The infrared absorption filter of the present invention has a transmittance of not higher than 30% in the near-infrared region in the wavelength range of 800 to 1100 nm; a difference of 10% or less between a maximum value and a minimum value of transmittance in the visible light region in the wavelength range of 450 to 650 nm; and a transmittance of not lower than 50% at a wavelength of 550 nm, the filter being so excellent in environmental stability that after being left to stand in the air atmosphere at a temperature of 60° C. and a humidity of 95% for 1000 hours, the filter can maintain said spectral property in said range. Consequently, when used for a plasma display or the like, the filter can absorb the unwanted infrared rays radiated from the display, resulting in preventing erroneous operation of a remote control using infrared radiation even in such a high-temperature and high-humidity environment. The filter is gray in color so that when placed in front of a display, the color originated in the display can be seen without discoloration.
|
1. An infrared absorption filter which has a transmittance of not higher than 30% in the near-infrared region in the wavelength range of 800 to 1100 nm;
a difference of 10% or less between a maximum value and a minimum value of transmittance in the visible light region in the wavelength range of 450 to 650 nm; and
a transmittance of not lower than 50% at a wavelength of 550 nm,
said filter, after being left to stand in the air atmosphere at a temperature of 60° C. and a humidity of 95% for 1000 hours, having
a transmittance of not higher than 30% in the near-infrared region in the wavelength range of 800 to 1100 nm, and
a difference of 10% or less between a maximum value and a minimum value of transmittance in the visible light region in the wavelength range of 450 to 650 nm,
said filter having an infrared-absorbing layer on a transparent substrate,
the infrared-absorbing layer being composed of a coloring matter, dye or pigment absorbing infrared radiation and a polymer serving as a dispersing medium and
the transparent substrate having a total light transmittance of not lower than 89%, a haze of not higher than 1.6%, a coefficient of static friction of not higher than 0.6 and a coefficient of dynamic friction of not higher than 0.6.
0. 16. An infrared absorption filter which has a transmittance of not higher than 30% in the near-infrared region in the wavelength range of 800 to 1100 nm;
a difference of 10% or less between a maximum value and a minimum value of transmittance in the visible light region in the wavelength range of 450 to 650 nm; and
a transmittance of not lower than 50% at a wavelength of 550 nm,
said filter, after being left to stand in the air atmosphere at a temperature of 60° C. and a humidity of 95% for 1000 hours, having
a transmittance of not higher than 30% in the near-infrared region in the wavelength range of 800 to 1100 nm, and
a difference of 10% or less between a maximum value and a minimum value of transmittance in the visible light region in the wavelength range of 450 to 650 nm,
said filter comprising a transparent substrate and an infrared-absorbing layer formed thereon,
the filter being prepared by coating the transparent substrate with a coating solution comprising an infrared-absorbing material, a binder resin and at least one solvent, and
the transparent substrate having a total light transmittance of not lower than 89%, a haze of not higher than 1.6%, a coefficient of static friction of not higher than 0.6 and a coefficient of dynamic friction of not higher than 0.6.
2. The infrared absorption filter according to
3. The infrared absorption filter according to
4. The infrared absorption filter according to
5. The infrared absorption filter according to
6. The infrared absorption filter according to
7. The infrared absorption filter according to
8. The infrared absorption filter according to
9. The infrared absorption filter according to
10. The infrared absorption filter according to
11. The infrared absorption filter according to
12. The infrared absorption filter according to
13. The infrared absorption filter according to
14. The infrared absorption filter according to
15. The infrared absorption filter according to
0. 17. The infrared absorption filter according to
0. 18. The infrared absorption filter according to
0. 19. The infrared absorption filter according to
0. 20. The infrared absorption filter according to
0. 21. The infrared absorption filter according to
0. 22. The infrared absorption filter according to
0. 23. The infrared absorption filter according to
0. 24. The infrared absorption filter according to
0. 25. The infrared absorption filter according to
0. 26. The infrared absorption filter according to
0. 27. The infrared absorption filter according to
|
Binder resins for use herein are not limited insofar as they can uniformly disperse the near-infrared-absorbing material used in the invention. Suitable examples include, for example, polyester resins, acrylic resins, polyamide resins, polyurethane resins, polyolefin resins, polycarbonate resins and the like. Desirably the binder resin for dispersing the near-infrared-absorbing material(s) has a glass transition temperature which is not less than the assumed guaranteed temperature for use of the filter of the invention. Thereby the stability of the near-infrared-absorbing material is increased. The assumed guaranteed temperature for use of the filter of the invention is preferably 80° C. or higher, more preferably 85° C. or higher.
Solvents useful in preparing a coating solution in the coating process can be any solvent insofar as they can uniformly disperse the near-infrared-absorbing material and the binder for use herein. Examples of useful solvents are acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetone, propyl acetate, methanol, ethanol, isopropyl alcohol, ethyl cellosolve, benzene, toluene, xylene, tetrahydrofuran, n-hezane, n-heptane, methylene chloride, chloroform, N,N-dimethylformamide, water and the like to which the solvents for use herein are not limited.
There is no limitation on infrared-absorbing materials useful in the present invention. Examples are as follows.
As the near infrared-absorbing materials, in addition to the diimmonium salt compound of the formula (1), one or both of fluorine-containing phthalocyanine compound and dithiol metal complex compound can preferably be contained in the coating solution. The coating solution preferably contains at least two species of diimmonium salt compound, fluorine-containing phthalocyanine compound and nickel complex compound. Preferred proportions of the near infrared-absorbing materials are 0.5 to 0.01 parts by weight of fluorine-containing phthalocyanine compound if used and 1 to 0 part by weight of nickel complex compound, per part by weight of the diimmonium salt compound.
Examples of the diimmonium salt compound of the formula (1) are N,N,N′,N′-tetrakis(p-di-n-butylaminophenyl)-p-benzoquinone-diimmonium.ditetrafluoroantimonate, N,N,N′,N′-tetrakis(p-diethylaminophenyl)-p-benzoquinone-diimmonium.ditetrafluoroantimonate, N,N,N′,N′,-tetrakis(p-di-n-butylaminophenyl)-p-benzoquinone-diimmonium.diperchlorate, N,N,N′,N′-tetrakis(p-diethylaminophenyl)-p-benzoquinone-diimmonium.diperchlorate, N,N,N′,N′-tetrakis(p-diisopropylaminophenyl)-p-benzoquinone-diimmonium.ditetrafluorophosphate, N,N,N′,N′-tetrakis(p-n-propylaminophenyl)-p-benzoquinone-diimmonium.dinitrate and so on to which, however, useful diimmonium salt compounds are not limited. Some of them are commercially available. Among them, Kayasorb IRG-022, IRG-023 and the like (products of NIPPON KAYAKU Co., Ltd.) are suitably usable.
Useful fluorine-containing phthalocyanine compounds include, for example, Excolor IR1, IR2, IR3 and IR4 (products of NIPPON SHOKUBAI Co., Ltd.). Useful dithiol metal complex compounds include, for example, SIR-128, SIR-130, SIR-132 and SIR-159 (products of Mitsui Chemicals, Inc.).
The infrared absorption filter of the present invention preferably contains a UV-absorbing agent to enhance the resistance to light. Furthermore, in the present invention, the polymer for dispersing the infrared-absorbing material may be crosslinked with a crosslinking agent to impart weatherability and resistance to solvents to the filter.
There is no limitation on transparent substrate films for use in the infrared absorption filter of the present invention. Useful transparent substrate films include, for example, stretched films formed of polyester resins, acrylic resins, cellulose resins, polyethylene resins, polypropylene resins, polyolefin resins, polyvinyl chloride resins, polycarbonate, phenolic resins, urethane resins or the like. From the standpoint of dispersion stability, environmental load and the like, polyester films are preferable.
In the infrared absorption filter having the infrared-absorbing layer on at least one side of the transparent polymer film, the transparent polymer film preferably has a total light transmittance of not lower than 89%, a haze of not higher than 1.6%, a coefficient of static friction of not higher than 0.6 and a coefficient of dynamic friction of not higher than 0.6.
The infrared absorption filter of the invention which is often used for display purposes has desirably a high total light transmittance, and desirably a low haze. However, if inert particles capable of imparting an uneven surface to the film are used in a reduced amount to increase the total light transmittance and to reduce the haze, generally the coefficient of friction is increased and the slidability is deteriorated, making it difficult to carry out the winding or like operation. If the total light transmittance, haze and coefficient of friction are within the ranges of the invention, it is possible to bring both the windability and the total light transmittance to the desired ranges.
In order to give the total light transmittance, haze and coefficient of friction in the above mentioned ranges, it is desirable to form a coating layer of 30 to 300
(4) Total Light Transmittance and Haze
Measured with a haze meter (product of Tokyo Denshoku Kogyo K.K., Model TC-H3DP) according to JIS K 7105
(5) Coefficient of Friction
The coefficient of static friction (μs) and the coefficient of dynamic friction (μd) were obtained according to JIS K 7125.
A base polyester to be used as a dispersing medium was prepared as follows. Charged into an autoclave equipped with a thermometer and a stirrer were:
Dimethyl terephthalate
136
wt. Parts
Dimethyl isophthalate
58
wt. Parts
Ethylene glycol
96
wt. parts
Tricyclodecane dimethanol
137
wt. parts
Antimony trioxide
0.09
wt. part
These ingredients were heated to 170 to 220° C. for 180 minutes to undergo an ester exchange reaction. Then the temperature of the reaction system was elevated to 245° C. to continue the reaction under a pressure of 1 to 10 mmHg for 180 minutes, giving a polyester copolymer resin (A1). The polyester copolymer resin (A1) had an inherent viscosity of 0.4 dl/g and a glass transition temperature of 90° C. NMR analysis gave the following copolymer composition ratio:
Acid components
Terephthalic acid
71 mol %
Isophthalic acid
29 mol %
Alcohol components
Ethylene glycol
28 mol %
Tricyclodecane dimethanol
72 mol %
A flask was charged with the infrared-absorbing materials, the above-obtained resin and the solvents shown in Table 1 in the proportions indicated therein. The mixture was heated with stirring to dissolve the infrared-absorbing materials and the binder resin in the solvents. The resin solution was applied to a highly transparent polyester film substrate of 100 μm thickness having a slidable surface on one side and a smooth surface on the other side (product of Toyo Boseki K.K., “Cosmoshine A 4100; total light transmittance 90.9%, haze 0.7, coefficient of static friction (slidable surface/smooth surface: 0.58/>1), coefficient of dynamic friction (slidable surface/smooth surface: 0.42/>1)) using an applicator with a gap of 100 μm. The deposited layer was dried at a wind velocity of 0.4 m/s and a temperature of 90° C. in a hot air drier for 1 hour. The resulting coating film had a thickness of 25 μm.
The obtained infrared absorption filter had a color of dark gray when seen. The spectral property qf the filter is shown in FIG. 1. As shown in
The obtained filter was left to stand in the atmosphere of a temperature of 60° C. and a humidity of 95% for 1000 hours, and the spectral property was evaluated again with the results shown in FIG. 2. While a slight color change occurred, a difference of 9.8% was found between a maximum value and a minimum value of transmittance in the wavelength range of 450 to 650 nm and the transmittance in the wavelength range was 65.5% at lowest. The transmittance was 29.1% at highest in the wavelength range of 800 to 1100 nm and the filter retained the near-infrared-absorbing property.
Further, the obtained filter was left to stand in the atmosphere of a temperature of 80° C. for 1000 hours, and the spectral property was evaluated again with the results shown in FIG. 3. While a slight color change was brought about, a difference was 5.8% between a maximum value and a minimum value of transmittance in the wavelength range of 450 to 650 nm and the transmittance in the wavelength range was 67.2% at lowest. The transmittance was 21.0% at highest in the wavelength range of 800 to 1100 nm and the filter retained the near-infrared-absorbing property.
When disposed in front of a plasma display or the like, the obtained filter showed no change of color and increased the contrast, resulting in reduced level of near-infrared radiation.
TABLE 1
Ingredient
Material
Amount
Near-
Diimmonium salt compound,
3.2
wt. Parts
infrared-
Kyasorb IRG-022 manufactured
absorbing
by Nippon Kayaku Co., Ltd.
material
Fluorine-containing
0.5
wt. Part
phthalocyanine compound,
Excolor IR-1 manufactured by
Nippon Shokubai Co., Ltd.
Dithiol metal complex
1.6
wt. Parts
compound, SIR-159
manufactured by Mitsui Chemicals, Inc.
Binder resin
Polyester copolymer resin
440
wt. Parts
(A1)
Solvent
Methyl ethyl ketone
490
wt. Parts
Tetrahydrofuran
490
wt. Parts
Toluene
490
wt. Parts
Vylon RV 200 manufactured by Toyo Boseki K.K. (specific weight 1.26, glass transition temp. 67° C.) was used as a base polymer. A flask was charged with the infrared-absorbing materials, the binder resin and the solvents as shown in Table 2 in the proportions indicated therein. These ingredients were heated with stirring to dissolve the the infrared-absorbing materials and the binder resin in the solvents. The resin solution was applied to a highly transparent polyester film substrate of 100 μm thickness (product of Toyo Boseki K.K, “Cosmoshine A 4100”) using an applicator with a gap of 100 μm. The deposited layer was dried at a wind velocity of 0.4 m/s and a temperature of 90° C. in a hot air drier for 1 hour. The resulting coating film had a thickness of 25 μm. The obtained infrared absorption filter had a brown color when seen. As shown by the spectral property of the filter in
The obtained filter was left to stand in the atmosphere of a temperature of 60° C. and a humidity of 95% for 1000 hours, and the spectral property was evaluated again with the following results. A difference was increased from 11.5% to 28.6% between a maximum value and a minimum value of transmittance in the wavelength range of 450 to 650 nm and the transmittance in the wavelength range was 54% at lowest. The transmittance was increased to 49.0% at highest in the wavelength range of 800 to 1100 nm. The filter was deep green when seen. The spectral property is shown in FIG. 5. When disposed in front of a plasma display or the like, the obtained filter lost a color balance, and turned greenish.
Further, the obtained filter was left to stand in the atmosphere of a temperature of 80° C. for 1000 hours, and the spectral property was evaluated again with the following results. A difference rose from 11.5% to 20.3% between a maximum value and a minimum value of transmittance in the wavelength range of 450 to 650 nm and the transmittance in the wavelength range was 61.8% at lowest. The transmittance was increased to 47.2% at highest in the wavelength range of 800 to 1100 nm. The filter was deep green when seen. The spectral property of the filter is shown in FIG. 6. When disposed in front of a plasma display or the like, the obtained filter lost a color balance, and turned greenish.
TABLE 2
Ingredient
Material
Amount
Near-
Diimmonium salt compound,
3.2
wt. parts
infrared-
Kyasorb IRG-022 manufactured
absorbing
by Nippon Kayaku Co., Ltd.
material
Binder resin
Vylon RV 200 manufactured by
440
wt. parts
Toyo Boseki K.K.
Solvent
Methyl ethyl ketone
490
wt. parts
Tetrahydrofuran
490
wt. parts
Toluene
490
wt. parts
Vylon RV 200 (product of Toyo Boseki K.K., specific weight 1.26, glass transition temp. 67° C.) was used as a base polymer. A flask was charged with the infrared-absorbing materials, the binder resin and the solvents as shown in Table 3 in the proportions indicated therein. These ingredients were heated with stirring to dissolve the infrared-absorbing materials and the binder resin in the solvents. The resin solution was applied to a highly transparent polyester film substrate of 100 μm thickness (product of Toyo Boseki K.K., “Cosmoshine A 4100”) using an applicator with a gap of 100 μm. The deposited layer was dried at a wind velocity of 0.4 m/s and a temperature of 90° C. in a hot air drier for 1 hour. The resulting coating film had a thickness of 25 μm.
The obtained infrared absorption filter was dark gray when seen. The spectral property of the filter was substantially the same as in Example 1. The absorption was plotted as flat in the visible light region in the wavelength range of 400 to 650 nm. The sharp absorption was observed at 700 nm or more.
The obtained filter was left to stand in the atmosphere of a temperature of 60° C. and a humidity of 95% for 1000 hours, and the spectral property was evaluated again with the results shown in
Further the obtained filter was left to stand in the atmosphere of a temperature of 80° C. for 1000 hours, and the spectral property was evaluated again with the results shown in
TABLE 3
Ingredient
Material
Amount
Near-
Diimmonium salt compound,
3.2
wt. parts
infrared-
Kyasorb IRG-022 manufactured
absorbing
by Nippon Kayaku Co., Ltd.
material
Fluorine-containing
0.5
wt. part
phthalocyanine compound,
Excolor IR-1 manufactured by
Nippon Shokubai Co., Ltd.
Dithiol metal complex
1.6
wt. parts
compound, SIR-159
manufactured by Mitsui Chemicals, Inc.
Binder resin
Vylon RV 200 manufactured by
440
wt. parts
Toyo Boseki K.K.
Solvent
Methyl ethyl ketone
490
wt. parts
Tetrahydrofuran
490
wt. parts
Toluene
490
wt. parts
A coating solution was prepared using the polyester copolymer resin (A1) described in Example 1 together with the other ingredients shown in Table 1 in the proportions indicated therein. The coating solution thus obtained was applied to a highly transparent polyester film substrate of 100 μm thickness (product of Toyo Boseki K.K., “Cosmoshine A 4300”, total transmittance 90.9% haze 0.7, coefficient of static friction (both surfaces) 0.58, coefficient of dynamic friction (both surfaces) 0.42) by a gravure roll. The deposited layer was dried for 1 minute by feeding hot air at a wind velocity of 5 m/s and a temperature of 130° C. and then the filter was wound into a roll. The resulting coating layer had a thickness of 8.0 pm. The amount of residual solvents in the coating layer was 4.1 wt. %. The filter had a high slidability and showed a good roll appearance.
The obtained infrared absorption filter looked dark gray when seen. The spectral property of the filter is shown in FIG. 9. As shown in
The obtained filter was left to stand in the atmosphere of a temperature of 60° C. and a humidity of 95% for 1000 hours, and the spectral property was evaluated again with the results shown in FIG. 10. The filter showed no great change in the spectral curve and exhibited stable performance.
The coating solution used in Example 1 was applied to a highly transparent polyester film substrate (product to Toyo Boseki K.K., “Cosmoshine A 4300”) by a gravure roll. The deposited layer was dried for 1 minute by feeding hot air at a wind velocity of 5 m/s and a temperature of 120° C. The coating layer had a thickness of 11 μm. The amount of residual solvents in the coating layer was 6.5 wt. %. The filter looked dark gray when seen. The spectral property of the filter is shown in FIG. 11. As shown in
The obtained filter was left to stand in the atmosphere of a temperature of 60° C. and a humidity of 95% for 1000 hours, and the spectral property was evaluated again with the results shown in FIG. 12. As indicated in
In the transparent polyester film having the infrared-absorbing layer as obtained in Example 2, a hard coat-treated layer (HC) was formed on the surface of the side opposed to the infrared-absorbing layer. Used as a hard coat material was a UV-curable resin composition comprising 100 parts of an epoxy acrylic resin and 4 parts of benzophenone. The hard coat-treated layer was formed by a bar coat method. Then, preliminary drying was conducted at 80° C. for 5 minutes and the layer was cured by UV radiation with 500 mJ/cm2. The cured hard coat-treated layer (HC) had a thickness of 5 μm.
Copper foil of 9 μm thickness was bonded to the surface of infrared-absorbing layer with a UV-curing adhesive, the bonded copper foil was patterned with photoresist and etched to give a an electromagnetic wave shielding layer. The copper foil had lines of 15 μm width, a pitch of 115 μm and an aperture ratio of 75%
The obtained filter was left to stand in the atmosphere of a temperature of 60° C. and a humidity of 95% for 1000 hours, and the spectral property was evaluated again with the following results. Although a little changed in color, the filter maintained the near-infrared absorbing property. When disposed in front of a plasma display or the like, the obtained filter did not undergo change of color and increased the contrast, resulting in the decrease in radiation of near-infrared beams and in radiation of electromagnetic wave.
In the transparent polyester film having an infrared-absorbing layer as obtained in Example 2, a hard coat-treated layer (HC) was formed on the surface of the side opposed to the infrared-absorbing layer. Used as a hard coat material was a UV-curing resin composition comprising 100 parts of an epoxy acrylic resin and 4 parts of benzophenone. The hard coat-treated layer was formed by a bar coat method. Then, preliminary drying was conducted at 80° C. for 5 minutes and the layer was cured by UV radiation with 500 mJ/cm2. The cured hard coat-treated layer (HC) had a thickness of 5 μm.
A thin film of tin oxide with 380 Å0 thickness was formed on the infrared-absorbing layer by a high-frequency magnetron sputtering device. Then a thin film of silver with 200 Å thickness was laminated on said thin film by a DC magnetron sputtering device. Further a thin film of tin oxide with 410 Å thickness was laminated thereon to form a electromagnetic wave shielding layer. The electromagnetic wave shielding layer had a surface resistance value of 4 Ω/□.
The obtained filter was left to stand in the atmosphere of a temperature of 60° C. and a humidity of 95% for 1000 hours, and the spectral property was evaluated again with the following results. Although a little changed in color, the filter maintained the near-infrared absorbing property. When disposed in front of a plasma display or the like, the obtained filter did not undergo change of color and increased the contrast, resulting in the decrease in radiation of near-infrared beams and in radiation of electromagnetic wave.
The infrared absorption filter of the present invention has broad absorption in the near-infrared region, shows a high visible light transmission and does not markedly absorb a specific light in the visible light wavelengths. When used for a plasma display or the like, the filter can absorb the unwanted infrared radiation emitted from the display, thereby making it possible to prevent erroneous operational of a remote control using infrared radiation. The infrared absorption filter of the present invention is gray in color so that it is unlikely to cause color change when used for a video camera, display or the like. Further the filter of the invention has such a high environmental stability that the filter can maintain said properties in an environment of a high temperature and a high humidity.
Kobayashi, Masanori, Shimomura, Tetsuo, Yokoyama, Seiichiro, Onomichi, Shinya, Yamada, Yozo
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3575871, | |||
4223974, | Aug 02 1978 | Cabot Safety Intermediate Corporation | Enhanced bonding of silicon oxides and silver by intermediate coating of metal |
4497700, | Mar 25 1983 | Pilkington Deutschland AG | Method of coating a transparent substrate |
4615989, | Apr 18 1984 | Schott Glaswerke | Optical quality colored glass |
4816386, | Jan 13 1986 | Toray Industries, Inc. | Near-infrared sensitive phthalocyanine-polymer compositions |
5466755, | Aug 20 1992 | Kureha Corporation | Optical filter |
5804102, | Dec 22 1995 | Mitsui Chemicals, Inc | Plasma display filter |
6255031, | Apr 18 1996 | OSAKA GAS CO , LTD | Near infrared absorbing film, and multi-layered panel comprising the film |
EP838475, | |||
JP10105076, | |||
JP1078509, | |||
JP5521091, | |||
JP57198413, | |||
JP5721458, | |||
JP59184745, | |||
JP60235740, | |||
JP6043605, | |||
JP62153144, | |||
JP6324213, | |||
JP7134209, | |||
JP7314626, | |||
JP8106059, | |||
JP9306366, | |||
WO9738855, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 17 1999 | Toyo Boseki Kabushiki Kaisha | (assignment on the face of the patent) | / | |||
Aug 18 2004 | RICHARD, ROBERT E | SciMed Life Systems, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015324 | /0359 | |
Aug 19 2004 | FAUST, RUDOLF | SciMed Life Systems, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015324 | /0359 |
Date | Maintenance Fee Events |
May 24 2007 | ASPN: Payor Number Assigned. |
Jul 21 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 26 2014 | REM: Maintenance Fee Reminder Mailed. |
Feb 18 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 25 2010 | 4 years fee payment window open |
Mar 25 2011 | 6 months grace period start (w surcharge) |
Sep 25 2011 | patent expiry (for year 4) |
Sep 25 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 25 2014 | 8 years fee payment window open |
Mar 25 2015 | 6 months grace period start (w surcharge) |
Sep 25 2015 | patent expiry (for year 8) |
Sep 25 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 25 2018 | 12 years fee payment window open |
Mar 25 2019 | 6 months grace period start (w surcharge) |
Sep 25 2019 | patent expiry (for year 12) |
Sep 25 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |