembly for circular stapling devices
11523828, Jan 28 2020 Covidien LP Sealed reload assembly for stapling device
11529144, Feb 22 2019 Covidien LP Encapsulated plug assembly for electromechanical surgical devices
11534164, Apr 05 2019 Covidien LP Strain gauge stabilization in a surgical device
11540834, Jul 02 2015 Covidien LP Anvil assembly with snap backup ring
11547405, May 22 2020 Covidien LP Surgical stapling device
11547411, Feb 22 2019 Covidien LP Anastomosis wound protector
11547412, Jul 22 2020 Covidien LP Surgical instruments and methods of assembly
11547413, Jul 11 2013 Covidien LP Methods and devices for performing a surgical anastomosis
11547438, Feb 24 2020 Covidien LP Tip protector for ensuring trocar insertion
11553917, Sep 21 2015 Covidien LP Loading unit locking collar with rotational actuated release
11553918, Dec 16 2019 Covidien LP Reload assembly with knife carrier lockout
11553920, May 03 2021 Covidien LP Trocar retainer assembly for surgical stapler
11553921, Jul 15 2020 Covidien LP Surgical stapling device with flexible shaft
11564691, Aug 24 2018 Covidien LP Powered circular stapling device
11576678, Oct 04 2018 Covidien LP Circular stapling device with anvil rotation locking structure
11596400, Jun 09 2017 Covidien LP Handheld electromechanical surgical system
11596410, Apr 05 2019 Covidien LP Surgical stapling device
11612400, May 24 2021 Covidien LP Trocar assembly with bearing assembly for load sharing
11622767, Feb 19 2020 Covidien LP Sealed trocar assembly for stapling device
11627966, Aug 26 2020 Covidien LP Surgical stapling device
11627967, Nov 23 2020 Covidien LP Trans-anastomotic insertion device
11642131, May 17 2021 Covidien LP Devices and methods for shortening a rectal stump during a lower anterior resection procedure
11642135, Sep 01 2017 Covidien LP Circular stapling device with position ribs
11653925, May 21 2020 Covidien LP Tissue relaxation monitoring for optimized tissue stapling
11660116, Apr 16 2019 Covidien LP Trocar assemblies for adapter assemblies for surgical stapling instruments
11678885, Jan 25 2017 Circular stapling device and method of use
11690624, Jun 21 2019 Covidien LP Reload assembly injection molded strain gauge
11712509, Oct 02 2020 Covidien LP Seal assembly for circular stapling instrument
11717299, Oct 12 2021 Covidien LP Surgical stapling device with probiotics
11730481, Jan 06 2020 Covidien LP Assemblies for retaining a trocar assembly
11737759, Aug 05 2021 Covidien LP Surgical stapling device accommodating prolapsed tissue
11744592, Aug 05 2021 Covidien LP Handheld electromechanical stapler with tissue thickness detection
11779343, Feb 26 2020 Covidien LP Staple reload assembly with releasable knife
11786241, Feb 16 2021 Covidien LP Surgical stapling device including a hydraulic staple formation mechanism
11801054, Sep 22 2020 Covidien LP Surgical stapler with oval tool assembly
11819208, Aug 05 2021 Covidien LP Handheld electromechanical surgical device with strain gauge drift detection
11839371, Jul 02 2015 Covidien LP Anvil assemblies and delivery systems
11839378, Apr 19 2019 Covidien LP Circular stapling instruments
11857194, Jun 09 2017 Covidien LP Handheld electromechanical surgical system
11864768, Jun 09 2017 Covidien LP Handheld electromechanical surgical system
11877744, Aug 14 2020 Covidien LP Low-cost powered stapler with end stop selection
11877750, Jan 21 2021 Covidien LP Surgical stapler with powered and manual functions
11883028, Sep 08 2021 Covidien LP Systems and methods for post-operative anastomotic leak detection
11896233, May 31 2019 Covidien LP Circular stapling device
11911029, Jul 26 2019 Covidien LP Knife lockout wedge
11911038, Jan 13 2020 Covidien LP Cut optimization for excessive tissue conditions
7975895, Mar 19 2004 Covidien LP Tissue tensioner assembly and approximation mechanism for surgical stapling device
8146790, Jul 11 2009 Covidien LP Surgical instrument with safety mechanism
8152836, Aug 17 2007 Cook Medical Technologies LLC Visceral staples for purse-string closure of perforations
8181838, Sep 10 2008 Covidien LP Surgical stapling device
8231042, Nov 06 2008 Covidien LP Surgical stapler
8267301, Aug 19 2009 Covidien LP Surgical stapler
8272555, Mar 07 2007 Covidien AG Stapler for mucosectomy
8281974, Jan 14 2009 Covidien LP Surgical stapler with suture locator
8322590, Oct 28 2009 Covidien LP Surgical stapling instrument
8328062, Jul 21 2009 Covidien LP Surgical instrument with curvilinear tissue-contacting surfaces
8343185, Sep 10 2008 Covidien LP Surgical stapling device
8360295, Sep 10 2008 Covidien LP Surgical stapling device
8377095, Dec 05 2008 Cook Medical Technologies LLC Tissue anchors for purse-string closure of perforations
8424535, Nov 06 2008 Covidien LP Circular surgical stapler with mating anvil and shell assembly
8430292, Oct 28 2009 Covidien LP Surgical fastening apparatus
8453911, Aug 19 2009 Covidien LP Surgical stapler
8453913, Feb 06 2009 Covidien LP Anvil for surgical stapler
8551139, Nov 30 2006 Cook Medical Technologies LLC Visceral anchors for purse-string closure of perforations
8647368, Apr 03 2009 Cook Medical Technologies, LLC Tissue anchors and medical devices for rapid deployment of tissue anchors
8684248, Jul 11 2009 Covidien LP Surgical instrument with safety mechanism
8684251, Mar 07 2007 Covidien AG Stapler for mucosectomy
8684252, Oct 28 2009 Covidien LP Surgical stapling instrument
8708212, Oct 18 2011 Covidien LP Tilt top anvil with torsion spring
8727199, Jan 03 2008 Covidien LP Surgical stapler
8740937, May 31 2007 Cook Medical Technologies LLC Suture lock
8764768, Aug 29 2008 Cook Medical Technologies LLC Stapling device for closing perforations
8827135, Mar 14 2008 TRANSENTERIX, INC Hernia stapler with integrated mesh manipulator
8833630, Jul 11 2009 Covidien LP Surgical instrument with safety mechanism
8870049, Mar 14 2008 TRANSENTERIX, INC Hernia stapler
8875974, Mar 07 2007 Covidien AG Stapler for mucosectomy
8893948, Oct 18 2011 Covidien LP Tilt top anvil with torsion spring
8905288, Jan 03 2008 Covidien LP Surgical stapler
8905289, Oct 28 2009 Covidien LP Surgical stapling instrument
8931680, Jul 11 2009 Covidien LP Surgical instrument with safety mechanism
9010605, Jan 12 2012 Covidien LP Sliding sleeve for circular stapling instrument reloads
9016547, Oct 26 2011 Covidien LP EEA tilt top anvil with ratchet/locking mechanism
9022274, Feb 15 2012 Covidien LP Circular stapler with increased lumen diameter
9113871, Sep 10 2008 Covidien LP Surgical stapling device
9113886, Oct 18 2011 Covidien LP Tilt top anvil with torsion spring
9119621, Mar 07 2007 Covidien AG Stapler for mucosectomy
9345482, Jan 12 2012 Covidien LP Sliding sleeve for circular stapling instrument reloads
9351724, Jan 11 2013 Covidien LP Circular stapling instrument
9351734, Jun 19 2012 Covidien LP Spring loaded anvil retainer
9358006, Sep 10 2008 Covidien LP Surgical stapling device
9421013, Oct 28 2009 Covidien LP Surgical Fastening Apparatus
9463018, Feb 06 2009 Covidien LP Anvil for surgical stapler
9517070, Nov 13 2013 Covidien LP Anvil assembly and delivery system
9532780, Jun 12 2013 Covidien LP EEA anvil snap ring activator
9554802, Nov 13 2013 Covidien LP Anvil assembly with frangible retaining member
9572572, Nov 09 2012 Covidien LP Circular stapler mechanical lockout
9592051, Oct 28 2009 Covidien LP Surgical stapling instrument
9592056, Mar 14 2013 Covidien LP Powered stapling apparatus
9597083, Jan 11 2013 Covidien LP Circular stapling instrument
9629624, Nov 06 2008 Covidien LP Circular surgical stapler with mating anvil and shell assembly
9636113, Jan 03 2008 Covidien LP Surgical stapler
9668740, Jun 14 2013 Covidien LP Anvil assembly with sliding sleeve
9675359, Oct 10 2012 Covidien LP Surgical instrument with preload assembly
9681871, Nov 09 2012 Covidien LP Circular stapler mechanical lockout
9693773, Sep 11 2013 Covidien LP Anvil assembly with sliding sleeve
9750503, Jul 11 2013 Covidien LP Methods and devices for performing a surgical anastomosis
9757133, Jul 09 2014 Covidien LP Methods and devices for performing a surgical anastomosis
9855045, Dec 09 2014 Covidien LP Anvil assembly delivery system
9861367, Jun 24 2014 Covidien LP Anvil assembly delivery systems
9867614, Oct 18 2011 Covidien LP Tilt top anvil with torsion spring
9867619, Jun 24 2014 Covidien LP System for delivering an anvil assembly to a surgical site
9883862, Mar 07 2007 Covidien LP Stapler for mucosectomy
9913643, May 09 2014 Covidien LP Interlock assemblies for replaceable loading unit
9918714, Jun 13 2014 Cook Medical Technologies LLC Stapling device and method
9974536, Jul 02 2015 Covidien LP Anvil assemblies and delivery systems
9980730, Sep 21 2015 Covidien LP Loading unit locking collar with rotational actuated release
9987001, Jun 12 2015 Covidien LP Surgical anastomosis apparatus
D707819, Jul 20 2012 Cilag GmbH International Surgical stapler cartridge
D726315, Jul 20 2012 Cilag GmbH International Surgical stapler cartridge
Patent Priority Assignee Title
3078465,
3079606,
3771526,
4169476, Aug 12 1977 Wolf Medical Instruments Corporation Applicator for surgical clip
4289133, Feb 28 1980 ETHICON, INC , A CORP OF NEW JERSEY Cut-through backup washer for the scalpel of an intraluminal surgical stapling instrument
4290542, Dec 25 1978 Surgical instrument for staple suturing of organs
4752024, Oct 17 1986 UNITED STATES SURGICAL CORPORATION, A CORP OF CT Surgical fastener and surgical stapling apparatus
5205459, Aug 23 1991 Ethicon, Inc. Surgical anastomosis stapling instrument
5275322, Aug 23 1991 Ethicon, Inc. Surgical anastomosis stapling instrument
5452837, Jan 21 1994 Ethicon Endo-Surgery, Inc. Surgical stapler with tissue gripping ridge
5667526, Sep 07 1995 Tissue retaining clamp
5732872, Oct 31 1995 Heartport, Inc Surgical stapling instrument
5915616, Oct 18 1991 United States Surgical Corporation Surgical fastener applying apparatus
6126058, Jun 19 1998 BOSTON SCIENTIFIC LTD Method and device for full thickness resectioning of an organ
6193129, Jan 24 2000 Ethicon Endo-Surgery, Inc. Cutting blade for a surgical anastomosis stapling instrument
EP1090592,
RU122539,
WO154594,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 07 2006Ethicon Endo-Surgery, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
May 27 2009M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 11 2013M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 15 2017M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Sep 18 20104 years fee payment window open
Mar 18 20116 months grace period start (w surcharge)
Sep 18 2011patent expiry (for year 4)
Sep 18 20132 years to revive unintentionally abandoned end. (for year 4)
Sep 18 20148 years fee payment window open
Mar 18 20156 months grace period start (w surcharge)
Sep 18 2015patent expiry (for year 8)
Sep 18 20172 years to revive unintentionally abandoned end. (for year 8)
Sep 18 201812 years fee payment window open
Mar 18 20196 months grace period start (w surcharge)
Sep 18 2019patent expiry (for year 12)
Sep 18 20212 years to revive unintentionally abandoned end. (for year 12)