A gastro-laryngeal mask features softly compliant construction of the distal half of the mask, wherein the mask is of generally elliptical configuration, with an inflatable peripheral cuff to seal and support the mask around the laryngeal inlet. A back cushion is inflatable to engage the back wall of the pharynx and thus to forwardly load the peripheral-cuff seal to the laryngeal inlet. An evacuation tube for external removal of a possible gastric discharge completes an evacuation or discharge passage contained within the mask and opening through the distal end of the peripheral cuff. Special provision is made for assuring integrity of the discharge passage within the flexible distal half of the mask, i.e., assuring against collapse of the distal-end half of the softly compliant evacuation tube in the distal region of the mask, such that inflation of the mask does not compromise viability of the evacuation tube by compressing softly compliant material of the evacuation tube during periods of mask inflation. The special provision also favors such collapse of the mask when deflated as to provide a leading flexible edge for piloting a safe and correct advancing insertional advance of the deflated mask in the patient's throat, in avoidance of epiglottis interference and to the point of locating engagement in the upper sphincter of the oesophagus.

Patent
   RE39938
Priority
Mar 01 1996
Filed
Mar 08 2001
Issued
Dec 18 2007
Expiry
Mar 01 2016
Assg.orig
Entity
Small
38
216
EXPIRED

REINSTATED
0. 38. A device, including:
(A) an airway tube for supplying air to a patient;
(B) an evacuation tube extending from a proximal end to a distal end, the distal end being adapted for communication with an esophageal inlet of the patient;
(C) a mask adapted for sealed engagement with a laryngeal inlet of the patient, the mask including a back cushion for contacting a pharyngeal wall of the patient and biasing at least part of the mask away from the pharyngeal wall, a first portion of the evacuation tube being sealed to a portion of the back cushion, the first portion of the evacuation tube extending from near the distal end of the evacuation tube towards the proximal end of the evacuation tube.
0. 27. A laryngeal mask construction including:
(A) a mask adapted for positioning inside of a patient near the patient's larynx, a central plane dividing the construction into a left portion and a right portion;
(B) an airway tube coupled to the mask, at least a portion of the airway tube extending away from the mask and defining a central axis, the central axis portion of the airway tube being disposed on one side of the central plane; and
(C) a gastric discharge tube coupled to the mask, at least a portion of the discharge tube extending away from the mask and defining a central axis, the central axis of the portion of the discharge tube being disposed on the other side of the central plane.
0. 30. A device, including:
(A) an airway tube for supplying air to a patient;
(B) an evacuation tube for communication with an esophageal inlet of the patient;
(C) a mask adapted for sealed engagement with a laryngeal inlet of the patient, the mask including a back cushion for contacting a pharyngeal wall of the patient and biasing at least part of the mask away from the pharyngeal wall, a first portion of the back cushion being sealed to a first portion of the evacuation tube, the first portion of the back cushion extending from a first location to a second location, the first location being near the distal end of the evacuation tube, the second location being spaced apart from the first location in a direction towards a center of the mask.
0. 35. A device including:
(A) an inflatable mask adapted for sealed engagement with a laryngeal inlet of the patient;
(B) a single airway tube for supplying air to a patient, the airway tube being coupled to the mask, a portion of the airway tube extending away from the mask;
(C) a single evacuation tube for communication with an esophageal inlet of the patient, the evacuation tube being coupled to the mask, a portion of the evacuation tube extending away from the mask, the portions of the airway and evacuation tubes being coupled to one another in side-by-side relation such that a center of one of the airway and evacuation tubes is dosposed on a left side of the device and a center of the other one of the airway and evacuation tubes is disposed on a right side of the device.
0. 24. A laryngeal mask construction, including:
(A) a generally elliptical inflatable ring defining a distal end, the ring being adapted for sealed engagement to a laryngeal inlet of a patient;
(B) a backing plate defining an air inlet, the backing plate being sealed to the ring, the backing plate establishing a laryngeal-chamber side and a pharyngeal-chamber side of the construction;
(C) an inflatable back cushion disposed on the pharyngeal-chamber side, the back cushion when inflated contacting a pharyngeal wall of the patient and biasing the ring away from the pharyngeal wall;
(D) a tubular conduit defining a distal end, the distal end of the tubular conduit being disposed near the distal end of the ring for communication with an esophageal inlet of the patient, a first portion of the conduit being adhered to a portion of the back plate; and
(E) one or more stiffening ribs, the ribs being disposed on a second portion of the tubular conduit.
0. 23. A laryngeal mask construction, including:
(A) a generally elliptical inflatable ring defining a distal end, the ring being adapted for sealed engagement to a laryngeal inlet of a patient;
(B) a backing plate defining an air inlet, the backing plate being sealed to the ring, the backing plate establishing a laryngeal-chamber side and a pharyngeal-chamber side of the construction;
(C) an inflatable back cushion disposed on the pharyngeal-chamber side, the back cushion when inflated contacting a pharyngeal wall of the patient and biasing the ring away from the pharyngeal wall;
(D) a tubular conduit defining a distal end, the distal end of the tubular conduit being disposed near the distal end of the ring for communication with an esophageal inlet of the patient, a first portion of the conduit being adhered to a portion of the back cushion; and
(E) one or more stiffening ribs, the ribs being disposed on a second portion of the tubular conduit.
0. 45. A device including an airway tube, an evacuation tube, and an inflatable mask, the mask being insertable, at least when deflated, through a mouth of the patient to an inserted location within a patient, the inserted location being near a laryngeal inlet of the patient, the airway tube extending from a proximal end located outside of the patient's mouth through an interdental gap to the mask when the mask is at the inserted location, the interdental gap being a space between the patient's lower teeth and the patient's upper teeth, the evacuation tube being coupled to the mask, the evacuation tube extending from a proximal end located outside of the patient's mouth through the interdental gap to the mask when the mask is at the inserted location, one of the airway and evacuation tubes being greater than or equal to the other of the airway and evacuation tubes where the tubes pass through the interdental gap, the airway and evacuation tubes being coupled together in side-by-side relation such that the interdental gap need not be greater than the one tube when the mask is at the inserted location.
0. 14. A laryngeal mask construction, including:
(A) a generally elliptical inflatable ring defining a distal end, the ring being adapted for sealed engagement to a laryngeal inlet of a patient;
(B) a backing plate defining an air inlet, the backing plate being sealed to the ring, the backing plate establishing a laryngeal-chamber side and a pharyngeal-chamber side of the construction;
(C) an inflatable back cushion disposed on the pharyngeal-chamber side, the back cushion when inflated contacting a pharyngeal wall of the patient and biasing the ring away from the pharyngeal wall;
(D) a tubular conduit defining a distal end, the distal end of the tubular conduit being disposed near the distal end of the ring for communication with an esophageal inlet of the patient, a first portion of the conduit being adhered to a portion of the back cushion, a second portion of the conduit being adhered to a portion of the backing plate; and
(E) one or more stiffening ribs, the ribs being disposed on a third portion of the tubular conduit, the third portion of the tubular conduit being disposed between the first and second portions of the tubular conduit.
0. 39. A device including:
(A) an inflatable mask, the mask being insertable, at least when deflated, through a mouth of the patient to an inserted location within a patient, the inserted location being near a laryngeal inlet of the patient;
(B) an airway tube coupled to the mask, the airway tube extending from a proximal end located outside of the patient's mouth through an interdental gap to the mask when the mask is at the inserted location, the interdental gap being a space between the patient's lower teeth and the patient's upper teeth;
(C) an evacuation tube for communication with an esophageal inlet of the patient, the evacuation tube being coupled to the mask, the evacuation tube extending from a proximal end located outside of the patient's mouth through the interdental gap to the mask when the mask is at the inserted location, one of the airway and evacuation tubes being greater than or equal to the other of the airway and evacuation tubes where the tubes pass through the interdental gap, the airway and evacuation tubes being coupled together in side-by-side relation such that the interdental gap need not be greater than the one tube when the mask is at the inserted location.
0. 25. A laryngeal mask construction, including:
(A) a generally elliptical inflatable ring defining a distal end, the ring being adapted for sealed engagement to a laryngeal inlet of a patient;
(B) a backing plate defining an air inlet, the backing plate being sealed to the ring, the backing plate establishing a laryngeal-chamber side and a pharyngeal-chamber side of the construction;
(C) an inflatable back cushion disposed on the pharyngeal-chamber side, the back cushion when inflated contacting a pharyngeal wall of the patient and biasing the ring away from the pharyngeal wall; and
(D) a tubular conduit defining a distal end, the distal end of the tubular conduit being disposed near the distal end of the ring for communication with an esophageal inlet of the patient, a first portion of the conduit being adhered to a portion of the back cushion, a second portion of the conduit being adhered to a portion of the backing plate, the first portion extending from a first location to a second location, the first location being near the distal end of the tubular conduit, the second location being spaced apart from the first location in a direction towards a center of the generally elliptical inflatable ring.
0. 26. A laryngeal mask construction, including:
(A) an airway tube;
(B) a gastric discharge tube;
(C) a generally elliptical inflatable ring defining a distal end, the ring being adapted for sealed engagement to a laryngeal inlet of a patient;
(D) a backing plate defining an air inlet, the air inlet being sealed to the airway tube, the backing plate being sealed to the ring, the backing plate establishing a laryngeal-chamber side and a pharyngeal-chamber side of the construction;
(E) an inflatable back cushion disposed on the pharyngeal-chamber side, the back cushion when inflated contacting a pharyngeal wall of the patient and biasing the ring away from the pharyngeal wall;
(F) a tubular conduit defining a proximal end and a distal end, the proximal end of the tubular conduit being sealed to the gastric-discharge tube, the distal end of the tubular conduit being disposed near the distal end of the ring for communication with an esophageal inlet of the patient, a first portion of the conduit being adhered to a portion of the back cushion, a second portion of the conduit being adhered to a portion of the backing plate; and
(G) one or more stiffening ribs, the ribs being disposed on a third portion of the tubular conduit, the third portion of the tubular conduit being disposed between the first and second portions of the tubular conduit.
13. A laryngeal mask construction for concurrent airway service to a patient's laryngeal inlet and for removal of gastric-discharge products from the oesophagus, said construction comprising:
an inflatable/deflatable ring in the form of a generally elliptical annulus having an outer periphery configured for continuously sealed adaptation to the laryngeal inlet, said ring being a moulded product of relatively thin and softly pliant elastomeric material, said ring integrally including at its distal end a distally open tubular conduit through a distal opening in said ring, said distally open tubular conduit being for operative engagement and communication with the oesophageal inlet;
a backing-plate member of relatively stiff elastomeric material having a concave front side which is adapted to face the laryngeal inlet and which terminates in an elliptical footing in a geometric plane and in peripherally sealed engagement with the inner periphery of said inflatable/deflatable ring, said backing-plate member having an airway-tube connecting formation on a proximally directional axis that is at an acute angle with said geometric plane, said backing-plate member having a lumen for airway-tube communication with the laryngeal inlet, and said backing-plate member providing stability to the inner periphery of said annulus and proximally directed directional stability for said tubular conduit;
an airway tube connected to said connecting formation; and
a gastric-discharge tube connected to said tubular conduit.
1. A laryngeal mask construction for concurrent airway service to a patient's laryngeal inlet and for removal of gastric-discharge products from the oesophagus, said construction comprising:
an inflatable ring in the form of a generally elliptical annulus having an outer periphery configured for continuously sealed adaptation to the laryngeal inlet, said ring extending longitudinally between proximal and distal ends and having an inflation port connection at its proximal end, said ring being a moulded product of relatively thin and softly pliant elastomeric material, said ring including within the inner periphery of said annulus an apertured panel or membrane establishing separation between a pharyngeal-chamber side and a laryngeal-chamber side, said ring further integrally including at its distal end a distally open tubular conduit for operative engagement and communication with the oesophageal inlet, said tubular conduit extending from its distally open end and in the proximal direction adjacent said panel and on the pharyngeal side of said panel;
a domed backing-plate member of relatively stiff elastomeric material and having a concave side which terminates in a generally elliptical footing in a geometric plane and is sealed engagement with said panel at the inner periphery of said annulus, said backing-plate member having an airway-tube connecting formation on a proximally directional axis that is at an acute angle with said geometric plane, said backing-plate member providing stability to the inner periphery of said annulus and directional stability for said tubular conduit;
an airway tube connected to said connecting formation; and
a gastric-discharge tube connected to said tubular conduit.
2. The mask construction of claim 1, in which said airway tube and said gastric-discharge tube are bonded to each other in side-by-side relation.
3. The mask construction of claim 1, in which said tubular conduit extends proximally to approximately 50 percent of the longitudinal extent of said inflatable ring.
4. The mask construction of claim 1, in which said tubular conduit extends proximally to at least 50 percent of the longitudinal extent of said inflatable ring.
5. The mask construction of claim 1, in which said backing-plate member is formed for directionally guiding relation to said tubular conduit, to determine a straight proximal direction of said tubular conduit for substantially the distal half of the longitudinal extent of said mask.
6. The mask construction of claim 5, in which said backing-plate member is further formed for tubular-conduit guidance on generally a helical arc to a location of gastric-discharge tube entry to said mask alongside said airway tube.
7. The mask construction of claim 1, further including an inflatable back cushion comprising a panel of softly compliant elastomeric material bonded peripherally to the pharyngeal-chamber side of said annulus and extending over said tubular conduit.
8. The mask construction of claim 7, in which said back-cushion panel is peripherally bonded to said tubular conduit.
9. The mask construction of claim 8, in which said back-cushion bond to said tubular conduit extends for substantially the distal half of the longitudinal extent of said inflatable ring.
10. The mask construction of claim 8, in which (a) a first arcuate circumferential fraction of said tubular conduit is connected to said backing-plate member, (b) the bond of said back cushion to said tubular conduit is angularly spaced from and generally opposite the connection of said tubular conduit to said backing-plate member, the bond to said back cushion being over a second arcuate circumferential fraction of said tubular conduit, (c) the arcuate circumferential extent by which said angular tubular-member connections are made to said backing-plate member and to said back cushion being reinforced with circumferentially arcuate stiffener formations.
11. The mask construction of claim 10, in which said stiffener formations are arcuate ribs in axially spaced array.
12. The mask construction of claim 11, in which said ribs project radially outward of said tubular conduit.
0. 15. The laryngeal mask construction according to claim 14, further including an airway tube, a distal end of the airway tube being sealed to the air inlet.
0. 16. The laryngeal mask construction according to claim 14, further including a gastric discharge tube, a distal end of the gastric discharge tube being sealed to a proximal end of the tubular conduit.
0. 17. The laryngeal mask construction according to claim 14, wherein the ribs and the tubular conduit are of a monolithic construction.
0. 18. The laryngeal mask construction according to claim 14, wherein the tubular conduit and the ring are of a monolithic construction.
0. 19. The laryngeal mask construction according to claim 14, wherein the backing plate is domed.
0. 20. The laryngeal mask construction according to claim 14, wherein the backing plate defines a groove.
0. 21. The laryngeal mask construction according to claim 14, wherein the ring is of relatively thin and softly pliant elastomeric material.
0. 22. The laryngeal mask construction according to claim 14, wherein the ring is a molded product.
0. 28. The laryngeal mask construction according to claim 27, wherein an outer diameter of the airway tube is substantially equal to an outer diameter of the discharge tube.
0. 29. The laryngeal mask construction according to claim 27, wherein an outer diameter of the airway tube is not equal to an outer diameter of the discharge tube.
0. 31. A device according to claim 30, a second portion of the evacuation tube being sealed to the mask, the second portion being disposed opposite to the first portion.
0. 32. A device according to claim 30, the mask including a generally elliptical inflatable ring.
0. 33. A device according to claim 32, the mask further including a body, a second portion of the evacuation tube being sealed to the body.
0. 34. A device according to claim 33, the body defining a slot, the evacuation tube extending along the slot.
0. 36. A device according to claim 35, the evacuation tube including a conduit extending through a portion of the mask.
0. 37. A device according to claim 36, further including an inflation line coupled to the mask for inflating and deflating the mask.
0. 40. A device according to claim 39, a diameter of the airway tube being equal to a diameter of the evacuation tube.
0. 41. A device according to claim 39, the mask including a generally elliptical inflatable ring.
0. 42. A device according to claim 41, the mask further including an inflatable back cushion, the back cushion contacting a pharyngeal wall of the patient and biasing at least part of the mask away from the pharyngeal wall when inflated and when the mask is at the inserted location.
0. 43. A device according to claim 41, the mask further including a body, a portion of the evacuation tube being sealed to the body.
0. 44. A device according to claim 43, the body defining a slot, the evacuation tube extending along the slot.

This application is a continuation of original application, Ser. No. 08/609,521, filed Mar. 1, 1996, now abandoned.

This invention relates to a laryngeal-mask airway (LMA) device, which is an artificial airway device designed to facilitate lung ventilation in an unconscious patient by forming a low-pressure seal around the laryngeal inlet. An inflatable-ring seal surrounds an appropriately shaped mask which fits into the lower pharynx and is attached to a tube which emerges from the mouth, as for connection to medical gas-supply tubing.

More particularly, the invention relates to a variety of laryngeal masks, known as gastro-laryngeal masks (GLM), wherein. provision is made for airway assurance to the patient who is at. risk from vomiting or regurgitation of stomach contents while unconscious. U.S. Pat. No. 5,241,956 deals with this problem by providing an evacuation tube which is open through the center of the inflatable seal of the laryngeal mask, thus utilizing the distal end of the inflatable ring as an inflatable-cuff formation which establishes peripherally sealed engagement to the upper sphinctral region of the oesophagus and centrally supports the distal end of the evacuation tube. In addition, said U.S. Pat. No. 5,241,956 discloses a further inflatable cuff carried by the laryngeal mask and by the evacuation tube, for referencing inflation against the back wall of the pharynx, thus making it possible to establish the laryngeal-inlet seal with reduced inflation pressure, as compared with prior structures not having such an additional inflatable cuff.

U.S. Pat. No. 5,305,743 discloses moulding techniques for manufacture of a variety of laryngeal masks, including a gastro-laryngeal mask, wherein an inflatable back cushion provides such referencing inflation against the back wall of the pharynx as to widely distribute the back-wall reference, over substantially the full area of the laryngeal mask. Such a back-cushion construction has been found to be mechanically simple and highly effective, and U.S. Pat. No. 5,355,879 discloses such a back cushion for each of several representative laryngeal-mask constructions.

In practice, although a gastro-laryngeal-mask as described in said U.S. Pat. No. 5,355,879 works well, it has the disadvantage that the gastric evacuation channel needs to be sufficiently stiff to prevent its collapse under the influence of the increased pressure within the back-cushion cuff, when it is inflated in the pharynx. A suitably stiff tube is readily provided, but the whole device is then more difficult to insert into the patient's throat, since insertion involves flexing the device around the angle at the back of the tongue. Provision of a pre-curved airway tube facilitates passage around the back of the tongue, but the advancing distal tip end of the device is then more likely to collide with the glottis (or entrance to the larynx), and indeed it may block the larynx by so doing, with consequent danger to the patient.

It is an object of the invention to provide an improved gastro-laryngeal mask.

A specific object is to meet the above object with a construction that specifically avoids problems or difficulties with constructions of said U.S. patents.

Another specific object is to provide for ready compression and flexure of a gastric passage within a back-cushioned or cuffed gastro-laryngeal mask, when the mask is in deflated condition for insertion into the patient's throat.

Furthermore, for the deflated condition of the mask, i.e., in readiness for insertion into the patient's throat, it is an object to enable formation of a flattened flexible leading distal-end edge to self-adapt to and resiliently ride the outer limit of curvature of the patient's airway, throughout the insertional course of the deflated mask and into its locating engagement with the hypopharynx.

It is a further specific object, in conjunction with the foregoing specific objects, to provide for assurance of full patency of the gastric passage within the mask, when the mask has been inflated.

These objects are realized in the present invention by utilizing two structural mechanisms, both of which are operative when the device is inflated; one of these mechanisms prevents lateral compression of the wall of the gastric tube, while the other of these mechanisms prevents antero-posterior compression of the wall of the gastric tube; the result is to assure a substantially circular section within relatively soft portions of the evacuation passage, as long as the device is inflated and in installed position.

In a preferred embodiment of the invention, an artificial airway device to facilitate a patient's lung ventilation comprises an airway tube, an evacuation tube, and a laryngeal mask at one end of both tubes. The mask is of generally elliptical configuration and comprises a body or backplate of relatively stiffly compliant nature, and an inflatable annular cuff or ring of relatively softly compliant nature is connected to and surrounds the body or backplate. When inflated, the annular cuff adapts to and seals around the laryngeal inlet, and an inflatable cushion on the exterior of the inflated annulus bears against the back wall of the pharynx, to thereby forwardly load the inflated annulus into sealed relation with the laryngeal inlet, with the backplate dividing the mask between a laryngeal-chamber side and a pharyngeal-chamber side. The relatively stiff backplate is formed for connection to the airway tube for exclusive communication to the larynx through an opening in the backplate; and the backplate is also configured to guide and support a relatively soft flexible evacuation tube within the pharyngeal-chamber side, from a distally open end for reception of gastric products, to a proximal end for connection to an externally discharging evacuation tube.

It is a feature of the invention that along an aligning path for the flexible evacuation tube within the pharyngeal-chamber side of the mask, a first significant angular fraction of the periphery of the flexible tube is bonded to a stabilizing portion of the backplate, and that a second angular fraction of the periphery of the flexible tube is continuously bonded to the inner surface of the flexible back cushion, such that generally opposite unbonded further angular regions exist between the bonded regions. These unbonded further regions are provided with external stiffening ribs at a succession of axial intervals, to reinforce the unbonded regions against lateral compression when the back cushion and the inflatable ring are under inflation pressure. In this way, inflation of the annular laryngeal-inlet sealing ring and of the flexible back cushion will assure a maximally open evacuation passage within the mask in inflated condition, essentially without antero-posterior or lateral compression of the passage. And it is further assured that upon deflation of the mask, evacuation-passage compression will be essentially in the sense of achieving a squeezing and somewhat flattening deformation of the discharge passage against the formed back-plate area of evacuation-passage support; such flattening is maximal at the oesophageal end of the discharge passage, so that, when correctly deflated, the device forms a wedge shape for correct insertion.

The invention will be illustratively described in detail for a presently preferred embodiment, and for certain other embodiments, all in conjunction with the accompanying drawings, in which:

FIG. 1 is a simplified view, generally in side elevation, for the presently preferred embodiment of an artificial airway device, having at its distal end a laryngeal mask with a gastric-drainage feature of the invention, the same being shown in position for use in a patient;

FIG. 2 is a fragmentary plan view, to an enlarged scale showing the back or pharynx-facing side of the mask of FIG. 1;

FIG. 3 is a plan view to the scale of FIG. 2, showing a softly compliant moulded inflatable component of the mask, as seen from the aspect of FIG. 2;

FIG. 4 is a plan view to the scale of FIG. 2, showing a relatively stiffly compliant rigidising or reinforcing back-plate component of the mask, as seen from the aspect of FIG. 2;

FIG. 5 is a longitudinal section of the softly compliant component of FIG. 3, to the scale of FIGS. 2 to 4 and taken generally in the vertical plane 55 of substantial symmetry, but prior to an inside-out deformation step, to create the appearance of FIG. 3;

FIG. 5A is a section, taken at 5A-5A in FIG. 5;

FIG. 6 is another view in longitudinal section, to the scale of FIGS. 2 to 5 and in the vertical plane 55 of FIG. 3, showing the relatively stiff component of FIG. 4 in assembled relation to the softly compliant component of FIG. 3;

FIG. 7 is an end view, being a proximally directed view, of the distal end of the rigidising component of FIG. 4;

FIG. 8 is a simplified cross-sectional view of the inflated mask of FIG. 2, taken at 88 in FIG. 2;

FIG. 9 is a simplified cross-sectional view of the deflated mask of FIG. 2, taken at 88 in FIG. 2;

FIG. 10 is a view similar to FIG. 2, to show a first modification;

FIG. 11 is a view similar to FIG. 4, to show the back-plate component in the modification of FIG. 10;

FIG. 12 is a sectional view, taken at 1212 in FIG. 11; and

FIG. 13 is a plan view to the scale of FIG. 2 to illustrate an intermediate product which is a modification of that shown in FIGS. 5 and 6.

Referring first to the preferred embodiments of FIGS. 1 to 9, the invention is shown in application to an airway system comprising a laryngeal-mask unit 10 and its airway tube 11, installed through the mouth 12 of a patient. The mask unit 10 may be generally as described in any of the above-identified U.S. patents and therefore need not now be described in detail. It suffices to say that mask unit 10 comprises a relatively stiff body or backing-plate member, generally indicated at 13, and an apertured relatively thin body-membrane portion or panel 13′ having an aperture or lumen 14 through which the airway tube 11 can establish a free externally accessible ventilation passage, via the patient's mouth 12 and throat 15, and past the epiglottis 16 to the larynx 17. The body member 13 of mask 10 may be described as generally dome-shaped, with its concave side terminating in a generally elliptical footing, and facing the laryngeal inlet; and its convex side faces the backwall of the pharynx. Body 13 is suitably of an elastomer such as silicone rubber and relatively stiff; and body member 13 is surrounded by an inflatable ring 18 which is generally elliptical and which is circumferentially united to body member 13 in essentially a single plane. The inflatable ring 18 may also be of silicone rubber, although preferably relatively soft and flexible compared to body member 13. An externally accessible tube 19 is the means of supplying air to the inflatable ring 18 and of extracting air from (and therefore collapsing) ring 18 for purposes of insertion in or removal from the patient; check-valve means 21 in tube 19 will be understood to hold a given inflation or to hold a given deflation of ring 18.

In the installed position of FIG. 1, the projecting but blunted distal end 27 of ring 18 is shaped to conform with the base of the hypopharynx where it has established limited entry into the upper sphinctral region of the oesophagus 24. The back side of body member 13 is covered by a thin flexible panel 25 (FIG. 2) which is peripherally bonded to the inflatable ring 18 (FIG. 1) and in sealed engagement at peripheral line 25′ around the entrance of tubes 11 and 23 to the mask structure to define an inflatable back cushion which assures referencing to the back wall of the pharynx and thus is able to load the mask unit forward for enhanced effectiveness of inflated-ring sealing engagement to the laryngeal inlet. The inflated ring, thus-engaged to the laryngeal inlet, orients the distal-end of the airway tube 11 at an acute angle to the general plane of ring 18 and in substantial alignment with the axis of the laryngeal inlet, for direct airway communication only with the larynx 17.

The laryngeal-mask unit 10 is of the GLM variety in which an evacuation tube 23 (FIG. 2) serves for extraction and external removal of gastric-discharge products from the oesophagus. Tube 23 follows the general course of the airway tube 11, with sealed entry alongside airway tube 11, beneath the back-cushion panel 25, and with passage through the interior of ring 18, near the distal end of the mask; in FIG. 3, the distally open end of the evacuation tube 23 is defined by a re-entrant tubular conduit formation 26 integrally formed with the relatively soft material of ring 18. As explained in U.S. Pat. No. 5,241,956, inflation-air supply to the back cushion may be the same (19) as for ring 18, or separate inflating means (not shown) may be provided for these separate inflatable means.

More specifically, for the particular construction shown, the relatively softly compliant flexible components may be integrally formed in a single moulding operation, in which the moulded intermediate product is an inside-out version of what will become the finished more flexible part of the finished mask unit 10. The moulded intermediate product may thus have the appearance shown in FIG. 5, following the technique described in U.S. Pat. No. 5,305,743, to which reference is made for detailed description. It suffices here to identify the inflation-air inlet formation 28, directed inwardly on a central axis 29 which also includes the outwardly directed distal-end formation of the evacuation tube 26; the central axis 29 may also be understood as identifying the equator plane (perpendicular to the drawing of FIG. 5) which applies to the inflatable annular ring 18, after evacuation tube 26 has been swung upward (counterclockwise), in the sense suggested by arrow 30, and generally for 180° of rotation about an axis 31, which (axis 31) is normal to the plane of the drawing of FIG. 5. This 180° rotation tucks tube 26 into the flange relatively large edge 32 of the open skirt of the moulded intermediate product of FIG. 5 and makes it a simple matter to turn the remainder of the skirt inside-out, thus defining ring 18, with the edge flange 32 seated on a ledge 33 of the upper dome-shaped feature (body-membrane portion or liner 13′) of the moulded intermediate product.

In the preferred form shown, the mask body member 13 (FIGS. 4 and 7) is a separately moulded component of relatively stiff nature as compared to the moulded intermediate product of FIG. 5. Stiffness vs. softness will be understood to be relative terms and not necessarily to imply that these components are formed from different materials.

In FIG. 4, the body component 13 is seen to comprise an apertured panel which is essentially a moulded dome or bowl 34 having a concave inner surface which conforms to the convex moulded contour of the dome shape 35 of the relatively soft (i.e., thin-walled) component of FIG. 5, these components being shown in FIG. 6 in assembled relation. Relative stiffness (thickness) in the bowl or dome 34 of FIG. 4 is generally in the range 2 to 5 mm, with gradually reducing thickness for greater flexibility in approach to the lower or distal end. The bowl or dome 34 has a peripheral edge which terminates in a single plane, for adhesively bonded seating to the ledge 33 of the relatively soft component of FIG. 5, after making the inside-out inversion.

The stiffness of body member 13 is greatest in the region of proximal-end seating to ledge 33, above which an inlet-air formation 36 is oriented on an axis 37 which is not only inclined at an acute angle α to the plane of seating to ledge 33., but is also laterally offset from the central longitudinal plane of symmetry of the mask, denoted 55 in FIG. 3. Relative stiffness of body member 13 is also enhanced (i) by the fact that its distal half features a slot 38 of width less than the diameter of the re-entrant distal-end tube 26, (ii) by the fact that the re-entrant tube 26 is adhesively retained in cradled support by and between confronting edges of slot 38, and (iii) by the fact that the distal end of evacuation tube 23 is preferably preformed (as seen in FIG. 2) with a quarter-turn helical advance to track the course of slot 38 in the upper or proximal half of body member 13. The evacuation tube 23 is preferably relatively stiff, e.g., stiffness (thickness) in the order of magnitude of the material at the upper (proximal) half of body member 13, and is seen in FIG. 2 to have telescoping fit to the proximally directed upper end of re-entrant tube 26; this is an adhesively sealed fit.

Stated in other words and in explanation of the distal and proximal halves of the body member 13 and the relation of these halves to the relatively thin material and distal-half extent of re-entrant tubular conduit 26, said tubular conduit may be said to extend proximally to approximately 50 percent of the longitudinal extent of the inflatable ring 18; alternatively, said tubular conduit 26 may be said to extend proximally to at least substantially 50 percent of the longitudinal extent of the inflatable ring 18, consistent with the drawings of FIGS. 2, 3, and 6. Furthermore, as seen in FIG. 4, the distal half of backing-plate member 13 is essentially straight, thus determining a straight proximal direction of tubular conduit 26 for substantially the distal half of the longitudinal extent of the mask.

As also seen in FIG. 2, the back-cushion panel 25 covers a substantial part of the posterior surface of the mask, being peripherally sealed around the generally elliptical course of inflatable ring 18, and also being centrally adhered to the re-entrant tube 26 for substantially the entire length of tube 26, as suggested by cross-hatching 39. Finally, to assure integrity of the inflatable ring 18, the re-entrant tube 26 is adhesively sealed to the adjacent edges of tube-26 local passage through ring 18 at the distal location designated 40 in FIG. 3; for purposes of avoiding undue complexity in the drawings, this adhesively sealed region is not shown but will be understood to be along the line of tube-26 intercept with locally adjacent walls of inflatable ring 18. In FIG. 5, this intercept line is accounted for by a local cut-out 40′ at the distal end of the skirt of the intermediate product of FIG. 5.

The simplified sectional diagram of FIG. 8 illustrates the functional cooperation of described component parts and features of the described gastro-laryngeal mask construction, in inflated condition, to account for diametrically opposite section cuts through right and left halves of the inflatable ring 18, spaced by sealed fit of body member 13 to the inner profile of ring 18. The back-cushion panel 25, being centrally adhered at 39 to the upper central region of re-entrant tube 26, provides a lifting force which is in the direction to hold open the evacuation tube and, therefore, not to collapse tube 26 when the back cushion is inflated; without this force, in opposition to a retaining force attributable to adhesive connection to body member 13 (along edges of slot 38), there would be no tendency to hold a softly compliant tube 26 against collapse, in that the cushion panel would outwardly expand itself to a bowed shape 25′ suggested by phantom outline in FIGS. 6 and 8.

Preferably, the effective arcuate extent of adhesive connection 39 is in the range 45° to 90° about the central axis of tube 26, as seen in FIG. 8. Preferably also, the adhesive connection of tube 26 along the straight edges of the distal half of slot 38 accounts for a corresponding range of support of tube 26 against collapse in the circumstance of back-cushion inflation. In other words, inflation of the ring 18 and back cushion 25 will assure developed vertical forces to hold the evacuation passage of re-entrant tube 26 in substantially open condition, but the transversely opposed arcuate regions (each of approximately 90° arcuate extent) between these adhesively connected regions are vulnerable to compressionally inward bowing, thus reducing the sectional area of tube 26 while the mask is inflated. The invention resolves this vulnerability by providing axially spaced stiffening ribs or ridges 42 as integral formations of the re-entrant tube 26, in the initially moulded intermediate product of FIG. 5. As shown, there are three mutually opposed pairs of ridges 42, at axial spacings which are in the order of the unstressed bore diameter of tube 26. For the indicated silicone-rubber material of the product of FIG. 5, the incremental local thickness at ridges 42 is suitably twice or three times the otherwise uniformly thin moulded product of FIG. 5, as seen in FIG. 5A.

In FIG. 8, a section taken near the location of tube 26 connection to the more stiffly compliant evacuation tube 23, the inflated condition of the GLM mask of the invention is seen to have an overall “height” dimensions H1, meaning front-to-back (i.e., laryngeal inlet-to-pharynx back wall). When the mask is deflated, this dimension H1 is seen to be reduced by approximately 50 percent, as shown at H2 in FIG. 9 for the deflated condition of the same mask. When deflated, as has been pointed out in U.S. Pat. No. 5,297,547, the ring 18 collapses into flattened double walls (marked 18′) which are upwardly dished; and although deflation does little to compress tube 26 other than at the region 39′ of adhesion to the back-cushion panel 25, the overall deflated extent H2 is essentially unchanged from the dimension H2 which applies for collapse of ring 18. On the other hand, at the distal end of the mask, the collapse of ring 18 is operative upon the formed distal-end opening 43 of tube 26 to somewhat flatten the opening 43, into a generally shovel-shaped distal lip feature which merges smoothly into the adjacent upwardly dished double-wall. shape 18′ shown in the longitudinal mid-section of FIG. 9.

It will be appreciated that the GLM device described thus far has an airway tube 11 that is of larger diameter than the evacuation tube 23; in this circumstance, the airway tube 11 is large enough to accommodate guided insertion of an endotracheal tube. The tubes 11, 23 enter the described laryngeal mask 10 in side-by-side relation and are preferably adhesively secured to each other in this side-by-side relation, and along their full longitudinal extent, in order to provide a measure of torsional resistance against twisting, thereby aiding a medically qualified person in quickly and correctly installing a fully deflated GLM in a patient, with assurance that, upon inflation of ring 18 and the back-cushion panel 25, an exclusive and sealed airway connection will be established to the laryngeal inlet, via lumen 14 and from the airway tube 11; concurrently, a similarly exclusive evacuation connection is established to the upper sphinctral region of the oesophagus, via the distal-end opening 43 of tube 26, through the evacuation tube 23, and to suitable waste-collection means (not shown) external to the patient.

More specifically as to insertion of the fully deflated GLM device in a patient, it will be understood that a range of GLM sizes is available from which to select a sufficiently correct size for the patient. Deflation is accomplished via external means (not shown) and via check-valve means 21 to hold the deflated condition wherein the dome shape of body member 13 rises from within the dished peripheral lip 18′ of the collapsed ring 18. A skilled operator is quickly able to develop the desired appearance of the GLM in its deflated state; but for a uniformly correct deflated shaping, it is recommended to use a forming tool as described in U.S. Pat. No. 5,711,293.

When correctly shaped and in its deflated condition, and at the distal end of the GLM, the opening 43 will have been flattened, and this distal end merges with the peripheral lip 18′ of the collapsed ring 18. Noting that the entire distal half of the mask is of relatively soft material, stiffened only by indicated adhesive connection, the distal end projects distally and at its upwardly flared merge with lip 18′, for low acute-angle incidence to the posterior arcuate profile of the patient's throat passage. That being the case, a medical technician need only make sure that upon inserting the mask via the patient's mouth and throat, the flattened distal end rides the outer (posterior) arcuate contour of the patient's airway, in that the softly flexible nature of the distally projecting and somewhat flattened distal end will be flexibly self-adapting to local irregularities (if any) in the course of passage into the pharynx; final insertional location is noted by an increase in encountered resistance, upon distal-end engagement of the GLM with the upper sphinctral region of the oesophagus. At this juncture, inflation air supplied via line 19 and retained by check-valve means 21 establishes (i) the described seal of ring 18 to the laryngeal inlet, (ii) back cushion (panel 25) contact with the back wall of the pharynx, and (iii) full opening of the evacuation tube 26 for maximum accommodation of a possible gastric discharge from the oesophagus.

Beyond what has been described, FIG. 10 illustrates at phantom outline 26′ that the flexible length of the re-entrant tube 26 may be of even greater length than the approximately half-mask length shown by the solid lines of FIG. 5. In that event, arcuate stiffener ridges as described at 42 will be preferred, as long as lateral support is needed to prevent side-wall collapse of the extended tube 26′, in the inflated condition of the mask, i.e., including inflation of back-cushion panel 25.

FIGS. 10 to 12 illustrate another GLM embodiment wherein an airway tube 50 and an evacuation tube 51 are of equal size, adhered (as suggested at 52) to each other in side-by-side relation for torsionally resistant and symmetrically positioned entry into corresponding side-by-side ports 53, 54 of the dome like moulded backing plate or body member 55 of FIGS. 11 and 12. The backing plate 55 may be similar to plate 13 of FIG. 4, except that in FIG. 11 the somewhat helically arcuate conduit path from the inserted distal end of evacuation tube 51 to the point 56 of softly compliant re-entrant tube (26) connection is provided by an integral passage formation 57 of the backing plate 55. At point 56 in FIG. 11, the formation 57 is seen to be in the central vertical plane 58 of symmetry of the bowl or dome-shape of backing plate 55 and in alignment for accepted proximal-end insertional accommodation of a re-entrant tube 26 of thin-walled material to which backing plate 55 is to be assembled, with edges of the straight slot 38′ supporting tube 26 in the manner already described. Also integrally formed with backing plate 55 is an inlet-connection counterbore for coupled connection of airway tube 50 to the laryngeally exposed side of the mask. Features in FIG. 10, such as the back-cushion panel 25, the inflatable ring 18, and the adhesively bonded connection 39 of panel 25 to tube 26 are all as previously described.

It will be understood that the inside-out technique described in connection with FIGS. 5 and 6 for initially moulding and then inverting the skirt of the moulded product, is but one illustration of a way to create the mask and its inflatable ring, in which case the flexible drainage conduit does not get inverted. That being the case, the reinforcement ribs 42 are initially formed portions of the outer surface of the moulded product. On the other hand, another technique for forming the mask with its inflatable ring, involves moulding the mask bowl integrally with an elliptically configured product as shown in FIG. 13, wherein completion of inflatable-ring (18) integrity requires only an adhesively bonded completion of the ring peripherally around the inner substantially elliptical profile, where backing-plate (13) connection is also adhesively secured. In that case, the drainage tube 26 is integrally-moulded with the non-invertible ring (18), so that an inversion of tube 26 is necessary, to have it project re-entrantly, in the proximal direction, and the moulded product which is to become inflatable ring 18 must be cut away as at 40, to permit inverted tube 26 to “pass through” the inflatable ring, in order to develop a relationship which is suggested by FIG. 5. Of course, if tube 26 is to be inverted, the reinforcement ribs 42 are preferably integrally formed as radially inward rib reinforcements or discontinuities in the moulded bore of tube 26. Inversion of tube 26 places these rib reinforcements on the outer surface of tube 26, so that the bore of tube 26 is inherently smooth.

Brain, Archibald Ian Jeremy

Patent Priority Assignee Title
10040231, Aug 14 2002 Airway device
10549056, Feb 10 2014 Airway management device and method of manufacture
10576230, Jul 06 2009 UMEDAES LIMITED Artificial airway
10625037, Dec 17 2013 INTERSURGICAL AG; DR MUHAMMED ASLAM NASIR Intubating airway device
10729866, Feb 14 2017 SALTER LABS, LLC Laryngeal mask with gastric drainage feature in sealing ring
10806327, Nov 30 2011 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask for use with an endoscope
10842962, Oct 15 2010 TELEFLEX LIFE SCIENCES PTE LTD Artificial airway device
11701484, Dec 13 2017 ASHKAL DEVELOPMENTS LIMITED Airway device
7862542, Sep 11 2006 Flaccid tubular membrane and insertion appliance for surgical intubation and method
8220454, Dec 23 2005 James, Murray Laryngeal mask device
8225794, Jan 13 2006 Olympus Corporation Overtube
8343036, Sep 11 2006 Flaccid tubular membrane and insertion appliance for surgical intubation
8485188, Aug 14 2003 Airway device
8776797, May 27 2005 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask airway device
8778248, Aug 14 2002 Method of manufacturing an airway device
9265904, Jul 06 2009 TELEFLEX LIFE SCIENCES PTE LTD Artificial airway
9265905, Jun 24 2010 ASHKAL DEVELOPMENTS LIMITED Stopper device
9266268, Aug 14 2002 Method of manufacturing an airway device
9475223, Aug 14 2002 Method of manufacturing an airway device
9498591, May 27 2005 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask airway device with a support for preventing occlusion
9522245, May 27 2005 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask airway device and method of manufacture
9662465, May 27 2005 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask airway device
9675772, Oct 15 2010 TELEFLEX LIFE SCIENCES PTE LTD Artificial airway device
9937311, Jan 27 2012 ASHKAL DEVELOPMENTS LIMITED Stopper device
9974912, Oct 01 2010 TELEFLEX LIFE SCIENCES PTE LTD Artificial airway device
D668759, Jan 12 2010 Medical device
D688787, Jun 08 2011 INTERSURGICAL AG; NASIR, MUHAMMED ASLAM; NASIR, MUHAMMAD ASLAM Airway device cap and strap holder
D693920, Jun 08 2011 INTERSURGICAL AG; Muhammed Aslam, Nasir Airway device
D710990, Sep 07 2011 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask
D712244, Sep 23 2011 INTERSURGICAL AG; NASIR, MUHAMMED ASLAM; INTERSURGICAL LTD; NASIR, MUHAMMAD ASLAM Medical device package
D716937, Oct 18 2011 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask airway device
D734662, Sep 23 2011 INTERSURGICAL AG; Muhammed Aslam, Nasir Medical device package
D761952, Jul 27 2012 DOCSINNOVENT LIMITED Airway device
D768846, Jan 27 2012 DOCSINNOVENT LIMITED Airway device
D769442, Jan 27 2012 DOCSINNOVENT LIMITED Airway device
D842456, Dec 15 2015 INTERSURGICAL AG; NASIR, MUHAMMED ASLAM, DR Airway device
D861853, Feb 27 2017 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask and fixation device set
D877888, Dec 15 2015 INTERSURGICAL AG; DR MUHAMMED ASLAM NASIR Airway device
Patent Priority Assignee Title
2839788,
2862498,
3529596,
3554673,
3683908,
3794036,
3931822, Feb 26 1974 Automatic alternating cuff endo tracheal tube inflator
4067329, Jan 17 1975 Union Chimique Continentale-U.C.C. Tube disconnection warning device
4104357, Jan 08 1971 Monster Molding, Inc. Method of rotational molding about plural axes at low rotational speeds
4116201, Dec 20 1976 The Kendall Company Catheter with inflation control device
4134407, Mar 25 1977 External pressure-volume monitor for endotracheal cuff
4159722, Mar 28 1977 Sherwood Medical Company Pressure regulator for endotracheal tube cuff or the like
4178938, Jun 24 1977 Pressure control systems
4178940, Jun 24 1977 Pressure control systems
4231365, Jan 30 1978 GETTIG TECHNOLOGIES, INC Emergency resuscitation apparatus
4256099, Mar 21 1979 Two-tube resuscitation system
4285340, Mar 16 1979 Kearfott Guidance and Navigation Corporation Apparatus for controlling the pressure in a tracheal cuff
4351330, Jan 30 1978 GETTIG TECHNOLOGIES, INC Emergency internal defibrillation
4446864, Jul 10 1980 Emergency ventilation tube
4471775, Sep 07 1982 Endotracheal tube cuff synchronizing system
4501273, Sep 30 1982 MEDEX CARDIO-PULMONARY, INC Endotracheal tube with pressure controlled inflatable cuff
4509514, Dec 16 1981 Artificial airway device
4510273, Nov 08 1979 Mitsui Chemicals, Inc Thixotropic agent
4526196, Jan 26 1983 Nayan S., Shah Gas pressure measuring and regulating device and method
4553540, Aug 16 1983 Airway
4583917, Jun 17 1983 Pressure regulating and monitoring device
4630606, Jul 29 1983 Dragerwerk AG Device for determining and evaluating the pressure in a balloon sleeve of a closed tracheal tube
4689041, Jan 10 1984 ZOLL CIRCULATION, INC Retrograde delivery of pharmacologic and diagnostic agents via venous circulation
4700700, Sep 15 1986 The Cleveland Clinic Foundation Endotracheal tube
4770170, Jul 03 1985 Tottori University Cuff pressure regulator for endotracheal-tube cuff
4793327, Aug 15 1984 Device for opening a patient's airway during automatic intubation of the trachea
4798597, Apr 29 1987 Sherwood Services AG; TYCO GROUP S A R L Flexible composite intubation tube
4825862, Feb 14 1986 Tottori University Pressure regulator for cuff of endotracheal tube with superposition of ventilating pressure variation
4832020, Mar 24 1987 ARIZANT HEALTHCARE INC Tracheal intubation guide
4850349, Dec 04 1987 Endotracheal tube sealing cuff system
4856510, Apr 06 1988 Tracheal tube inflator
4872483, Dec 31 1987 INTERNATIONAL MEDICAL PRODUCTS, INC Conveniently hand held self-contained electronic manometer and pressure modulating device
4924862, Aug 19 1987 Pressure controller and leak detector for tracheal tube cuff
4953547, Jan 26 1989 GREENFIELD MEDICAL TECHNOLOGIES INC Drug administering endotracheal respiration systems
4981470, Jun 21 1989 Medtronic, Inc Intraesophageal catheter with pH sensor
4995388, Mar 22 1989 TELEFLEX LIFE SCIENCES PTE LTD Artificial airway device
5038766, Nov 08 1989 Parker Medical Limited Partnership; PARKER MEDICAL TECHNOLOGIES, INC Blind orolaryngeal and oroesophageal guiding and aiming device
5042469, Mar 24 1987 ARIZANT HEALTHCARE INC Tracheal intubation guide
5042476, Aug 10 1989 Endotracheal tube protection arrangement
5203320, Mar 24 1987 ARIZANT HEALTHCARE INC Tracheal intubation guide
5218970, Dec 05 1990 Smiths Industries Public Limited Company Tracheal tube cuff pressure monitor
5235973, May 15 1991 Tracheal tube cuff inflation control and monitoring system
5241325, Oct 31 1991 Hewlett-Packard Company Print cartridge cam actuator linkage
5241956, May 21 1992 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask airway with concentric drainage of oesophagus discharge
5249571, Apr 29 1992 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal clamp airway
5273537, Mar 06 1992 Boston Scientific Scimed, Inc Power-assisted inflation apparatus
5277178, Sep 14 1991 Medico-surgical device
5282464, Jul 21 1992 INDIAN OCEAN MEDICAL INC Combined laryngeal mask and reflectance oximeter
5297547, Jul 30 1992 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask construction
5303697, Feb 11 1991 TELEFLEX LIFE SCIENCES PTE LTD Artificial airway device
5305743, Mar 05 1992 TELEFLEX LIFE SCIENCES PTE LTD Artificial airway device
5311861, Aug 24 1992 LIFE-AIR PROPRIETARY LIMITED OF Breathing apparatus
5331967, Feb 05 1993 PLAYA DE LOS VIVOS S A Tracheal intubation monitoring apparatus and method
5339805, Nov 08 1989 PARKER MEDICAL TECHNOLOGIES, INC ; Parker Medical Limited Partnership Blind orolaryngeal and oroesophageal guiding and aiming device
5339808, Apr 02 1991 MICHAEL, T ANTHONY DON, M D Endotracheal-esophageal intubation devices
5355879, Sep 28 1992 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal-mask construction
5361753, Jul 07 1992 Deutsche Aerospace AG Method of measuring and regulating the pressure in the sealing cuff of a tracheal tube and apparatus for implementing the method
5391248, Mar 05 1992 TELEFLEX LIFE SCIENCES PTE LTD Method of making an artificial airway device
5400771, Jan 21 1993 Endotracheal intubation assembly and related method
5421325, Apr 30 1992 Endotracheal tube assembly and related method
5452715, Aug 26 1993 Tube for assisting breathing
5459700, Nov 22 1993 Advanced Cardiovascular Systems, Inc. Manual timer control for inflation device
5487383, May 15 1991 Tracheal tube cuff inflation control and monitoring system
5529582, Feb 01 1994 Apparatus for inserting laryngeal mask
5546935, Mar 09 1993 Greatbatch Ltd Endotracheal tube mounted pressure transducer
5546936, Sep 21 1993 MALLINCKRODT MEDICAL, INC Tracheal tube with reinforced flexible segment
5551420, Nov 09 1993 ZOLL Medical Corporation CPR device and method with structure for increasing the duration and magnitude of negative intrathoracic pressures
5554673, Nov 29 1993 POLYZEN, INC Dip molded polyurethane film compositions
5569219, Sep 13 1994 CANOX INTERNATIONAL, LTD Collapsible catheter
5577693, Jan 11 1995 STEPHEN B CORN, M D Anesthesia circuit stand
5582167, Mar 02 1994 Thomas Jefferson University Methods and apparatus for reducing tracheal infection using subglottic irrigation, drainage and servoregulation of endotracheal tube cuff pressure
5584290, Nov 03 1994 INDIAN OCEAN MEDICAL INC Combined laryngeal mask airway and muscular or neuro-muscular response device
5599301, Nov 22 1993 Advanced Cardiovascular Systems, INC Motor control system for an automatic catheter inflation system
5623921, Apr 10 1996 WILLIAM A BECK TRUST, DATED MARCH 12 2013 Laryngeal mask airway and method for its use
5626151, Mar 07 1996 The United States of America as represented by the Secretary of the Army Transportable life support system
5632271, Mar 22 1996 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask with gastric-drainage feature
5653229, Aug 31 1993 Johns Hopkins University Cuffed oro-pharyngeal airway
5655528, Mar 17 1995 Smiths Industries Public Limited Company Introducers
5682880, Jul 26 1996 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal-mask airway with guide element, stiffener, and fiberoptic access
5692498, Nov 09 1993 ZOLL Medical Corporation CPR device having valve for increasing the duration and magnitude of negative intrathoracic pressures
5694929, Feb 26 1996 Evergreen Medical Incorporated Method and apparatus for ventilation/oxygenation during guided insertion of an endotracheal tube
5711293, Jan 24 1996 TELEFLEX LIFE SCIENCES PTE LTD Forming tool for use with a laryngeal mask
5738094, Aug 30 1996 Anesthesia/respirator mask with reduced nasal section enclosure and inflatable cuff
5743254, Mar 18 1997 Parker Medical Limited Partnership Orotracheal intubation guide
5746202, Jul 07 1995 Smiths Group PLC Introducer for oral tubes
5771889, Mar 14 1995 Smiths Group PLC Laryngeal mask airways
5778872, Nov 18 1996 AMBU A S Artificial ventilation system and methods of controlling carbon dioxide rebreathing
5791341, Dec 18 1996 Oropharyngeal stent with laryngeal aditus shield and nasal airway with laryngeal aditus shield
5816240, Jul 14 1995 Techbase Pty. Ltd. Spacer
5819723, Mar 02 1994 Thomas Jefferson University Methods and apparatus for reducing tracheal infection
5832916, Feb 20 1996 Interspiro AB Method and system for checking the operability of electrical-based components in a breathing equipment
5850832, Jun 23 1997 Laryngeal mask airway insertion guide
5855203, Dec 19 1997 Freya, LLC Respiratory circuit with in vivo sterilization
5856510, Dec 16 1996 NPS Pharmaceuticals, Inc 5-alkenyl and 5-alkynyl indole compounds
5860418, Jul 28 1994 Interspiro AB Method and an arrangement for checking the operation of breathing equipment
5865176, Mar 08 1995 ONEILL, MICHAEL JEFFREY; Biosil Limited Artificial airway device with sealing cuff for distal end
5878745, Mar 01 1996 TELEFLEX LIFE SCIENCES PTE LTD Gastro-laryngeal mask
5881726, Nov 19 1996 Smiths Group PLC Laryngeal mask airways and their manufacture
5893891, Jun 11 1993 Blatchford Products Limited Prosthesis control system
5896858, Oct 03 1995 TELEFLEX LIFE SCIENCES PTE LTD Endotracheal-tube guidance system with epiglottis-elevating feature
5915383, Apr 29 1997 Smiths Group PLC Cuffed medico-surgical tubes
5924862, Oct 28 1997 Method and apparatus to verify dental model accuracy
5937860, Apr 10 1997 SALTER LABS, LLC Laryngeal mask
5957133, Jul 21 1997 Oral appliance with negative air supply for reducing sleep apnea and snoring
5979445, Nov 02 1996 Smiths Group PLC Laryngeal mask airways and their manufacture
5983891, Feb 04 1998 AMBU A S Artificial ventilation methods for controlling carbon dioxide rebreathing
5983896, Nov 18 1996 AMBU A S Respiratory conduit for a unilimb respiratory device
5983897, Mar 18 1997 Smiths Group PLC Laryngeal mask assemblies
5988167, May 02 1997 Foam cuff for laryngeal mask airway
5996582, Oct 16 1996 Smiths Group PLC Tracheal assemblies
6003510, Dec 04 1997 Hand tool for introducing a laryngeal mask
6003511, Feb 04 1998 AMBU A S Respiratory circuit terminal for a unilimb respiratory device
6003514, Mar 18 1997 Smiths Group PLC Laryngeal mask assemblies
6012452, Oct 16 1997 Smiths Group PLC Laryngeal mask assemblies
6021779, Feb 05 1997 Smiths Group PLC Laryngeal mask airways and their manufacture
6050264, Sep 18 1996 Smiths Group PLC Laryngeal mask assemblies
6062219, Nov 09 1993 ZOLL Medical Corporation Apparatus and methods for assisting cardiopulmonary resuscitation
6070581, Oct 16 1996 General Electric Capital Corporation; ARIZANT HEALTHCARE INC Laryngeal airway device
6079409, Jul 25 1997 TELEFLEX LIFE SCIENCES PTE LTD Intubating laryngeal mask
6095144, May 03 1997 Smiths Group PLC Laryngeal mask assemblies
6098621, Sep 12 1995 TELEFLEX LIFE SCIENCES PTE LTD Disposable oxygenating device
6110143, Jun 25 1998 Inflation/deflation medical device
6116243, Mar 18 1997 Smiths Group PLC Laryngeal mask assemblies
6119695, Nov 25 1998 General Electric Capital Corporation; ARIZANT HEALTHCARE INC Airway device with provision for lateral alignment, depth positioning, and retention in an airway
6131571, Apr 30 1997 FLORIDA, THE UNIVERSITY OF Ventilation apparatus and anesthesia delivery system
6149603, May 14 1999 VENTREX INC Method and apparatus for determining whether an intubated patient has been properly intubated
6155257, Oct 07 1998 ZOLL Medical Corporation Cardiopulmonary resuscitation ventilator and methods
6213120, Aug 21 1997 Instrumentarium Corp Device and method for determining gas volume and volumetric changes in a ventilator
6224562, Jun 11 1998 ZOLL Medical Corporation Methods and devices for performing cardiopulmonary resuscitation
6234985, Jun 11 1998 ZOLL Medical Corporation Device and method for performing cardiopulmonary resuscitation
6240922, Mar 18 1997 Smiths Industries Public Limited Company Laryngeal mask assemblies
6251093, Jul 16 1991 Edwards Lifesciences, LLC Methods and apparatus for anchoring an occluding member
6269813, Jan 15 1999 RIC Investments, LLC Tracheal gas insufflation bypass and phasic delivery system and method
6315739, Sep 27 1999 Instrumentarium Corporation Apparatus and method for measuring the intratracheal pressure of an intubated patient
6390093, Apr 14 1999 General Electric Company Artificial airway device and method of its use
6427686, Oct 16 1996 General Electric Capital Corporation; ARIZANT HEALTHCARE INC Airway device with provision for coupling to an introducer
6439232, Aug 13 1998 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask airway device
6450164, Aug 17 2000 University of Florida Endotracheal tube pressure monitoring system and method of controlling same
6631720, Oct 07 1999 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask with large-bore gastric drainage
6647984, Jun 24 1999 Caradyne (R&D) Limited Apparatus for controlling cuff pressure in an endotracheal tube
6651666, Jul 23 2002 Variable cuff pressure adapter
6705318, Apr 09 1999 TELEFLEX LIFE SCIENCES PTE LTD Disposable LMA
7004169, Oct 07 1999 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask with large-bore gastric drainage
7040322, Nov 08 2001 Combination artificial airway device and esophageal obturator
7051096, Sep 02 1999 CITICORP CREDIT SERVICES, INC USA System and method for providing global self-service financial transaction terminals with worldwide web content, centralized management, and local and remote administration
7097802, Apr 09 1999 TELEFLEX LIFE SCIENCES PTE LTD Disposable LMA
7128071, Sep 10 2003 TELEFLEX LIFE SCIENCES PTE LTD Intubating laryngeal mask airway device with fiber optic assembly
7134431, Sep 08 2003 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask airway device with position controlling tab
7156100, Oct 06 1998 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask airway device
7159589, Aug 23 2001 TELEFLEX LIFE SCIENCES PTE LTD Disposable laryngeal mask airway device
20030051734,
20030101998,
20030131845,
20030172925,
20050274383,
20060124132,
20060254596,
CA2012750,
CA2067782,
CA2141167,
D429811, Jan 20 1999 Ventilating intubating laryngeal mask airway
DE10042172,
EP294200,
EP389272,
EP402872,
EP580385,
EP712638,
EP732116,
EP796631,
EP845276,
EP865798,
EP922465,
EP1119386,
EP1125595,
GB2111394,
GB2205499,
GB2298797,
GB2317342,
GB2317830,
GB2318735,
GB2319478,
GB2321854,
GB2323289,
GB2323290,
GB2323291,
GB2323292,
GB2359996,
JP10118182,
JP10216233,
JP10263086,
JP10277156,
JP10314308,
JP10323391,
JP10328303,
JP11128349,
JP11192304,
JP11206885,
RE35531, May 10 1996 TELEFLEX LIFE SCIENCES PTE LTD Laryngeal mask assembly and method for removing same
WO9189,
WO22985,
WO23135,
WO61212,
WO9103207,
WO9107201,
WO9112845,
WO9213587,
WO9533506,
WO9712640,
WO9712641,
WO9816273,
WO9906093,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 08 2001Indian Ocean Medical, Inc.(assignment on the face of the patent)
Aug 23 2004BRAIN, ARCHIBALD I J INDIAN OCEAN MEDICAL INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0153340950 pdf
Jun 10 2010INDIAN OCEAN MEDICAL INC The Laryngeal Mask Company LimitedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0247790139 pdf
Dec 02 2019Teleflex Life Sciences Unlimited CompanyTELEFLEX LIFE SCIENCES PTE LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0525070805 pdf
Date Maintenance Fee Events
Oct 11 2010REM: Maintenance Fee Reminder Mailed.
Mar 06 2011EXPX: Patent Reinstated After Maintenance Fee Payment Confirmed.
Aug 16 2011PMFP: Petition Related to Maintenance Fees Filed.
Sep 16 2011PMFG: Petition Related to Maintenance Fees Granted.
Feb 23 2012LTOS: Pat Holder Claims Small Entity Status.


Date Maintenance Schedule
Dec 18 20104 years fee payment window open
Jun 18 20116 months grace period start (w surcharge)
Dec 18 2011patent expiry (for year 4)
Dec 18 20132 years to revive unintentionally abandoned end. (for year 4)
Dec 18 20148 years fee payment window open
Jun 18 20156 months grace period start (w surcharge)
Dec 18 2015patent expiry (for year 8)
Dec 18 20172 years to revive unintentionally abandoned end. (for year 8)
Dec 18 201812 years fee payment window open
Jun 18 20196 months grace period start (w surcharge)
Dec 18 2019patent expiry (for year 12)
Dec 18 20212 years to revive unintentionally abandoned end. (for year 12)