The present invention relates to a cutting tool insert and its methods of manufacture for machining of steel comprising a cemented carbide body and a coatings. The cemented carbide body includes WC, 5-12 wt-% Co and 3-11 wt-% of cubic carbides of metals Ta and Ti. The amount of Nb is below 0.1 wt-% and the ratio Ta/Ti is 1.0-4.0. The Co-binder phase is highly alloyed with W with a cw-ratio of 0.75-0.95 and, finally, the cemented carbide body has a binder phase enriched and essentially gamma phase free surface zone of a thickness of 5-50 μm.
|
5. A coated cemented carbide body comprising:
a gamma phase consisting essentially of TaC, TiC and WC, wherein the Ta/Ti-ratio is 2.0-3.0, the body having a cw ratio of 0.75-0.95, the cw ratio expressed as:
cw ratio=Ms/(wt. % Co*0.0161), wherein Ms is the measured saturation magnetization of the body and wt. % Co is the weight percentage of Co in the cemented carbide, the body further comprising a surface zone that is essentially gamma phase-free and is binder rich.
1. A coated cemented carbide body comprising:
a gamma phase consisting essentially of TaC, TiC and WC, wherein the ratio of Ta/Ti is 1.0-4.0, the body having a cw ratio of 0.75-0.95, the cw ratio expressed as:
cw ratio=Ms/(wt. % Co*0.0161), wherein M, Ms is the measured saturation magnetization of the body and wt. % Co is the weight percentage of Co in the cemented carbide, the body further comprising a surface zone that is essentially gamma phase-free and is binder rich.
4. The coated body of
13. A coated body of
18. The coating body of
0. 19. The coated body of
0. 20. The coated body of
0. 21. The coated body of
0. 22. The coated body of
0. 23. The coated body of
0. 24. The coated body of
0. 25. The coated body of
0. 26. The coated body of
0. 27. The coated body of
0. 28. The coated body of
0. 29. The coated body of
0. 30. The coated body of
0. 31. The coated body of
0. 32. The coated body of
0. 33. The coated body of
0. 34. The coated body of
|
The present invention is applicable to cemented carbides with a composition of 5-12, preferably 9-11, weight percent of Co binder phase, and 3-11, preferably 7-10, weight percent TaC+TiC, and the balance being WC. The Nb content should not exceed 0.1 weight percent. The weight ratio Ta/Ti should be 1.0-4.0, preferably 2.0-3.0. The WC preferably has an average grain size of 1.0 to 4.0 μm, more preferably 1.5 to 3.0 μm. The cemented carbide body may contain less than 1 volume % of η-phase (M6C).
Inserts according to the invention are further provided with a coating preferably comprising 3-12 μm columnar TiCN-layer followed by a 1-8 μm thick Al2O3-layer deposited, for example, according to any of the patents U.S. Pat. No. 5,766,782, U.S. Pat. No. 5,654,035, U.S. Pat. No. 5,974,564, U.S. Pat. No. 5,702,808, preferably a κ-Al2O3-layer and preferably with an outermost thin layer of TiN which preferably is removed in the edge line by brushing or by blasting.
According to the invention, by applying coatings with different thickness on the cemented carbide body the property of the coated insert can be optimised to suit specific cutting conditions.
In one embodiment, a cemented carbide insert produced according to the invention is provided with a coating of: 6 μm TiCN, 5 μm Al2O3 and 1 μm TiN. This coated insert is particularly suited for cutting operation in steel.
In another embodiment, a cemented carbide insert produced according to the invention is provided with a coating of: 4 μm TiN, 2 μm Al2O3 and 1 μm TiN. This coating is particularly suited for cutting operations in stainless steels.
The invention also relates to a method of making cutting inserts comprising a cemented carbide substrate of a binder phase of Co, WC, a gamma phase of Ta and Ti, a binder phase enriched surface zone essentially free of gamma phase, and a coating. A powder mixture containing 5-12, preferably 9-11, weight percent of binder phase consisting of Co, and 3-11, preferably 7-10, weight percent TaC+TiC, and the balance WC with an average grain size of 1.0-4.0 μm, more preferably 1.5-3.0 μm, is prepared. The Nb content should not exceed 0.1 weight percent. The weight ratio Ta/Ti should be 1.0-4.0, preferably 2.0-3.0. Well-controlled amounts of nitrogen have to be added either the powder as carbonitrides and/or added during the sintering process via the sintering gas atmosphere. The amount of nitrogen added will determine the rate of dissolution of the cubic phases during the sintering process and hence determine the overall distribution of the elements in the cemented carbide after solidification. The optimum amount of nitrogen to be added depends on the composition of the cemented carbide and, in particular, on the amount of cubic phases and varies between 0.6 and 2.0% of the weight of the elements Ti and Ta. The exact conditions depend to a certain extent on the design of the sintering equipment being used. It is within the purview of the skilled artisan to determine whether the requisite surface zone of the cemented carbide have been obtained and to modify the nitrogen addition and the sintering process in accordance with the present specification in order to obtain the desired result.
The raw materials are mixed with pressing agent and, optionally W, such that the desired CW-ratio is obtained. The mixture is milled and spray dried to obtain a powder material with the desired properties. Next, the powder material is compacted and sintered. Sintering is performed at a temperature of 1300-1500° C., in a controlled atmosphere of about 50 mbar followed by cooling. After conventional post sintering treatments, including edge rounding, a hard, wear resistant coating according to above is deposited by CVD- or MT-CVD-technique.
A.) Cemented carbide turning inserts of the style CNMG 120408-PM and SNMG120412-PR with the composition 9.9 wt % Co, 6.0 wt % TaC, 2.5 wt % TiC, and 0.3 wt % TiN, with the balance WC having an average grain size of 2.0 μm were produced according to the invention. The nitrogen was added to the carbide powder as TiCN. Sintering was done at 1450° C. in a atmosphere of Ar at a total pressure of about 50 mbar.
Metallographic investigation showed that the inserts had a gamma phase free zone of 15 μm.
After a pre-coating treatment like edge honing, cleaning etc. the inserts were coated in a CVD-process comprising a first thin layer (less than 1 μm) of TiN followed by 6 μm thick layer of TICN with columnar grains by using MTCVD-techniques (process temperature 850° C. and CH3CN as the carbon/nitrogen source). In a subsequent process step during the same coating cycle, a 5 μm thick κ-Al2O3 layer was deposited according to U.S. Pat. No. 5,974,564. On top of the κ-Al2O3 layer a 1.0 μm TiN layer was deposited. The coated inserts were brushed in order to smoothly remove the TiN coating from the edge line.
B.) Cemented carbide turning inserts of the style CNMG 120408-PM and SNMG120412-PR with the composition 10.0 wt % Co, 2.9 wt % TaC, 3.4 wt % TiC, 0.5 wt % NbC and 0.2 wt % TiN and the balance WC with an average grain size of 2.1 μm were produced. The inserts were sintered in the same process as A. Metallographic investigation showed that the produced inserts had a gamma phase free zone of 15 μm. Magnetic saturation values were recorded and used for calculating CW-values. An average CW-value of 0.81 was obtained. The inserts were subject to the same pre-coating treatment as A, coated in the same coating process and also brushed in the saute way as A.
C.) Cemented carbide turning inserts of the style CNGM 120408-PM and SNMG120412-PR with the composition 10.0 wt % Co, 3.0 wt % TaC, 6.3 wt % ZrC and balance WC with an average grain size of 2.5 μm were produced.
Metallographic investigation showed that the produced inserts had a gamma phase free zone of 12 μm. Magnetic saturation values were recorded and used for calculating CW-values. An average CW-value of 0.79 was obtained. The inserts were subject to the same pre-coating treatment as A, coated in the same coating process and also brushed in the same way as A.
Inserts from A, B and C were tested with respect to toughness in a longitudinal turning operation with interrupted cuts.
Material; Carbon steel SS1312.
Cutting data:
Cutting speed
130
m/min
Depth of cut
1.5
mm
Feed=Starting with 0.15 mm and gradually increased by 0.10 mm/min until breakage of the edge
8 edges of each variant were tested
Inserts style: CNMG120408-PM
Results:
Mean feed at breakage
Inserts A
0.31 mm/rev
Inserts B
0.22 mm/rev
Inserts C
0.22 mm/rev
Inserts from A, B and C were tested with respect to resistance to plastic deformation in longitudinal turning of alloyed steel (AISI 4340).
Insert style: CNMG 120408-PM
Cutting data:
Cutting speed =
100
m/min
Feed =
0.7
mm/rev.
Depth of cut =
2
mm
Time in cut =
0.50
min
The plastic deformation was measured as the edge depression at the nose of the inserts.
Results:
Edge depression, μm
Insert A
49
Insert B
63
Insert C
62
Tests performed at an end user producing rear shaft for lorries. The inserts from A and C were tested in a three turning operations with high toughness demands due to interrupted cuts. The inserts were run until breakage of the edge. The insert style SNMG120412-PR was used. Results:
Number of machined components
Operation
1
2
3
Variant A
172
219
119
Variant C
20
11
50
Examples 2, 3 and 4 show that the inserts A according to the invention surprisingly exhibit much better toughness in combination with somewhat better plastic deformation resistance in comparison to conventional inserts B and C.
The foregoing has described the principles, preferred embodiments and modes of operation of the present invention. However, the invention should not be construed as being limited to the particular embodiments discussed. Thus the above-described embodiments should be regarded as illustrative rather than restrictive, and it should be appreciated that variations may be made in those embodiments by workers skilled in the art without departing from the scope of the present invention as defined by the following claims.
Lenander, Anders, Lindholm, Mikael
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4277283, | Dec 23 1977 | Sumitomo Electric Industries, Ltd. | Sintered hard metal and the method for producing the same |
4497874, | Apr 28 1983 | CARBOLOY INC , A DE CORP | Coated carbide cutting tool insert |
4610931, | Mar 27 1981 | Kennametal Inc. | Preferentially binder enriched cemented carbide bodies and method of manufacture |
4729823, | Aug 08 1986 | GUEVARAKELLEY SCIENTIFIC PRODUCTS, INC | Apparatus and methods for electrophoresis |
5484468, | Feb 05 1993 | Sandvik Intellectual Property Aktiebolag | Cemented carbide with binder phase enriched surface zone and enhanced edge toughness behavior and process for making same |
5549980, | Feb 21 1992 | Sandvik Intellectual Property Aktiebolag | Cemented carbide with binder phase enriched surface zone |
5649279, | Dec 18 1992 | Sandvik Intellectual Property Aktiebolag | Cemented carbide with binder phase enriched surface zone |
5654035, | Dec 18 1992 | Sandvik Intellectual Property Aktiebolag | Method of coating a body with an α-alumina coating |
5674564, | Jun 25 1991 | Sandvik Intellectual Property Aktiebolag | Alumina-coated sintered body |
5702808, | Nov 15 1994 | Sandvik Intellectual Property Aktiebolag | Al2 O2 -coated cutting tool preferably for near net shape machining |
5729823, | Apr 12 1995 | Sandvik Intellectual Property Aktiebolag | Cemented carbide with binder phase enriched surface zone |
5766782, | Jan 14 1994 | Sandvik Intellectual Property Aktiebolag | Aluminum oxide coated cutting tool and method of manufacturing thereof |
5786069, | Aug 28 1996 | Sandvik Intellectual Property Aktiebolag | Coated turning insert |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 08 2006 | Sandvik Intellectual Property AB | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 08 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 13 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 23 2010 | 4 years fee payment window open |
Apr 23 2011 | 6 months grace period start (w surcharge) |
Oct 23 2011 | patent expiry (for year 4) |
Oct 23 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 23 2014 | 8 years fee payment window open |
Apr 23 2015 | 6 months grace period start (w surcharge) |
Oct 23 2015 | patent expiry (for year 8) |
Oct 23 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 23 2018 | 12 years fee payment window open |
Apr 23 2019 | 6 months grace period start (w surcharge) |
Oct 23 2019 | patent expiry (for year 12) |
Oct 23 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |