At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively. Upon receiving the TV signal, a receiver can reproduce only the low frequency band component or both the low and high frequency band components, depending on its capability. Furthermore, a communication system based on an OFDM system is utilized for data transmission of a plurality of subchannels, wherein the subchannels are differentiated by changing the length of a guard time slot or a carrier wave interval of a symbol transmission time slot, or changing the transmission electric power of the carrier.
|
0. 1. A signal transmission and reception apparatus for transmitting and receiving an n-level vsb signal, the apparatus comprising a transmitter and a receiver;
said transmitter comprising:
a compression means for compressing an input video signal to a digital video compression signal;
an error correction encoding means for adding an error correction code to the digital video compression signal to produce an error correction coded signal;
a modulation means for modulating the error correction coded signal to an n-level vsb modulation signal, said modulation means comprising a means for allocating code points along a uniaxial modulation coordinate system, and a filter means having a plurality of coefficients which are a series of impulse responses defined by plotting timebase responses to the vsb modulation signal along the in-phase axis and its orthogonal axis for filtering a series of said code points allocated along the uniaxial modulation coordinate system; and
a transmission means for transmitting the modulation signal, and
said receiver comprising:
a means for receiving a transmitted n-level vsb modulation signal;
a demodulation means for demodulating the received n-level vsb modulation signal into a digital reception signal;
an error correction means for error correcting the digital reception signal to obtain an error-corrected digital signal; and
an expanding means for expanding the error-corrected digital signal to obtain a video output signal.
0. 21. A signal receiving apparatus capable of receiving a psk modulated signal processed by digital modulation and a qam modulated signal processed by digital modulation, which are a satellite broadcasting signal and a cable television signal, respectively, said signal receiving apparatus comprising:
a qam demodulator operable to demodulate the qam modulated signal to a qam demodulated signal;
a psk demodulator operable to demodulate the psk modulated signal to a psk demodulated signal; and
a video decoder operable to decode the qam demodulated signal, and operable to decode the psk demodulated signal.
0. 13. A signal receiving apparatus capable of receiving a vsb modulated signal processed by digital modulation and a qam modulated signal processed by digital modulation, which are a terrestrial broadcasting signal and a cable television signal, respectively, said signal receiving apparatus comprising:
a qam demodulator operable to demodulate the qam modulated signal to a qam demodulated signal;
a vsb demodulator operable to demodulate the vsb modulated signal to a vsb demodulated signal; and
a video decoder operable to decode the qam demodulated signal, and operable to decode the vsb demodulated signal.
0. 17. A signal receiving apparatus capable of receiving a vsb modulated signal processed by digital modulation and a psk modulated signal processed by digital modulation, which are a terrestrial broadcasting signal and a satellite broadcasting signal, respectively, said signal receiving apparatus comprising:
a psk demodulator operable to demodulate the psk modulated signal to a psk demodulated signal;
a vsb demodulator operable to demodulate the vsb modulated signal to a vsb demodulated signal; and
a video decoder operable to decode the psk demodulated signal, and operable to decode the vsb demodulated signal.
0. 15. A signal receiving method comprising:
receiving a signal with a receiver capable of receiving a vsb modulated signal processed by digital modulation and a qam modulated signal processed by digital modulation, which are a terrestrial broadcasting signal and a cable television signal, respectively;
demodulating the qam modulated signal to a qam demodulated signal if the received signal is the qam modulated signal, and decoding the qam demodulated signal with a video decoder; and
demodulating the vsb modulated signal to a vsb demodulated signal if the received signal is the vsb modulated signal, and decoding the vsb demodulated signal with the video decoder, wherein the video decoder is capable of decoding the vsb demodulated signal and the qam demodulated signal.
0. 23. A signal receiving method comprising:
receiving a signal with a receiver capable of receiving a psk modulated signal processed by digital modulation and a qam modulated signal processed by digital modulation, which are a satellite broadcasting signal and a cable television signal, respectively;
demodulating the qam modulated signal to a qam demodulated signal if the received signal is the qam modulated signal, and decoding the qam demodulated signal with a video decoder capable of psk demodulated signals and qam demodulated signals; and
demodulating the psk modulated signal to a psk demodulated signal if the received signal is the psk modulated signal, and decoding the psk demodulated signal with the video decoder capable of digital psk demodulated signals and qam demodulated signals.
0. 19. A signal receiving method comprising:
receiving a signal with a receiver capable of receiving a vsb modulated signal processed by digital modulation and a psk modulated signal processed by digital modulation, which are a terrestrial broadcasting signal and a satellite broadcasting signal, respectively;
demodulating the psk modulated signal to a psk demodulated signal if the received signal is the psk modulated signal, and decoding the psk demodulated signal with a video decoder capable of decoding vsb demodulated signals and psk demodulated signals; and
demodulating the vsb modulated signal to a vsb demodulated signal if the received signal is the vsb modulated signal, and decoding the vsb demodulated signal with the decoder capable of decoding the vsb demodulated signals and psk demodulated signals.
0. 2. A transmission and reception apparatus according to
0. 3. A transmission and reception apparatus according to
0. 4. A transmission and reception apparatus according to
0. 5. A transmission and reception apparatus according to
0. 6. A transmission and reception apparatus according to
0. 7. A signal transmission and reception apparatus according to
0. 8. A signal transmission and reception apparatus for transmitting an n-level vsb signal, comprising:
a compression means for compressing an input video signal into a digital video compression signal;
an error correction encoding means for adding an error correction code to the digital video compression signal to produce an error correction coded signal;
a modulation means for modulating the error correction coded signal to an n-level vsb modulation signal, said modulation means comprising a means for allocating code points along a uniaxial modulation coordinate system, and a filter means having a plurality of coefficients which are a series of impulse responses defined by plotting timebase responses to the vsb modulation signal along the in-phase axis and its orthogonal axis for filtering a series of said code points allocated along the uniaxial modulation coordinate system; and
a transmission means for transmitting the modulation signal.
0. 9. A signal transmission according to
0. 10. A signal receiving apparatus comprising:
a tuner for receiving a transmission signal containing a digital modulation signal and an analog modulation signal and for selecting the digital modulation signal using a local oscillation signal;
an interference detecting means for detecting interference caused by the analog modulation signal from the digital modulation signal selected by the tuner;
a notch filter means responsive to the interference detected by the interference detecting means for removing a carrier of the analog modulation signal in a same frequency band as a frequency band of the digital modulation signal;
an error ratio calculating means for calculating a bit error ratio of an output of the notch filter means; and
an automatic frequency correcting means for changing a frequency of the local oscillation signal of the tuner according to a level of the interference detected by the interference detecting means and the bit error ratio calculated by the error ratio calculating means to compensate for a frequency offset of the carrier of the analog modulated signal.
0. 11. A signal receiving apparatus according to
0. 12. A signal receiving apparatus comprising:
a tuner for receiving a transmission signal containing at least one of a vsb modulated signal and a qam modulated signal and for selecting one of the vsb modulated signal and the qam modulated signal to obtain a selected signal;
an analog-to-digital converter for converting the selected signal into a series of digital codes;
a transversal filter provided on an orthogonal axis for suppressing a transmission distortion of the series of digital codes with respect to both orthogonal axes to obtain a series of filtered digital codes allocated on the orthogonal axes;
a carrier recovery means for phase-compensating a carrier of the filtered digital codes allocated on the orthogonal axis outputted from the transversal filter; and
a control means for producing a control signal to extract detected codes at equal time intervals from the vsb modulated signal;
a clock reproducing means for phase synchronizing entire codes of the qam modulated signal when the selected signal is the qam modulated signal and for phase synchronizing codes of the vsb modulated signal intermittently at predetermined intervals when the selected signal is the vsb modulated signal; and
a decoding means for decoding an output of the carrier recovery means.
0. 14. The signal receiving apparatus in accordance with
0. 16. The signal receiving method in accordance with
0. 18. The signal receiving apparatus in accordance with
0. 20. The signal receiving method in accordance with
0. 22. The signal receiving apparatus in accordance with
0. 24. The signal receiving method in accordance with
|
transmission32
|A(16)|2=(A1+A2)2+(B1+B2)2=4A2T0+4A2T0=8AT0
|A(16)|/|A(4)|=2
Accordingly, the 16 QAM signal can be transmitted at a two times greater amplitude and a four times greater transmitting energy than those needed for the 4 PSK signal. A modified 16 QAM signal according to the present invention will not be demodulated by a common receiver designed for symmetrical, equally distanced signal point QAM. However, it can be demodulated with the second receiver 33 when two threshold values A1 and A2 are preset to appropriate values. In
Hence, A2<1.23A1.
If the distance between any two signal point group segments shown in
This relationship between between
This relationship is also denoted by the curve 211 in FIG. 16. For example, if the transmitting energy is 6 or 9 times greater than that for 4 PSK transmission at the point 223 or 222, the antenna 32 having a radius of 8× or 6× value respectively can intercept the first, second, and third data streams for demodulation. As the signal point distance of the second data stream is close to ⅔A2, the relationship between r1 and r2 is expressed by:
Therefore, the antenna 32 of the second receiver 33 has to be slightly increased in radius as denoted by the curve 223.
As understood, while the first and second data streams are transmitted through a traditional satellite which provides a small signal transmitting energy, the third data stream can also be transmitted through a future satellite which provides a greater signal transmitting energy without interrupting the action of the first and second receivers 23 or 33 or with no need of modification of the same and thus, both the compatibility and the advancement is ensured.
The signal receiving action of the second receiver 33 will first be described. As compared with the first receiver 23 arranged for interception with a small radius r1 antenna and demodulation of the 4 PSK modulated signal of the digital transmitter 51 or the first data stream of the signal of the transmitter 1, the second receiver 33 is adopted for perfectly demodulating the 16 signal state two-bit data, shown in
The block diagram of the second receiver 33 in
The various data for demodulation including A1 and A2 or TH16, and the value m for multiple-bit modulation are also transmitted from the transmitter 1 as carried in the first data stream. The demodulation controller 231 may be arranged for recovering such demodulation data through statistical process of the received signal.
A way of determining the shift factor A1/A2 will be described with reference to
FIGS. 25(a) and 25(b) are views showing signal point allocations for the C-CDM signal points, wherein signal points are added by shifting in the polar coordinate direction (r, θ). The previously described C-CDM is characterized in that the signal points are shifted in the rectangular coordinate direction, i.e. XY direction; therefore it is referred to as rectangular coordinate system C-CDM. Meanwhile, this C-CDM characterized by the shifting of signal points in the polar coordinate direction, i.e. r, θ direction, is referred to as polar coordinate system C-CDM.
FIG. 25(a) shows the signal allocation of 8PS-APSK signals, wherein four signal points are added by shifting each of 4 QPSK signals in the radius r direction of the polar coordinate system. In this manner, the APSK of polar coordinate system C-CDM having 8 signal points is obtained from the QPSK as shown in FIG. 25(a). As the pole is shifted in the polar coordinate system to add signal points in this APSK, it is referred to as shifted pole-APSK, i.e. SP-APSK in the abbreviated form. In this case, coordinate values of the newly added four QPSK signals 85 are specified by using a shift factor S1 as shown in FIG. 139. Namely, 8PS-APSK signal points includes ordinary QPSK signal points 83 (r0, θ0) and a signal points ((S1+1)(r0, θ0) obtained by shifting the signal point 83 in the radius r direction by an amount of S1r0. Thus, a 1-bit subchannel 2 is obtained in addition to a 2-bit subchannel 1 identical with the QPSK.
Furthermore, as shown in the constellation diagram of
In FIG. 25(b), the signal points are allocated on the lines of θ=π/8. With this arrangement, the 16 PSK signal points are reduced or limited to 12 signal points, i.e. 3 signal points in each quadrant. With this limitation, these three signal points in each quadrant are roughly regarded as one signal point for 4 QPSK signals. Therefore, this enables the QPSK receiver to reproduce the first subchannel in the same manner as in the previous embodiment.
More specifically, the signal points are disposed on the lines of θ=π/4, θ=π/4+π/8, and θ=π/4−π/8. In other words, the added signals are offset by an amount of ±θ in the angular direction of the polar coordinate system from the QPSK signals disposed on the lines of θ=π/4. Since all the signals are in the range of θ=π/4±π/8, they can be regarded as one of the QPSK signal points on the line of θ=π/4. Although the error rate is lowered a little bit in this case, the QPSK receiver 23 shown in
This calculation is equivalent to that of TH16 but its resultant distance between signal points is smaller.
If the signal point distance in the first sub segment 181 is A3, the distance between the first 181 and the second sub segment 182 is expressed by (A2−2A3). Then, the average distance is (A2−2A3)/(A1+A2) which is designated as d64. when d64 is smaller than T2 which represents the signal point discrimination capability of the second receiver 33, any two signal points in the segment will hardly be distinguished from each other. This judgment is executed at Step 313. If d64 is out of a permissive range, the procedure moves back to Step 313 for 4 PSK mode demodulation. If d64 is within the range, the procedure advances to Step 305 for allowing the demodulation of 16 QAM at Step 307. If it is determined at Step 308 that the error rate is too high, the procedure goes back to Step 313 for 4 PSK mode demodulation.
When the transmitter 1 supplied a modified 8 QAM signal such as shown in FIG. 25(a) in which all the signal points are at angles of cos (2πf+π/4), the carrier waves of the signal are lengthened to the same phase and will thus be reproduced with much ease. At the time, two-bit data of the first data stream are demodulated by the 4-PSK receiver while one-bit data of the second data stream is demodulated by the second receiver 33 and the total of three-bit data can be reproduced.
The third receiver 43 will be described in more detail.
As shown in
TH164=(A1+A3/2)/(A1+A2)
TH264=(A1+A2/2)/(A1+A2) and
TH364=(A1+A2−A3/2)/(A1+A2)
Through AM demodulation of a phase detected signal using the three threshold values, the third data stream can be reproduced like the first and second data stream explained with FIG. 21. The third data stream contains e.g. four signal points 201, 202, 203, and 204 at the first sub segment 181 shown in
The demodulation controller 231 detects the value m, A1, A2, and A3 from the demodulation data contained in the first data stream demodulated by the first data stream reproducing unit 232 and calculates the three threshold values TH164, TH264, and TH364 which are then fed to the first 136 and the second discrimination/demodulation circuit 137 so that the modified 64 QAM signal is demodulated with certainty. Also, if the demodulation data have been scrambled, the modified 64 QAM signal can be demodulated only with a specific or subscriber receiver.
The action of carrier wave reproduction needed for execution of a satisfactory demodulating procedure will now be described. The scope of the present invention includes reproduction of the first data stream of a modified 16 or 64 QAM signal using a 4 PSK receiver. However, a common 4 PSK receiver rarely reconstructs carrier waves, thus failing to perform a correct demodulation. For compensation, some arrangements are necessary at both the transmitter and receiver sides.
Two techniques for compensation are provided according to the present invention. A first technique relates to transmission of signal points aligned at angles of (2n−1)π/4 at intervals of a given time. A second technique offers transmission of signal points arranged at intervals of an angle of nπ/8.
According to the first technique, the eight signal points including 83 and 85 are aligned at angles of π/4, 3π/4, 5π/4, and 7π/4, as shown in FIG. 38. In action, at least one of the eight signal points is transmitted during sync time slot periods 452, 453, 454, and 455 arranged at equal intervals of time in a time slot gap 451 shown in the time chart of FIG. 38. Any desired signal points are transmitted during the other time slots. The transmitter 1 is also arranged to assign a data for the time slot interval to the sync timing data region 499 of a sync data block, as shown in FIG. 41.
The content of a transmitting signal will be explained in more detail referring to FIG. 41. The time slot group 451 containing the sync time slots 452, 453, 454, and 455 represents a unit data stream or block 491 carrying a data of Dn.
The sync time slots in the signal are arranged at equal intervals of a given time determined by the time slot interval or sync timing data. Hence, when the arrangement of the sync time slots is detected, reproduction of carrier waves will be executed slot by slot through extracting the sync timing data from their respective time slots. Such a sync timing data S is contained in a sync block 493 at the front end of a data frame 492, which consists of a number of sync time slots denoted by the hatching in FIG. 41. Accordingly, the data to be extracted for carrier wave reproduction are increased, thus allowing the 4 PSK receiver to reproduce desired carrier waves at higher accuracy and efficiency.
The sync block 493 comprises sync data regions 496, 497, and 498, —containing sync data S1, S2, and S3, —respectively which include unique words and demodulation data. The phase sync signal assignment region 499 is at the end of the sync block 493, which holds a data of IT including information about interval arrangement and assignment of the sync time slots.
The signal point data in the phase sync time slot has a particular phase and can thus be reproduced by the 4 PSK receiver. Accordingly, IT in the phase sync signal assignment region 499 can be retrieved without error thus ensuring the reproduction of carrier waves being
The other signal points 84a and 86a are also shifted to two points 84 and 86 respectively.
If the error rate of the first data stream is Pe1, it is obtained from:
Also, the error rate Pe2 of the second data stream is obtained from:
The error rate of 36 or 32 SRQAM will be calculated.
The signal point 83a of 36 QAM is spaced δ from each axis of the coordinate. It is now assumed that n is a shift value of the 16 SRQAM. In 36 SRQAM, the signal point 83a is shifted to a signal point 83 where the distance from each axis is nδ. Similarly, the nine 36 QAM signal points in the first quadrant are shifted to points 83, 84, 85, 86, 97, 98, 99, 100, 101 respectively. If a signal point group 90 comprising the nine signal points is regarded as a single signal point, the error rate Pe1 in reproduction of only the first data stream D1 with a modified 4 PSK receiver and the error rate Pe2 in reproduction of the second data stream D2 after discriminating the nine signal points of the group 90 from each other, are obtained respectively from:
The curve 902a represents a D2 level SRQAM signal at n=1.5 which can be reproduced at the error rate of 10−1.5 only when its C/N rate is 2.5 dB higher than that of the conventional 32 QAM of the curve 900. Also, the curves 901b and 902b represent D1 and D2 SRQAM signals at n=2.0 respectively. The
Hence, if the 32 SRQAM signal is selected, the shift n is determined by:
1<n<5
Also, if the 16 SRQAM signal is employed, n is determined by:
1<n<3
In the SRQAM mode signal terrestrial broadcast service in which the first and second data levels are created by shifting corresponding signal points as shown in
In the above embodiments, the low and high frequency band components of a video signal are transmitted as the first and second data streams. However, the transmitted signal may be an audio signal. In this case, low frequency or low resolution components of an audio signal may be transmitted as the first data stream, and high frequency or high resolution components of the audio signal may be transmitted as the second data stream. Accordingly, it is possible to receive high C/N portion in high sound quality, and low C/N portion in low sound quality. This can be utilized in PCM broadcast, radio, portable telephone and the like. In this case, the broadcasting area or communication distance can be expanded as compared with the conventional systems.
Furthermore, the third embodiment can incorporate a time division multiplexing (TDM) system as shown in FIG. 133. Utilization of the TDM makes it possible to increase the number of subchannels. An ECC encoder 743a and ECC encoder 743b, provided in two subchannels, differentiate ECC code gains so as to make a difference between thresholds of these two subchannels, whereby an increase in the number of channels of the multi-level signal transmission can be realized. In this case, it is also possible to provide the ECC encoder, such as two Trellis encoders 743a and 743b for VSB-ASK signals of 4 VSB, 8 VSB, 16 VSB as shown in FIG. 137 and differentiate their code gains. The explanation of this block diagram is substantially identical to that of later described block diagram of
The up converter of the transmitter and the down converter of the receiver of the transmission apparatus can be substituted for the magnetic head recording signal amplifier circuit and the magnetic head reproducing signal amplifier circuit of the magnetic recording and reproducing apparatus, respectively, and there respective components are therefore identically constructed. The configuration and operation of the modulator and demodulator of the magnetic recording and reproducing apparatus are therefore also identical to those of the transmission apparatus. Similarly, the recording/reproducing/transmission system shown in
In a simulation of
An SRQAM is the system applying a C-CDM (Constellation-Code Division Multiplex) of the present invention to a rectangle-QAM. A C-CDM, which is a multiplexing method independent of TDM or FDM, can obtain subchannels by dividing a constellation-code corresponding to a code. An increase of the number of codes will bring an expansion of transmission capacity, which is not attained by TDM or FDM alone, while maintaining almost perfect compatibility with conventional communication apparatus. Thus C-CDM can bring excellent effects.
Although above embodiment combines the C-CDM and the TDM, it is also possible to combine the C-CDM with the FDM (Frequency Division Multiplex) to obtain similar modulation effect of threshold values. Such a system can be used for a TV broadcasting, and FIGS. 108(a)-108(e) show area
Hence, the multi-level signal transmission system of the embodiment is based on L0>L. The embodiment is however not limited to L0>L, and L0=L will be employed temporarily or permanently depending on the requirements of design, condition, and setting. In the case of VSB, the constellation shown in FIGS. 68(a) and (b) are taken.
The two signal point 855cbea an OFDM transmitter/receiver, and
As shown in the principle diagram of
A transmitting/receiving action of HDTV signal in accordance with this ninth embodiment will be explained referring to the block diagram of
In a first data stream input 743, D1-1 signal is ECC encoded with high code gain and D1-2 signal is ECC coded with a normal code gain. A TDM 743 performs time division multiplexing of D1-1 and D1-2 signals to produce a D1 signal, which is then fed to a D1 serial to parallel converter 791d in a modulator 852a. D1 signal consists of n pieces of parallel data, which are inputted into first inputs of n pieces of C-CDM modulator 4a, 4b,—respectively.
On the other hand, the high frequency band signal D2 is fed into a second data stream input 744 of the input section 742, in which D2 signal is ECC (Error Correction Code) encoded in an ECC 744a and then Trellis encoded in a Trellis encoder 744b. Thereafter, the D2 signal is supplied to a D2 serial to parallel converter 791b of the modulator 852a and converted into n pieces of parallel data, which are inputted into second inputs of the n pieces of C-CDM modulator 4a, 4b,—respectively.
The C-CDM modulators 4a, 4b, 4c—respectively produces produce 16 SRQAM signal on the basis of D1 data of the first data stream input and D2 data of the second data stream input. These n pieces of C-CDM modulator respectively has have a carrier different from each other. As shown in
Next, an action of a receiver 43 will be described. A received signal, shown as time-base symbol signal 796e of
Since the signal transmission system is of C-CDM multi-level shown in 125(b), both D1 and D2 signals will be demodulated under better receiving condition but only D1 signal will be demodulated under worse, e.g. low C/N rate, receiving condition. Demodulated D1 signal is demodulated in an output section 757. As D1-1 signal has higher ECC code gain as compared with the D1-2 signal, an error signal of the D1-1 signal is reproduced even under worse receiving condition.
The D1-1 signal is converted by a 1-1 video decoder 402c into a low frequency band signal and outputted as an LDTV, and the D1-2 signal is converted by a 1-2 video decoder 402d into a medium frequency band signal and outputted as EDTV.
The D2 signal is Trellis decoded by a Trellis decoder 759b 759b and converted by a second video decoder 402b into a high frequency band signal and outputted as an HDTV signal. Namely, an LDTV signal is outputted in case of the low frequency band signal only. An EDTV signal of a wide NTSC grade is outputted if the medium frequency band signal is added to the low frequency band signal, and an HDTV signal is produced by adding low, medium, and high frequency band signals. As well as the previous embodiment, a TV signal having a picture quality depending on a receiving C/N rate can be received. Thus, the ninth embodiment realizes a novel multi-level signal transmission system by combining an OFDM and a C-CDM, which was not obtained by the OFDM alone.
An OFDM is certainly strong against multipath such as TV ghost because the guard time Tg can absorb an interference signal of multipath. Accordingly, the OFDM is applicable to the digital TV broadcasting for automotive vehicle TV receivers. Meanwhile, no OFDM signal is received when the C/N rate is less than a predetermined value because its signal transmission pattern is non not of a multi-level type.
However the present invention can solve this disadvantage by combining the OFDM with the C-CDM, thus realizing a graditional gradational degradation depending on the C/N rate in a video signal reception without being disturbed by multipath.
When a TV signal is received in a compartment of a vehicle, not only the reception is disturbed by multipath but the C/N rate is deteriorated. Therefore, the broadcast service area of a TV broadcast station will not be expanded as expected if the countermeasure is only for multipath.
On the other hand, a reception of TV signal of at least LDTV grade will be ensured by the combination with the multi-level transmission C-CDM even if the C/N rate is fairly deteriorated. As a picture plane size of an automotive vehicle TV is normally less than 10 inches, a TV signal of an LDTV grade will provide a satisfactory picture quality. Thus, the LDTV grade service area of automotive vehicle TV will be largely expanded. If an OFDM is used in an entire frequency band of HDTV signal, present semiconductor technologies cannot prevent circuitry scale from increasing so far.
Now, an OFDM method of transmitting only D1-1 of low frequency band TV signal will be explained below. As shown in a block diagram in
On the other hand, a signal received by a receiver 43 is first of all frequency separated by an FDM 40e and, then, demodulated by a C-CDM demodulator 4b of the present invention. Thereafter, thus C-CDM demodulated signal is reproduced into medium and high frequency components of HDTV in the same way as in FIG. 123. An operation of a video decoder 402 is identical to that of embodiments 1, 2, and 3 and will not be explained in greater detail.
Meanwhile, the D1-1 signal, a low frequency band signal of MPEG 1 grade of HDTV, is converted by a serial to parallel converter 791 into a parallel signal and fed to an OFDM modulator 852c, which executes QPSK or 16 QAM modulation. Subsequently, the D1-1 signal is converted by an inverse FFT 40 into a time-base signal and transmitted at a frequency band B through a FDM 40d.
On the other hand, a signal received by the receiver 43 is frequency separated in the FDM 40e and then converted into a number of frequency-base signals in an FFT 40a of an OFDM modulator demodulator 852d. Thereafter, frequency-base signals are demodulated in respective demodulators 4a, 4b,—and are fed into a parallel to serial converter 882a, wherein a D1-1 signal is demodulated. Thus, a D1-1 signal of LDTV grade is outputted from the receiver 43.
In this manner, only an LDTV signal is OFDM modulated in the multi-level signal transmission. The method of
An OFDM signal transmission system is strong against multipath and will soon be applied to a moving station, such as a portable TV, an automotive vehicle TV, or a digital music broadcast receiver, which is exposed under strong and variable multipath obstruction. For such usages a small picture size of less than 10 inches, 4 to 8 inches, is the mainstream. It will be thus guessed that the OFDM modulation of a high resolution TV signal such as HDTV or EDTV will bring less effect. In other words, the reception of a TV signal of LDTV grade would be sufficient for an automotive vehicle TV.
On the contrary, multipath is constant at a fixed station such as a home TV. Therefore, a countermeasure against multipath is relatively easy. Less effect will be brought to such a fixed station by OFDM unless it is in a ghost area. Using OFDM for medium and high frequency band components of HDTV is not advantageous in view of present circuit scale of OFDM which is still large.
Accordingly, the method of the present invention, in which OFDM is used only for a low frequency band TV signal as sown shown in
Although the OFDM modulation of
The multi-level signal transmission according to the present invention is feasible in this manner and produces various effects as previously described. Furthermore, if the multi-level signal transmission of the present invention is incorporated with an OFDM, it will become possible to provide a system strong against multipath and to alter data transmission grade in accordance with receivable signal level change.
FIG. 126(a) shows another method of realizing the multi-level signal transmission system, wherein the subchannels 794a-794c of the OFDM are assigned to a first layer 801a and the subchannels 794d-794f are assigned to a second layer 801b. There is provided a frequency guard zone 802a of fg between these two, first and second, layers. FIG. 126(b) shows an electric power difference 802b of Pg which is provided to differentiate the transmission power of the first and second layers 801a and 801b.
Utilization of this differentiation makes it possible to increase electric power of the first layer 801a in the range not obstructing the analogue TV broadcast service as shown in FIG. 108(d) previously described. In this case, a threshold value of the C/N ratio capable of receiving the first layer 801a becomes lower than that for the second layer 801b as shown in FIG. 108(e). Accordingly, the first layer 801a can be received even in a low signal-level area or in a large-noise area. Thus, a two-layer signal transmission is realized as shown in FIG. 147. This is referred to as Power-Weighted-OFDM system (i.e. PW-OFDM) in this specification. If this PW-OFDM system is combined with the C-CDM system previously explained, three layers will be realized as shown in FIG. 108(e) and, accordingly, the signal receivable area will be correspondingly expanded.
A signal received by the receiver 43 is separated into several signals having carriers of f1-fnthrough the FFT 40a. The carriers f1-f3 are demodulated by the demodulators 45a-45c to reproduce the first data stream D1, i.e. the first layer 801a. On the other hand, the carriers f6-f8 are demodulated by the demodulators 45d-45f to reproduce the second data stream D2, i.e. the second layer 801b.
The first layer 801a has so large electrical power that it can be received even in a weak-signal area. In this manner, the PW-OFDM system realizes the two-layer multi-level signal transmission. If this PW-OFDM is combined with the C-CDM, it will become possible to provide 3-4 layers. As the circuit of
Next, a method of realizing a multi-level signal transmission in Time-Weighted-OFDM (i.e. TW-OFDM) in accordance with the present invention will be explained. Although the OFDM System is accompanied with the guard time zone tg as previously described, adverse affects of ghosts will be eliminated if the delay time tM of the ghost, i.e. multipath, signal satisfies the requirement of tM<tg. The delay time tM will be relatively small, for example in the range of several microsounds microseconds, in a fixed station such as a TV receiver used for home use. Furthermore, as its value is constant, cancellation of ghosts will be relatively easily done. On the contrary, reflected waves will increase in case of a mobile station such as a vehicle TV receiver. Therefore, the delay time tM becomes relatively large, for example in the range of several tens microsound microsecond. Furthermore, the magnitude of tM varies in response to the running movement of the vehicle. Thus, cancellation of ghosts tends to be difficult. Hence, the multi-level signal transmission is key or essential for such a mobile station TV receiver in order to eliminate adverse affection of multipath.
The multi-level signal transmission in accordance with the present invention will be explained below. A symbol contained in the subcannel subchannel layer A can be intensified against the ghosts by setting a guard time tga of the layer A to be larger than a guard time tgb of the layer B as shown in FIG. 146. In this manner, the multi-layer signal transmission can be realized against multipath by use of weighting of guard time. This system is referred to as Guard-Time-Weighted-OFDM (i.e. QTW-OFDM).
If the symbol number of the symbol time Ts is not different in the layer A and in the layer B, a symbol time tsa of the layer A is set to be larger smaller than a symbol time tsb of the layer B. With this differentiation, a carrier width Δfa of the carrier A becomes larger than a carrier width Δfb of the carrier B. (Δfa>Δfb) (Δfa<Δfb) Therefore, the error rate becomes lower in the demodulation of the symbol of the layer A compared with the demodulation of the symbol of the layer B. Thus, the differentiation of the layer A and B in the weighting of the symbol time Ts can realize a two-layer signal transmission against multipath. This system is referred to as Carrier-Spacing-Weighted-OFDM (i.e. CSW-OFDM).
By realizing the two-layer signal transmission based on the GTW-OFDM, wherein a low-resolution TV signal is transmitted by the layer A and a high-frequency component is transmitted by the layer B, the vehicle TV receiver can stably receive the low-resolution TV signal regardless of tough ghost. Furthermore, the multi-level signal transmission with respect to the C/N ratio can be realized by differentiating the symbol time tS based on the CSW-OFDM between the layers A and B. If this CSW-OFDM is combined with the GTW-OFDM, the signal reception in the vehicle TV receiver can be further stabilized. High resolution is not normally required to the vehicle TV or the portable TV.
As the time ratio of the symbol time including a low-resolution TV signal is small, an overall transmission efficiency will not decrease so much even if the guard time is enlarged. Accordingly, using the GTW-OFDM of the present invention for suppressing multipath by laying emphasis on the low-resolution TV signal will realize the multi-layer type TV broadcast service wherein the mobile station such as the portable or vehicle TV receiver can be compatible with the stationary station such as the home TV without substantially lowering the transmission efficiency. If combined with the CSW-OFDM or the C-CDM as described previously, the multi-layer to the C/N ratio can be also realized. Thus, the signal reception in the mobile station will be further stabilized.
An affection of the multipath will be explained in more detail. In case of multipath 810a, 810b, 810c, and 810d having shorter delay time as shown in FIG. 145(a), the signals of both the first and second layers can be received and therefore the HDTV signal can be demodulated. On the contrary, in case of multipath 811a, 811b, 811c, and 811d having longer delay time as shown in FIG. 145(b), the B signal of the second layer cannot be received since its guard time tgb is not sufficiently long. However, the A signal of the first layer can be received without being bothered by the multipath since its guard time tga is sufficiently long. As described above, the B signal includes the high-frequency component of TV signal. The A signal includes the low-frequency component of TV signal. Accordingly, the vehicle TV can reproduce the LDTV signal. Furthermore, as the symbol time Tsa is set larger than symbol time Tsb, the first layer is strong against deterioration of C/N ratio.
Such a discrimination of the guard time and the symbol time is effective to realize two-dimensional multi-layer signal transmission of the OFDM in a simple manner. If the discrimination of guard time is combined with the C-CDM in the circuit shown in
Next, a specific example will be described below.
The smaller the D/U ratio of the receiving signal becomes, the larger the multipath delay time TM becomes. Because, the reflected wave increases compared with the direct wave. For example, as shown in
Accordingly, as shown in detail in FIGS. 149(a) and 149(b), three groups of first 801a, second 801b, and third 801 c 801c layers are assigned in a 2 ms period of 1 sec TV signal. The guard times 797a, 797b, and 797c, i.e. Tga, Tgb, and Tgc, of these three groups are weighted to be, for example, 50 microsounds microseconds, 5 microsounds microseconds, and 1 microsound microsecond, respectively, as shown in FIG. 149(c). Thus, three-layer signal transmission effective to the multipath will be realized as shown in
If the GTW-OFDM is applied to ass the picture quality, it is doubtless
At the same time, the multi-layer signal transmission effective to C/N ratio can be realized. By combining the CSW-OFDM and the CSW-OFDM, a two-dimensional multi-layer signal transmission is realized with respect to the multipath and the C/N ratio as shown in FIG. 151. As described previously, it is possible to combine the CSW-OFDM and the C-CDM of the present invention for preventing the overall transmission efficiency from being lowered. In the first, 1-2, and 1-3 layers 801a, 851a, and 851az, the LDTV grade signal can be stably received by, for example, the vehicle TV receiver subjected to the large multipath TM and low C/N ratio. In the second and 2-3 layers 801b and 851b, the standard-resolution SDTV grade signal can be received by the fixed or stationary station located, for example, in the fringe of the service area which is generally subjected to the lower C/N ratio and ghost. In the third layer 801c which occupies more than half of the service area, the HDTV grade signal can be received since the C/N ratio is high and the ghost is less because of large direct wave. In this manner, a two-dimensional multi-layer broadcast service effective to both the C/N ratio and the multipath can be realized by the combination of the GTW-OFDM and the C-CDM or the combination of the GTW-OFDM and the CSW-C-CDM in accordance with the present invention. thus Thus, the present invention realizes a two-dimensional, matrix type, multi-layer signal transmission system effective to both the C/N ratio and the 194 multipath, which has not ever been realized by the prior art technologies.
A timing chart of a three level (HDTV, SDTV, LDTV) television signal in a two-dimensional multilevel broadcast of three C/N levels and three multipath levels is shown in FIG. 152. As shown in the figure, the LDTV signal is positioned in slot 796a1 of the first level of level layer A, the level with the greatest resistance to multipath interference; the SDTV synchronization signal, address signal, and other important high priority signals are positioned in slot 796a2, which has the next greatest resistance to multipath interference, and slot 796b1, which has strong resistance to C/N deterioration. The SDTV common signal, i.e., low priority signals, and HDTV high priority signals are positioned in levels 2 and 3 of level B. SDTV, EDTV, HDTV, and other high frequency component television signals are positioned in levels 1, 2, and 3 of level C.
As the resistance to C/N deterioration and multipath interference increases, the transmission rate drops, causing the TV signal resolution to drop, and achieving the three-dimensional graceful degradation effect shown in FIG. 153 and unobtainable with conventional methods. As shown in
The present embodiment has been described using the example of a two-dimensional multilevel broadcast structure obtained by combining GTW-OFDM of the invention with C-CDM of the invention as previously described, or combining GTW-OFDM, CSW-C-CDM, but other two-dimensional multilevel broadcast structures can be obtained by combining GTW-OFDM and power-weighted OFDM, or GTW-OFDM with other C/N ratio multilevel transmission methods.
By using a time positioning varying the time width of guard times 797a, 797b, and 797c for each symbol 796a, 796b, and 796c as shown in
Block diagrams of a specific ECC encoder 744j and a specific ECC decoder 749j 759j are shown in FIG. 160a and
Burst noise interference can be reduced by interleaving the data in this way. By using a 4-level VSB, 8-level VSB, or 16-level VSB transmission apparatus as described in embodiments 4, 5, and 6, respectively, and shown in the VSB receiver block diagram (
By using 3-level broadcasting by means of the method shown in
The multi-level signal transmission method of the present invention is intended to increase the utilization of frequencies but may be suited for not all the transmission systems since causing some type receivers to be declined in the energy utilization. It is a good idea for use with a satellite communications system for selected subscribers to employ most advanced transmitters and receivers designed for best utilization of applicable frequencies and energy. Such a specific purpose signal transmission system will not be bound by the present invention.
The present invention will be advantageous for use with a satellite or terrestrial broadcast service which is essential to run in the same standards for as long as 50 years. During the service period, the broadcast standards must not be altered but improvements will be provided time to time corresponding to up-to-date technological achievements. Particularly, the energy for signal transmission will surely be increased on any satellite. Each TV station should provide a compatible service for guaranteeing TV program signal reception to any type receivers ranging from today's common ones to future advanced ones. The signal transmission system of the present invention can provide a compatible broadcast service of both the existing NTSC and HDTV systems and also, ensure a future extension to match mass date data transmission.
The present invention concerns much on the frequency utilization than the energy utilization. The signal receiving sensitivity of each receiver is arranged different differently depending on a signal state level to be received so that the transmitting power of a transmitter needs not be increased largely. Hence, existing satellites which offer a small energy for reception and transmission of a signal can best be used with the system of the present invention. The system is also arranged for performing the same standards corresponding to an increase in the transmission energy in the future and offering the compatibility between old and new type receivers. In addition, the present invention will be more advantageous for use with the satellite broadcast standards.
The multi-level signal transmission method of the present invention is more preferably employed for terrestrial TV broadcast service in which the energy utilization is not crucial, as compared with satellite broadcast service. The results are such that the signal attenuating regions in a service area which are attributed to a conventional digital HDTV broadcast systems are considerably reduced in extension and also, the compatibility of an HDTV receiver or display with the existing NTSC system is obtained. Furthermore, the service area is substantially increased so that program suppliers and sponsors can appreciate more viewers. Although the embodiments of the present invention refer to 16 and 32 QAM procedures, other modulation techniques including 64, 128, and 256 QAM will be employed with equal success. Also, multiple PSK, ASK, and FSK techniques will be applicable as described with the embodiments.
A combination of the TDM with the SRQAM of the present invention has been described in the above. However, the SRQAM of the present invention can be combined also with any of the FDM, CDMA and frequency dispersal communications systems.
Oshima, Mitsuaki, Sakashita, Seiji
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3824548, | |||
3909721, | |||
3959726, | Sep 18 1971 | Fujitsu Ltd. | Pilot signal transmission system |
4003002, | Sep 12 1974 | U.S. Philips Corporation | Modulation and filtering device |
4048572, | Dec 18 1975 | Cselt - Centro Studi e Laboratori Telecommunicazioni S.p.A. | Adaptive correction of phase errors in noncoherent demodulation of carrier asymmetrically modulated with digital signals |
4053713, | Feb 05 1975 | Oki Electric Industry Co., Ltd. | Multi-channel multiplex data transmission system |
4077021, | Jun 18 1976 | International Business Machines Corporation | Method and arrangement for coding binary signals and modulating a carrier signal |
4227152, | Jun 13 1978 | International Business Machines Corporation | Method and device for training an adaptive equalizer by means of an unknown data signal in a quadrature amplitude modulation transmission system |
4267592, | Mar 30 1979 | Rockwell International Corporation | Anti-jam radio |
4271527, | Aug 31 1979 | PARADYNE CORPORATION FORMERLY KNOWN AS AT&T PARADYNE CORPORATION | Double side band-quadrature carrier modulation signal structures |
4303939, | Aug 11 1980 | RCA Corporation | Horizontal stability measurement apparatus |
4303941, | May 16 1979 | ETABLISSEMENT PUBLIC DE DIFFUSION DIT TELEDIFFUSION DE FRANCE ; FOURNIER, CLAUDE; ROCHE, CHRISTIAN | Videotex system |
4309726, | May 28 1979 | Hitachi, Ltd. | Muting circuit in a PCM recording and reproducing apparatus |
4525846, | Dec 27 1982 | PARADYNE CORPORATION FORMERLY KNOWN AS AT&T PARADYNE CORPORATION | Modem in-band secondary channel via radial modulation |
4535352, | Apr 16 1984 | AT&T Bell Laboratories | Technique for generating semi-compatible high definition television signals for transmission over two cable TV channels |
4564858, | Mar 31 1981 | Harris Corporation | Television SAW/VSB filter incorporating receiver equalizer |
4581639, | Oct 17 1983 | Tektronix, Inc. | Method and apparatus for monitoring suitability of a transmission path for transmission of digital data signals |
4597090, | Apr 14 1983 | Motorola, Inc | Block coded modulation system |
4601045, | Aug 03 1984 | Larse Corporation | Modulator-demodulator method and apparatus with efficient bandwidth utilization |
4630287, | Sep 08 1981 | PIRIN POCKET DATA LLC | Secondary channel signalling in a QAM data point constellation |
4636876, | Apr 19 1983 | COMPUSONICS CORPORATION, 323 ACOMA STREET, DENVER, CO , 80223, A CORP OF CO | Audio digital recording and playback system |
4751478, | Feb 08 1986 | NEC Corporation | Multilevel modulator capable of producing a composite modulated signal comprising a quadrature amplitude modulated component and a phase modulated component |
4769819, | Dec 26 1984 | Mitsubishi Denki Kabushiki Kaisha | Two stage coding method |
4794447, | Nov 17 1986 | NORTH AMERICAN PHILIPS CORPORATION, A DE CORP | Method and apparatus for transmitting and receiving a high definition NTSC compatible television signal over a single DBS channel in time division multiplex form |
4800426, | May 18 1987 | New York Institute of Technology | Method and system for transmission and reception of high definition |
4817192, | Oct 31 1986 | Motorola, Inc.; Motorola, Inc | Dual-mode AFC circuit for an SSB radio transceiver |
4855692, | Jun 20 1988 | Nortel Networks Limited | Method of quadrature-phase amplitude modulation |
4873701, | Sep 16 1987 | ACCESS BEYOND, INC | Modem and method for 8 dimensional trellis code modulation |
4891806, | Sep 18 1987 | RACAL-DATACOM, INC | Constellation multiplexed inband secondary channel for voiceband modem |
4903125, | Apr 17 1986 | British Broadcasting Corporation | Method and apparatus for conveying information signals |
4912706, | Nov 18 1988 | American Telephone and Telegraph Company; AT&T Bell Laboratories | Frame synchronization in a network of time multiplexed optical space switches |
4914655, | Jun 20 1986 | BELL TELEPHONE LABORATORIES, INCORPORATED, A CORP OF NY ; AMERICAN TELEPHONE AND TELEGRAPH COMPANY, A CORP OF NY | Multiplexing arrangement for a digital transmission system |
4918437, | Oct 13 1988 | Motorola, Inc | High data rate simulcast communication system |
4937844, | Nov 03 1988 | RACAL-DATACOM, INC | Modem with data compression selected constellation |
4940954, | Apr 12 1988 | Lockheed Martin Corporation | Unbalanced quadrature PSK modulator-limiter |
4958360, | Sep 25 1987 | U.S. Philips Corporation | Circuit for recovering the carrier in digital transmission systems |
5007088, | Mar 01 1988 | NEC Corporation | Scrambling/descrambling method using a memory for storing initial pseudo-random bit patterns respectively for submultiframes |
5018198, | Jan 20 1989 | Canon Kabushiki Kaisha | Speech privacy processing method and apparatus therefor |
5023889, | May 31 1988 | CALIFORNIA INSTITUTE OF TECHNOLOGY, 1201 E CALIFORNIA BLVD , PASADENA, CA 91125, A CORP OF CA | Trellis coded multilevel DPSK system with doppler correction for mobile satellite channels |
5029003, | Dec 18 1989 | General Electric Company | Apparatus for incorporating digital signals with a standard TV signal |
5038219, | Oct 31 1989 | Sony Corporation | Video signal recording apparatus |
5038402, | Dec 06 1988 | GENERAL INSTRUMENT CORPORATION GIC-4 | Apparatus and method for providing digital audio in the FM broadcast band |
5050188, | Jun 12 1987 | Method and apparatus for transmitting coded information | |
5063445, | Apr 19 1990 | Nippon Hoso Kyokai | Multiple sub-sampling transmitting/receiving system performing interfield and interframe offset sub-sampling of a broad bandwidth television signal |
5063452, | Jan 27 1987 | Victor Company of Japan Ltd. | Magnetic recording and/or reproducing apparatus having means for preventing audio-to-video crosstalk and noise generation |
5086340, | Oct 19 1990 | CITICORP NORTH AMERICA, INC , AS AGENT | Co-channel interference reduction system for digital high definition television |
5087975, | Nov 09 1990 | CITICORP NORTH AMERICA, INC , AS AGENT | VSB HDTV transmission system with reduced NTSC co-channel interference |
5105442, | Nov 07 1990 | AGERE Systems Inc | Coded modulation with unequal error protection |
5115453, | Oct 01 1990 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Technique for designing a multidimensional signaling scheme |
5124852, | Nov 10 1989 | Victor Company of Japan, LTD | Magnetic tape recording apparatus |
5128758, | Jun 02 1989 | KONINKLIJKE PHILIPS ELECTROMICS N V | Method and apparatus for digitally processing a high definition television augmentation signal |
5134464, | Oct 03 1988 | North American Philips Corporation | Method and apparatus for the transmission and reception of a multicarrier digital television signal |
5136380, | Dec 28 1989 | Samsung Electronics Co., Ltd. | Display signal device and method for providing compatibility between NTSC television and HDTV |
5142353, | Dec 23 1987 | Matsushita Electric Industrial Co., Ltd. | Television signal processing apparatus |
5146335, | Dec 21 1989 | Samsung Electronics Co., Ltd. | Simultaneous, multi-aspect ratio television display |
5148422, | Aug 25 1989 | Sony Corporation | Optical recording medium having a data recording track with offset data storing regions |
5164963, | Nov 07 1990 | AT&T Bell Laboratories | Coding for digital transmission |
5166924, | Mar 06 1990 | HMD HOLDINGS | Echo cancellation in multi-frequency differentially encoded digital communications |
5168509, | Apr 12 1989 | Kabushiki Kaisha Toshiba | Quadrature amplitude modulation communication system with transparent error correction |
5170413, | Dec 24 1990 | Motorola, Inc. | Control strategy for reuse system assignments and handoff |
5181112, | Mar 11 1991 | LG Electronics Inc | Television signal transmission system with carrier offset compensation |
5197061, | Mar 23 1990 | ETAT FRANCAIS, MINISTERE DES PTT CENTRE NATIONAL D ETUDES DES TELECOMMUNICATIONS ; TELEDIFFUSION DE FRANCE S A | Device for the transmission of digital data with at least two levels of protection and corresponding reception device |
5210770, | Sep 27 1991 | UNWIRED BROADBAND, INC | Multiple-signal spread-spectrum transceiver |
5214656, | Dec 13 1990 | AT&T Bell Laboratories | Multiplexed coded modulation with unequal error protection |
5218436, | Jan 24 1990 | Hitachi, Ltd. | Processing circuit for a plurality of different TV signals |
5218622, | Dec 29 1989 | U.S. Philips Corporation | System of encoding digital signals intended for transmission and/or storage and a corresponding decoding system |
5243629, | Sep 03 1991 | AT&T Bell Laboratories | Multi-subcarrier modulation for HDTV transmission |
5267021, | Apr 03 1992 | The Trustees of Columbia University in the City of New York | Multiresolution digital television broadcast system |
5282019, | Oct 03 1988 | Method and apparatus for the transmission and reception of a multicarrier digital television signal | |
5291289, | Nov 16 1990 | North American Philips Corporation | Method and apparatus for transmission and reception of a digital television signal using multicarrier modulation |
5311547, | Feb 03 1992 | AT&T Bell Laboratories | Partial-response-channel precoding |
5311550, | Oct 21 1988 | Thomson Licensing; THOMSON LICENSING S A | Transmitter, transmission method and receiver |
5377051, | Jan 13 1993 | Hitachi, LTD | Digital video recorder compatible receiver with trick play image enhancement |
5398073, | Apr 12 1994 | AGERE Systems Inc | Concatenated coded vestigial sideband modulation for high definition television |
5400084, | May 14 1992 | Hitachi America, Ltd. | Method and apparatus for NTSC signal interference cancellation using recursive digital notch filters |
5452015, | Feb 10 1994 | FUNAI ELECTRIC CO , LTD | Method and apparatus for combating co-channel NTSC interference for digital TV transmission |
5481412, | Jul 30 1990 | Matsushita Electric Industrial Co., Ltd. | Video signal digital recording/reproducing apparatus |
5519730, | Jun 12 1990 | MOTOROLA SOLUTIONS, INC | Communication signal having a time domain pilot component |
5555275, | Mar 27 1991 | Matsushita Electric Industrial Co., Ltd. | Multi-threshold and hierarchical television signal transmission system |
5561468, | May 07 1993 | Sony Corporation | Multiplexed modulation system for robust audio digital television |
5565926, | Aug 31 1993 | Philips Electronics North America Corporation | Method and apparatus for communicating digital television signals using a signal constellation formed by four signal constellations placed in the quadrants |
5565932, | Nov 08 1994 | CITICORP NORTH AMERICA, INC , AS AGENT | AGC system with pilot using digital data reference |
5576902, | Jan 13 1993 | Hitachi, LTD | Method and apparatus directed to processing trick play video data to compensate for intentionally omitted data |
5598220, | Jul 18 1991 | CITICORP NORTH AMERICA, INC , AS AGENT | Digital signal with multilevel symbols and sync recognition |
5638112, | Aug 07 1995 | Zenith Electronics Corp. | Hybrid analog/digital STB |
5802241, | Mar 26 1992 | Matsushita Electric Industrial Co., Ltd. | Communication system |
5819000, | Mar 26 1992 | Panasonic Corporation | Magnetic recording and playback apparatus |
5892879, | Mar 26 1992 | Panasonic Corporation | Communication system for plural data streams |
5999569, | Mar 26 1992 | Matsushita Electric Industrial Co., Ltd. | Communication system |
6049651, | Mar 26 1992 | Matsushita Electric Industrial Co., Ltd. | Communication system |
6256357, | Mar 26 1992 | Matsushita Electric Industrial Co., Ltd. | Communication system |
CA2095435, | |||
CN1499725, | |||
CN1569334, | |||
CN2627574, | |||
EP31193, | |||
EP122805, | |||
EP282298, | |||
EP311188, | |||
EP329158, | |||
EP365431, | |||
EP392538, | |||
EP448492, | |||
EP485105, | |||
EP485108, | |||
EP490552, | |||
EP506400, | |||
EP525641, | |||
EP531046, | |||
EP540231, | |||
EP1528854, | |||
EP1529838, | |||
GB2187611, | |||
JP2004159207, | |||
JP2141049, | |||
JP2154583, | |||
JP2166979, | |||
JP2195732, | |||
JP2218279, | |||
JP2260726, | |||
JP294814, | |||
JP313145, | |||
JP348587, | |||
JP369295, | |||
JP4196822, | |||
JP4322592, | |||
JP5167633, | |||
JP5218978, | |||
JP53018215, | |||
JP53137657, | |||
JP5739629, | |||
JP575568, | |||
JP58107740, | |||
JP58161427, | |||
JP58161547, | |||
JP6170861, | |||
JP62133842, | |||
JP62502932, | |||
JP63180222, | |||
JP63180280, | |||
JP63253738, | |||
JP6328145, | |||
JP645135, | |||
JP6468144, | |||
JP6474836, | |||
JP779415, | |||
JP799522, | |||
UA52118, | |||
WO8504541, | |||
WO8607223, | |||
WO8908366, | |||
WO9120137, | |||
WO9214343, | |||
WO9222162, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 29 2002 | Matsushita Electric Industrial Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 22 2008 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Aug 11 2008 | REM: Maintenance Fee Reminder Mailed. |
Date | Maintenance Schedule |
Dec 25 2010 | 4 years fee payment window open |
Jun 25 2011 | 6 months grace period start (w surcharge) |
Dec 25 2011 | patent expiry (for year 4) |
Dec 25 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 25 2014 | 8 years fee payment window open |
Jun 25 2015 | 6 months grace period start (w surcharge) |
Dec 25 2015 | patent expiry (for year 8) |
Dec 25 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 25 2018 | 12 years fee payment window open |
Jun 25 2019 | 6 months grace period start (w surcharge) |
Dec 25 2019 | patent expiry (for year 12) |
Dec 25 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |