The present invention discloses a method of manufacturing a liquid crystal display device including a first photolithography process forming a gate electrode on a substrate; a second photolithography process including: a) depositing sequentially a gate insulating layer, first and second semiconductor layers, and a metal layer; b) applying a first photoresist on the metal layer; c) aligning a first photo mask with the substrate; d) light exposing and developing the first photoresist to produce a first photoresist pattern; e) etching the metal layer using a first etchant, the first etchant ashing the first photoresist pattern on a predetermined portion of the metal layer to produce a second photoresist pattern, thereby exposing the predetermined portion of the metal layer; and f) etching the gate insulating layer, the first and second semiconductor layer, and the predetermined portion of the metal layer using a second etchant according to the second photoresist pattern to form source and drain electrodes, an ohmic contact layer, and an active area; a third photolithography process forming a passivation film and a contact hole; and a fourth photolithography process forming a pixel electrode connecting with the drain electrode through the contact hole.

Patent
   RE40028
Priority
May 27 1999
Filed
Jan 07 2004
Issued
Jan 22 2008
Expiry
May 30 2020
Assg.orig
Entity
Large
1
16
all paid
0. 38. A method of manufacturing a thin film transistor of a liquid crystal display device, comprising:
forming a gate electrode on a substrate;
forming a gate insulating layer, a semiconductor layer, and a metal layer over the gate electrode;
forming a photoresist over the metal layer, the photoresist including a central portion having a first thickness and a side portion having a second thickness, the first thickness being smaller than the second thickness; and
selectively removing the metal layer and the semiconductor layer including portions of the metal layer below the central portion of the photoresist to form source and drain electrodes and a channel.
1. A method of manufacturing a liquid crystal display device, comprising:
a first photolithography process forming a gate electrode on a substrate;
a second photolithography process including:
a) depositing sequentially a gate insulating layer, a semiconductor layer, and a metal layer;
b) applying a first photoresist on the metal layer;
c) aligning a first photo mask with the substrate;
d) light exposing and developing the first photoresist to produce a first photoresist pattern;
e) etching the metal layer using a first etchant, the first etchant ashing the first photoresist pattern on a portion of the metal layer to produce a second photoresist pattern, thereby exposing the portion of the metal layer; and
f) etching the gate insulating layer, the semiconductor layer, and the portion of the metal layer using a second etchant according to the second photoresist pattern to form source and drain electrodes, an ohmic contact layer, and an active area;
a third photolithography process forming a passivation film and a contact hole; and
a fourth photolithography process forming a pixel electrode connecting with the drain electrode through the contact hole.
0. 16. A method of manufacturing a thin film transistor of a liquid crystal display device, comprising:
forming a gate electrode on substrate; and
forming a gate insulating layer, a semiconductor layer and source and drain electrodes using a photolithography process including:
forming a gate insulating layer a semiconductor layer, and a metal layer;
forming a photoresist on the metal layer;
light exposing and developing the photoresist to produce a first photoresist pattern, wherein the first photoresist pattern includes a central portion having a first thickness and adjacent side portions having a second thickness, the first thickness being smaller than the second thickness;
selectively removing the metal layer using the first photoresist pattern;
removing the central portion of the first photoresist pattern to form a second photoresist pattern;
selectively removing the semiconductor layer using the second photoresist pattern;
selectively removing the metal layer corresponding to the central portion of the photoresist pattern; and
selectively removing the semiconductor layer corresponding to the central portion of the photoresist pattern.
0. 31. A method of manufacturing a liquid crystal display device, comprising:
forming a thin film transistor and a pixel electrode coupled to the thin film transistor; and
forming the thin film transistor including:
forming a gate electrode on a substrate;
forming a gate insulating layer, a semiconductor layer and source and drain electrodes using a photolithography process including:
forming a gate insulating layer, a semiconductor layer, and a metal layer;
forming a photoresist on the metal layer;
positioning a photo mask above the substrate;
light exposing and developing the photoresist to produce a photoresist pattern, wherein the photoresist pattern includes a central portion having a first thickness and a side portion having a second thickness, the first thickness being smaller than the second thickness;
selectively removing the metal layer using the photoresist pattern;
removing the central portion of the photoresist pattern having a first thickness;
selectively removing the semiconductor layer;
selectively removing the metal layer corresponding to the central portion of the photoresist pattern; and
selectively removing the semiconductor layer corresponding to the central portion of the photoresist pattern.
0. 35. A method of manufacturing a liquid crystal display device, comprising:
forming a thin film transistor and a pixel electrode coupled to the thin film transistor;
forming the thin film transistor including:
forming a gate electrode on a substrate;
forming a gate insulating layer, a first semiconductor layer, a second semiconductor layer and a metal layer;
forming a photoresist on the metal layer;
positioning a photo mask above the substrate;
light exposing and developing the photoresist to produce a photoresist pattern, wherein the photoresist pattern includes a central portion having a first thickness and a side portion having a second thickness, the first thickness being smaller than the second thickness;
selectively removing the metal layer using the photoresist pattern;
selectively removing the first and second semiconductor layers;
selectively removing the metal layer beneath the central portion of the photoresist pattern having the first thickness to separate the metal layer into a first part spaced from a second part, the first part corresponding to the source electrode and the second part corresponding to the drain electrode; and
selectively removing the first semiconductor layer corresponding to the space between the first and second parts of the metal layer.
0. 37. A method of manufacturing a liquid crystal display device, comprising:
forming a gate electrode on a substrate;
forming a gate insulating layer, a semiconductor layer and source and drain electrodes using a photolithography process including:
forming a gate insulating layer, a semiconductor layer, and a metal layer;
forming a photoresist on the metal layer;
positioning a photo mask above the substrate;
light exposing and developing the photoresist to produce a photoresist pattern, wherein the photoresist pattern includes a central portion having a first thickness and adjacent side portions having a second thickness, the first thickness being smaller than the second thickness;
selectively removing the metal layer using the photoresist pattern;
removing the central portion of the photoresist pattern having the first thickness to expose the metal layer;
selectively removing the semiconductor layer;
selectively removing the metal layer corresponding to the central portion of the photoresist pattern;
selectively removing the semiconductor layer corresponding to the central portion of the photoresist pattern;
forming a passivation film having a contact hole over the source and drain electrodes; and
forming a pixel electrode contacting the drain electrode through the contact hole.
0. 29. A method of manufacturing a thin film transistor of a liquid crystal display device, comprising:
forming a gate electrode on a substrate;
forming a gate insulating layer, a first semiconductor layer, a second semiconductor layer and source and drain electrodes using a photolithography process including:
forming a gate insulating layer, a first semiconductor layer, a second semiconductor layer and a metal layer;
forming a photoresist on the metal layer;
positioning a photo mask above the substrate;
light exposing and developing the photoresist to produce a photoresist pattern, wherein the photoresist pattern includes a central portion having a first thickness and adjacent side portions having a second thickness, the first thickness being smaller than the second thickness;
selectively removing the metal layer using the photoresist pattern;
selectively removing the first and second semiconductor layers;
selectively removing the metal layer beneath the central portion of the photoresist pattern having the first thickness to separate the metal layer into a first part spaced from a second part, the first part corresponding to the source electrode and the second part corresponding to the drain electrode; and
selectively removing the first semiconductor layer corresponding to the space between the first and second parts of the metal layer.
0. 49. A method of manufacturing a thin film transistor of a liquid crystal display device, comprising:
forming a gate electrode on a substrate;
forming a gate insulating layer, a first semiconductor layer, a second semiconductor layer and source and drain electrodes using a photolithography process including:
sequentially forming the gate insulating layer, the first semiconductor layer, the second semiconductor layer and the metal layer;
forming a photoresist on the metal layer;
positioning a photo mask above the substrate;
light exposing and developing the photoresist to produce a photoresist pattern, wherein the photoresist pattern includes a central portion having a first thickness and adjacent side portions having a second thickness, the first thickness being smaller than the second thickness;
selectively removing the metal layer using the photoresist pattern;
selectively removing the first and second semiconductor layers;
selectively removing a portion of the metal layer beneath the central portion of the photoresist pattern to separate the metal layer into a first part spaced from a second part, the first part corresponding to the source electrode and the second part corresponding to the drain electrode; and
selectively removing the first semiconductor layer corresponding to the space between the first and second parts of the metal layer.
2. The method of claim 1, wherein the first etchant includes Cl2/O2 gas.
3. The method of claim 2, wherein the second etchant includes SF6/HCl gas.
4. The method of claim 2, wherein the second etchant includes SF6/H2/Cl2 gas.
5. The method of claim 1, wherein the semiconductor layer includes first and second semiconductor layers.
6. The method of claim 5, wherein the first semiconductor layer includes amorphous silicon.
7. The method of claim 5, wherein the second semiconductor layer includes doped amorphous silicon.
8. The method of claim 1, wherein the source and drain electrodes are made of a metal selected from a group consisting of Cr, Mo, Al, and Al alloy.
9. The method of claim 8, wherein the semiconductor layer includes first and second semiconductor layers.
10. The method of claim 9, wherein the first semiconductor layer includes amorphous silicon.
11. The method of claim 9, wherein the second semiconductor layer includes doped amorphous silicon.
12. The method of claim 1, wherein the pixel electrode includes indium tin oxide.
13. The method of claim 12, wherein the semiconductor layer includes first and second semiconductor layers.
14. The method of claim 13, first semiconductor layer includes amorphous silicon.
15. The method of claim 13, wherein the second semiconductor layer includes doped amorphous silicon.
0. 17. The method of claim 16, wherein light exposing and developing the photoresist to produce the photoresist first pattern includes using a diffraction light exposure technique.
0. 18. The method of claim 16, wherein the metal layer is selectively removed using a dry etch technique.
0. 19. The method of claim 18, wherein the dry etch technique uses a gas including Cl2/O2 gas.
0. 20. The method of claim 16, wherein the semiconductor layer is selectively removed using a dry etch technique.
0. 21. The method of claim 20, wherein the dry etch technique uses a gas including fluorine and chlorine.
0. 22. The method of claim 21, wherein the gas includes SF6/HCl.
0. 23. The method of claim 21 wherein the gas includes SF6/H2/Cl2.
0. 24. The method of claim 16, wherein the semiconductor layer includes first and second semiconductor layers.
0. 25. The method of claim 24, wherein the first semiconductor layer includes amorphous silicon.
0. 26. The method of claim 24, wherein the second semiconductor layer includes doped amorphous silicon.
0. 27. The method of claim 16, wherein the source and drain electrodes are made of a metal selected from the group consisting of Cr, Mo, Al, and Al alloy.
0. 28. The method of claim 16, wherein removing the central portion of the first photoresist pattern exposes the metal layer.
0. 30. The method of claim 29, wherein the central portion of the photoresist is removed prior to selectively removing the first and second semiconductor layers.
0. 32. The method of claim 31, further comprising forming a passivation film having a contact hole over the source and drain electrodes, wherein the pixel electrode is formed on the passivation layer and contacting the drain electrode through the contact hole.
0. 33. The method of claim 31, wherein the pixel electrode directly contacts the drain electrode.
0. 34. The method of claim 31, wherein the pixel electrode includes indium tin oxide.
0. 36. The method of claim 35, wherein the central portion of the photoresist is removed prior to selectively removing the first and second semiconductor layers.
0. 39. The method of claim 38, wherein the semiconductor layer includes a first semiconductor layer and a second semiconductor layer on the first semiconductor layer.
0. 40. The method of claim 39, further comprising selectively removing the second semiconductor layer corresponding to the central portion of the photoresist.
0. 41. The method of claim 39, wherein the first semiconductor layer includes amorphous silicon and the second semiconductor layer includes doped amorphous silicon.
0. 42. The method of claim 38, wherein the metal layer is selectively removed using a dry etch technique.
0. 43. The method of claim 42, wherein the dry etch technique uses a gas including Cl2/O2 gas.
0. 44. The method of claim 38, wherein the semiconductor layer is selectively removed using a dry etch technique.
0. 45. The method of claim 44, wherein the dry etch technique uses a gas including fluorine and chlorine.
0. 46. The method of claim 45, wherein the gas includes SF6/HCl.
0. 47. The method of claim 45, wherein the gas includes SF6/H2/Cl2.
0. 48. The method of claim 38, wherein the source and drain electrodes are made of a metal selected from the group consisting of Cr, Mo, Al, and Al alloy.
0. 50. The method of claim 49, wherein the central portion of the photoresist is removed prior to selectively removing the first and second semiconductor layers.

This application claims the benefit of Korean Patent Application No. 1999-19145, filed on May 27, 1999, under 35U.S.C. §119, the entirety of which is hereby incorporated by reference.

1. Field of the Invention

The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device fabricated through four photolithography processes and a method of fabricating the same.

2. Description of the Related Art

As shown in FIG. 1, a typical liquid crystal display (LCD) device has a gate bus line 60 arranged in a transverse direction and a data bus line 70 arranged in a longitudinal direction, a thin film transistor (TFT) formed near a cross point of the gate bus line 60 and the data bus line 70. The TFT has a source electrode 70a, a drain electrode 70b, a gate electrode 60a, and a semiconductor layer 80. The drain electrode 70b is connected to a pixel electrode 40.

The LCD device described above is completed through five photolithography processes.

Hereinafter, a method of fabricating the conventional LCD device will be explained in detail. FIGS. 2A to 2E show a process of manufacturing the conventional LCD device, and FIGS. 3A and 3B show a photolithography process to form a gate insulating layer 50, the amorphous silicon (a-Si) layer 80a, and an n-type impurity doped silicon (n+ a-Si) layer 80b. Further, FIGS. 4A-4C show a photolithography process to form source and drain electrode 70a and 70b.

First, a gate electrode 60a shown in FIG. 2A is formed on a transparent substrate 10 during a first photolithography process.

In the first photolithography process, a metal layer (not shown) of Mo or Cr is deposited on the transparent substrate 10 and then a photoresist is applied on the metal layer. Then, a first photo-mask (not shown) is located over the substrate 10, and light exposure and developing processes are performed to etch the metal layer so that the gate electrode 60a is formed. Finally, the photoresist remaining on the metal layer is removed, leaving the gate electrode 60a on transparent substrate 10 as shown in FIG. 2A.

Second, a gate insulting layer 50, the a-Si layer 80a, and a n+ a-Si layer 80b shown in FIG. 2B are sequentially formed during a second photolithography process, detailed as shown in FIGS. 3A and 3B.

As shown in FIG. 3A, a photoresist 88 is applied on the n+ a-Si layer 80b. After that, light exposure and developing processes are performed using a second photo-mask 100, thereby forming a photoresist pattern 88a as shown in FIG. 3B. The a-Si layer 80a and the n+ a-Si layer 80b are simultaneously etched according to the photoresist pattern 88a so that the gate insulating layer 50, the a-Si layer 80a, and the n+ a-Si layer 80b are formed. Finally, the photoresist remaining on the n+ a-Si layer 80b is removed.

Third, the source electrode 70a and the drain electrode 70b shown in FIG. 2C are formed during a third photolithography process, detailed as shown in FIGS. 4A-4C.

As shown in FIG. 4A, a metal layer 170 such as Cr is deposited over the whole surface of the substrate 10 while covering a-Si layer 80a and n+ a-Si layer 80b. After that, the positive type photoresist 88 is applied, and then light exposure and developing processes are performed using a third photo-mask 200, thereby forming a photoresist pattern 88a as shown in FIG. 4B. In accordance with the photoresist pattern 88a, a lower metal layer 170 is etched to form the source electrode 70a and the drain electrode 70b as shown in FIG. 4C. Continually, the n+ a-Si layer 80b is etched using the metal layer (source and drain electrodes) as a mask. Finally, the photoresist pattern 88a remaining on the source electrode 70a and the drain electrode 70b is removed.

Fourth, the passivation layer 55 having the contact hole 30 shown in FIG. 2D is formed during a fourth photolithography process.

An inorganic material such as a nitride or oxide of silicon (SiNx or SiOx, respectively) or an organic material such as bis-benzocyclobutene (BCB) is deposited on the source electrode 70a and the drain electrode 70b. After that, the positive type photoresist (not shown) is applied, and then light exposure and developing processes are performed using a fourth photo-mask (not shown) to form a photoresist pattern. Then, the passivation layer 55 is formed through an etching process. After the etching process, the photoresist pattern remaining on the passivation layer 55 is removed.

Fifth, the pixel electrode 40 to be connected to the drain electrode 70b shown in FIG. 2E is formed during a fifth photolithography process.

A metal layer such as indium tin oxide (ITO) is deposited on the passivation layer 55. After that, the positive type photoresist (not shown) is applied, and then light exposure and developing processes are performed using a fifth photo-mask (not shown), thereby forming a photoresist pattern. In accordance with the photoresist pattern, the metal layer is etched so that the pixel electrode 40 is formed. After the etching process, the photoresist pattern remaining on the pixel electrode 40 is removed.

The photolithography process described above includes the steps of: cleaning a substrate; applying a photoresist; soft-baking the photoresist; aligning a photo-mask; light-exposing the photoresist; developing the photoresist; inspecting the array substrate; hard-baking the photoresist; etching a portion that the photoresist does not cover; inspecting the array substrate; and removing the photoresist.

Since the photolithography process includes the complex steps described above, as the number of photolithography processes increases, the inferiority rate become greater, leading to a low yield. In other words, reliability of the manufacturing process varies inversely proportional to the number of photolithography processes performed.

An object of the present invention is to provide a liquid crystal display device fabricated through four photolithography processes.

Another object of the present invention is to increase yield and to reduce the production cost of TFT fabrication.

To achieve the above objects, the present invention provides a method of manufacturing a liquid crystal display device including a first photolithography process forming a gate electrode on a substrate; a second photolithography process including: a) depositing sequentially a gate insulating layer, first and second semiconductor layers, and a metal layer; b) applying a first photoresist on the metal layer; c) aligning a first photo mask with the substrate; d) light exposing and developing the first photoresist to produce a first photoresist pattern; e) etching the metal layer using a first enchant, the first etchant ashing the first photoresist pattern on a predetermined portion of the metal layer to produce a second photoresist pattern, thereby exposing the predetermined portion of the metal layer; and f) etching the gate insulating layer, the first and second semiconductor layer, and the predetermined portion of the metal layer using a second etchant according to the second photoresist pattern to form source and drain electrodes, an ohmic contact layer, and an active area; a third photolithography process forming a passivation film and a contact hole; and a fourth photolithography process forming a pixel electrode contacting with the drain electrode through the contact hole.

The first etchant contains Cl2/O2 gas and the second etchant contains SF6/HCl or SF6/H2/Cl2 gas. The source and drain electrodes are made of a metal selected form a group consisting of Cr, Mo, Al, and Al alloy, and the first semiconductor layer comprises an amorphous silicon and the second semiconductor layer comprises an amorphous silicon doped with n-type impurity.

For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which like reference numerals denote like parts, and in which:

FIG. 1 is a plan view of a conventional liquid crystal display device;

FIGS. 2A to 2E are cross sectional views taken along line I-I of FIG. 1 showing a process of fabricating the conventional liquid crystal display device;

FIGS. 3A and 3B are cross-sectional views illustrating a photolithography process corresponding to FIG. 2B;

FIGS. 4A to 4C are cross-sectional views illustrating a photolithography process corresponding to FIG. 2C;

FIGS. 5A and 5B, 6A to 6E, 7A and 7B, and 8A to 8C are cross sectional views showing a process of fabricating a liquid crystal display device according to a preferred embodiment of the present invention; and

FIG. 9 is a plan view illustrating the liquid crystal display device according to the preferred embodiment of the present invention.

Reference will now be made in detail to the preferred embodiment of the present invention, example of which is illustrated in the accompanying drawings.

As shown in FIG. 5A, in a first photolithography process, first, a metal layer 160 of Mo or Cr is deposited on a transparent substrate 10. After that, a positive type photoresist (photosensitive layer) 88 is applied on the metal layer 160, and then a first photo-mask 15 is aligned. In the first photo-mask, a region 15a represents a light shielding area and a region 15b represents a light transmitting area.

Referring to FIG. 5B, a gate electrode 60a is formed by etching the metal layer 160 according to a photoresist pattern 88a produced after light exposure and development of the photoresist 88. After that, the photoresist 88a remaining on the gate electrode 60a is removed.

In a second photolithography process, as shown in FIG. 6A, a gate insulating layer 50 comprising an inorganic material such as SiNx and SiOx, an a-Si layer 80a, an n+ a-Si layer 80b, and a single or multi-layered metal layer 170 made of a metal such as Cr, Mo, Al, and Al alloy are sequentially formed on the gate electrode 60a. After that, a positive type photoresist 88 is applied on the metal layer 170 and then a second photo-mask 25 partially executing a diffraction light exposure is aligned. At this time, a region 25a represents a light shielding area, a region 25b represents a light transmitting area, and a region 25c represents a diffraction light exposing area.

Further, as shown in FIG. 6B, a photoresist pattern 88a is formed by the second photo-mask 25. The region 25a is relatively thick and the region 25c is relatively thin in thickness. Further, the region 25b is completely removed so that a surface of the metal layer 170 is exposed. Specifically, the thickness of the photoresist pattern depends on a pattern shape of the second photo-mask 25.

Continually, as shown in FIG. 6C, the metal layer 170 is etched by subjecting the array substrate 10 having the photoresist pattern 88a to a first etchant containing Cl2/O2 gas. When an etching process for the metal layer is completed, a central portion of the photoresist pattern 88a is removed by O2 gas ashing, thereby exposing a central portion of the metal layer 170 corresponding to the central portion of the photoresist pattern 88a.

And then, as shown in FIG. 6D, the a-Si layer 80a and the n+ a-Si layer 80b are etched by a second etchant preferably containing either SF6/HCl or SF6/H2/Cl2 gas. At this time, the metal layer 170 functions as a mask.

Further, the exposed portion of the metal layer 170 and the central portion of the n+ a-Si layer 80b corresponding to the exposed portion of the metal layer 170 are etched by a third etchant preferably containing Cl2/O2 gas, thereby forming an ohmic contact layer, and source and drain electrodes 70a and 70b. At this time, the photoresist pattern 88a functions as a mask.

Subsequently, as shown in FIG. 9, by the diffraction light exposure as the inventive second photolithography process, the line edge of the source and drain electrodes 70a and 70b and the line edge of the semiconductor layer 80 are formed in the shape of curved lines. The dimension “d” represents a distance between the data bus line 70 and the semiconductor layer 80 or the drain electrode 70b and the semiconductor layer 80. Since the distance ‘d’ is maintained equally throughout, it is possible to prevent the distance difference due to misalignment during the photolithography process.

In a third photolithography process, as shown in FIG. 7A, an inorganic material such as SiNx and SiOx or an organic material such as BCB is deposited on the source and drain electrodes 70a and 70b to form a passivation layer 55. After that, the positive type photoresist 88 is applied on the passivation layer 55, and then light exposure and developing processes are executed using a third photo-mask 35, thereby forming a photoresist pattern 88a. In the third photo-mask 35, a region 35a represents a light shielding area and a region 35b represents a light transmitting area. Further, in accordance with the photoresist pattern 88a, as shown in FIG. 7B, the passivation layer 55 is etched to form a contact hole 30 and then the photoresist pattern remaining on the passivation 55 is removed.

In a fourth photolithography process, as shown in FIG. 8A, a metal layer 140 made of ITO is deposited on the passivation layer 55 having the contact hole 30. After that, the positive type photoresist 88 is applied on the metal layer 140, and then the light exposure and developing processes are executed using a fourth photo-mask 45, thereby forming a photoresist pattern 88a. In the fourth photo-mask 45, a region 45a represents a light shielding area and a region 45b represents a light transmitting area. Further, in accordance with the photoresist pattern 88a, as shown in FIG. 8B, the metal layer 140 is etched so that the pixel electrode 40 is formed. After etching process, the photoresist pattern 88a remaining on the pixel electrode 40 is removed as shown in FIG. 8C.

Accordingly, the substantially important components of liquid crystal display device according to the preferred embodiment of the present invention are completed by four photolithography processes described above.

In the present invention, since the a-Si layer 80a, the n+ a-Si layer 80b and the source and drain electrodes are simultaneously formed through the same photolithography process, that is, by the diffraction light exposure using the second photo-mask, it is possible to manufacture the LCD device through the four lithography processes, thereby increasing the yield and reducing the production cost by decreasing the inferiority rate due to many photolithography processes.

It is further understood by those skilled in the art that the foregoing description is a preferred embodiment of the disclosed device and that various changes and modification may be made in the invention without departing from the spirit and scope thereof.

Hwang, Kwangjo, Han, Changwook

Patent Priority Assignee Title
7888677, May 18 2009 SAMSUNG DISPLAY CO , LTD Method for manufacturing a thin film transistor array panel for a liquid crystal display and a photolithography method for fabricating thin films
Patent Priority Assignee Title
4231811, Sep 13 1979 Intel Corporation Variable thickness self-aligned photoresist process
5427962, Nov 15 1991 Casio Computer Co., Ltd. Method of making a thin film transistor
5943559, Jun 23 1997 Gold Charm Limited Method for manufacturing liquid crystal display apparatus with drain/source silicide electrodes made by sputtering process
5985766, Feb 27 1997 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Semiconductor processing methods of forming a contact opening
5998229, Jan 30 1998 SAMSUNG DISPLAY CO , LTD Methods of manufacturing thin film transistors and liquid crystal displays by plasma treatment of undoped amorphous silicon
6043511, Dec 29 1995 SAMSUNG DISPLAY CO , LTD Thin film transistor array panel used for a liquid crystal display having patterned data line components
6255130, Nov 19 1998 SAMSUNG DISPLAY CO , LTD Thin film transistor array panel and a method for manufacturing the same
6255668, Jun 05 1998 MAGNACHIP SEMICONDUCTOR LTD Thin film transistor with inclined eletrode side surfaces
6287899, Dec 31 1998 SAMSUNG DISPLAY CO , LTD Thin film transistor array panels for a liquid crystal display and a method for manufacturing the same
6335276, Nov 26 1998 SAMSUNG DISPLAY CO , LTD Method for manufacturing a thin film transistor array panel for a liquid crystal display and a photolithography method for fabricating thin films
6410211, Nov 25 1998 LG DISPLAY CO , LTD Method for manufacturing a liquid crystal display device
6441399, Apr 22 1994 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated system
6774969, Oct 22 2001 SAMSUNG DISPLAY CO , LTD Liquid crystal display device and method for manufacturing the same
JP728074,
KR9759801,
KR978662,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 07 2004LG. Philips LCD Co., Ltd.(assignment on the face of the patent)
Mar 04 2008LG PHILIPS LCD CO , LTD LG DISPLAY CO , LTD CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0217630177 pdf
Date Maintenance Fee Events
May 21 2008ASPN: Payor Number Assigned.
May 21 2008RMPN: Payer Number De-assigned.
Jun 10 2009M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jul 28 2010ASPN: Payor Number Assigned.
Jul 28 2010RMPN: Payer Number De-assigned.
Mar 15 2013M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jan 22 20114 years fee payment window open
Jul 22 20116 months grace period start (w surcharge)
Jan 22 2012patent expiry (for year 4)
Jan 22 20142 years to revive unintentionally abandoned end. (for year 4)
Jan 22 20158 years fee payment window open
Jul 22 20156 months grace period start (w surcharge)
Jan 22 2016patent expiry (for year 8)
Jan 22 20182 years to revive unintentionally abandoned end. (for year 8)
Jan 22 201912 years fee payment window open
Jul 22 20196 months grace period start (w surcharge)
Jan 22 2020patent expiry (for year 12)
Jan 22 20222 years to revive unintentionally abandoned end. (for year 12)