An interlaced television signal is derived from an interlaced 625 line, nominally 50 Hz field rate television signal, the derived television signal having perceived reduced line structure and reduce flicker. The field rate and the number of lines of the derived television signal are increased with respect to the field rate and the number of lines of the original television signal, such that perceived flicker and line structure in the derived television signal is reduced. The increase in the field rate and the increase in the number of lines in the derived television signal results in a horizontal scanning rate that does not substantially exceed twice the horizontal scanning rate of the original television signal while minimizing undesirable motion artifacts.
|
10. A method for deriving an interlaced television signal from an interlaced 625 line, nominally 50 Hz field rate television signal, the derived television signal having perceived reduced line structure and perceived reduced flicker, comprising, in either order,
increasing the field rate of the derived television signal with respect to the field rate of the original television signal, such that the increase in field rate reduces perceived flicker in the derived television signal, and
increasing the number of lines in each field of the derived television signal with respect to the number of lines in each field of the original television signal, wherein the line rate is increased to an odd number of lines in the range of 821 to 839 lines, such that the increase in lines reduces perceived line structure in the derived television signal,
wherein the increase in the field rate and the increase in the number of lines in the derived television signal results in a horizontal scanning rate that does not substantially exceed twice the horizontal scanning rate of the original television signal while minimizing undesirable motion artifacts.
1. A method for deriving an interlaced television signal from an interlaced 625 line, nominally 50 Hz field rate television signal, the derived television signal having perceived reduced line structure and perceived reduced flicker, comprising
increasing the number of lines in each field of the derived television signal with respect to the number of lines in each field of the original television signal, such that the increase in lines reduces perceived line structure in the derived television signal, said increasing the number of lines comprising
de-interlacing the original television signal to produce a progressively scanned 625 line, nominally 50 Hz frame rate television signal, and
increasing the number of lines in each frame of the progressively scanned television signal, and
after increasing the number of lines in each field, increasing the field rate of the derived television signal with respect to the field rate of the original television signal, such that the increase in field rate reduces perceived flicker in the derived television signal, said increasing the field rate comprising
reinterlacing the progressively scanned television signal such that for some progressively scanned frames a pair of interlaced fields are derived and for selected progressively scanned frames only one interlaced field is derived, whereby selected ones of the potential interlaced fields are dropped,
wherein the increase in the field rate and the increase in the number of lines in the derived television signal results in a horizontal scanning rate that does not substantially exceed twice the horizontal scanning rate of the original television signal while minimizing undesirable motion artifacts.
2. A method for deriving an interlaced television signal from an interlaced 625 line, nominally 50 Hz field rate television signal, the derived television signal having perceived reduced line structure and perceived reduced flicker, comprising,
increasing the number of lines in each field of the derived television signal with respect to the number of lines in each field of the original television signal, such that the increase in lines reduces perceived line structure in the derived television signal, wherein said increasing the number of lines comprises
increasing the number of lines in each frame of the original television signal, and
de-interlacing the line-increased original television signal to produce a progressively scanned 625 line, nominally 50 Hz frame rate television signal, and
after increasing the number of lines in each field, increasing the field rate of the derived television signal with respect to the field rate of the original television signal, such that the increase in field rate reduces perceived flicker in the derived television signal, wherein said increasing the field rate comprises
reinterlacing the progressively scanned television signal such that for some progressively scanned frames a pair of interlaced fields are derived and for selected progressively scanned frames only one interlaced field is derived, whereby selected ones of the potential interlaced fields are dropped,
wherein the increase in the field rate and the increase in the number of lines in the derived television signal results in a horizontal scanning rate that does not substantially exceed twice the horizontal scanning rate of the original television signal while minimizing undesirable motion artifacts.
12. A method for deriving an interlaced television signal from an interlaced 625 line, nominally 50 Hz field rate television signal, the derived television signal having perceived reduced line structure and perceived reduced flicker, comprising,
increasing the field rate of the derived television signal with respect to the field rate of the original television signal, such that the increase in field rate reduces perceived flicker in the derived television signal, said increasing the field rate comprising
deriving two or three signal streams from said original television signal, each of said signal streams comprising a pattern of n repeated time-compressed fields, each of said signal streams having a field rate substantially equal to said increased field rate, all of fields in a signal stream being of the same parity, at least one signal stream consisting of even parity fields, each field in a signal stream being substantially identical in information content to each consecutive field of the same parity in the original television signal,
deriving a further signal stream from said two or three signal streams by alternately selecting even and odd fields from said two or three signal streams, and
deriving yet a further signal stream from said two or three signal streams by alternately selecting, from said two or three signal streams, a field of opposite parity to the field selected for said further signal stream, and
after increasing the field rate, increasing the number of lines in each field of the derived television signal with respect to the number of lines in each field of the original television signal, such that the increase in lines reduces perceived line structure in the derived television signal,
wherein the increase in the field rate and the increase in the number of lines in the derived television signal results in a horizontal scanning rate that does not substantially exceed twice the horizontal scanning rate of the original television signal while minimizing undesirable motion artifacts.
13. A method for deriving an interlaced television signal from an interlaced 625 line, nominally 50 Hz field rate television signal, the derived television signal having perceived reduced line structure and perceived reduced flicker, comprising,
increasing the field rate of the derived television signal with respect to the field rate of the original television signal, such that the increase in field rate reduces perceived flicker in the derived television signal, said increasing the field rate comprising
deriving two or three signal streams from said original television signal, each of said signal streams comprising a pattern of n repeated time-compressed fields, each of said signal streams having a field rate substantially equal to said increased field rate, all of fields in a signal stream being of the same parity, at least one signal stream consisting of even parity fields, each field in a signal stream being substantially identical in information content to each consecutive field of the same parity in the original television signal,
comparing two of said two or three signal streams in order to detect a film pattern,
deriving a further signal stream from said two or three signal streams by alternately selecting even and odd fields from said two or three signal streams when a film pattern is detected, and
deriving yet a further signal stream from said two or three signal streams by alternately selecting, from said two or three signal streams, a field of opposite parity to the field selected for said further signal stream when a film pattern is detected, and
after increasing the field rate, increasing the number of lines in each field of the derived television signal with respect to the number of lines in each field of the original television signal, such that the increase in lines reduces perceived line structure in the derived television signal,
wherein the increase in the field rate and the increase in the number of lines in the derived television signal results in a horizontal scanning rate that does not substantially exceed twice the horizontal scanning rate of the original television signal while minimizing undesirable motion artifacts.
14. A method for deriving an interlaced television signal from an interlaced 625 line, nominally 50 Hz field rate television signal, the derived television signal having perceived reduced line structure and perceived reduced flicker, comprising,
increasing the field rate of the derived television signal with respect to the field rate of the original television signal, such that the increase in field rate reduces perceived flicker in the derived television signal, said increasing the field rate comprising
deriving two or three signal streams from said original television signal, each of said signal streams comprising a pattern of n repeated time-compressed fields, each of said signal streams having a field rate substantially equal to said increased field rate, all of fields in a signal stream being of the same parity, at least one signal stream consisting of even parity fields, each field in a signal stream being substantially identical in information content to each consecutive field of the same parity in the original television signal,
comparing adjacent fields in one of said two or three signal streams in order to detect motion,
generating even and odd interpolated fields from fields in said two or three signal streams,
deriving a further signal stream from said two or three signal streams and said interpolated fields by alternately selecting even and odd fields from among said two or three signal streams and interpolated fields when motion is detected, and
deriving yet a further signal stream from said two or three signal streams and interpolated fields by alternately selecting, from said two or three signal streams and said interpolated fields, a field of opposite parity to the field selected for said further signal stream when motion is detected, and
after increasing the field rate, increasing the number of lines in each field of the derived television signal with respect to the number of lines in each field of the original television signal, such that the increase in lines reduces perceived line structure in the derived television signal,
wherein the increase in the field rate and the increase in the number of lines in the derived television signal results in a horizontal scanning rate that does not substantially exceed twice the horizontal scanning rate of the original television signal while minimizing undesirable motion artifacts.
3. The method of
5. The method of
7. The method of
8. The method of any one of
15. The method of any one of
combining said further signal stream with portions of said yet further signal stream.
16. The method of any one of
17. The method of
19. The method of any one of
21. The method of any one of
|
The present invention relates to television signal processing. More particularly, the present invention relates to improved signal processing in which both flicker and perceived line structure in the displayed television signal are reduced while minimizing undesirable motion artifacts and allowing relatively low horizontal scanning rates suitable for mass market television displays.
The 50 Hz, 625 line PAL and SECAM television systems were developed some forty years ago. Those systems have a 50 Hz field rate (312.5 lines per interlaced field) and a 25 Hz frame rate (625 interlaced lines per frame, only 576 of which are visible). At the time of their development, technology did not support large display sizes. Consequently, 576 lines per frame were adequate to render the line structure unnoticeable at normal viewing distances. Also, at that time, display brightness was much lower than in typical displays of the present era. As a result, flicker resulting from the relatively low 50 Hz field rate (refresh rate) was not a serious problem. When PAL and SECAM signals are displayed on today's large screen television equipment, both flicker and line structure are visible and annoying to most viewers.
The problem of flicker is particularly objectionable in 50 Hz systems displayed on large bright screens. To overcome flicker, video systems have been produced that double the frame rate. However, frame doubling still leaves the line structure visible in large displays. Visible line structure is reduced by line doubling. One type of line doubling converts the interlaced signal to a progressively scanned one in which the progressively scanned frame rate is the same as the interlaced field rate and the progressive frames have twice as many lines as an interlaced field. Another type of line doubling maintains interlacing but doubles the number of lines in each interlaced field.
Some “high end” television display enhancement products include both line doubling and frame doubling, including products manufactured by Faroudja Laboratories, Inc. of Sunnyvale, Calif. While providing an excellent picture display without flicker and visible line structure at normal viewing distances, such systems require a high horizontal scan rate. The Faroudja Laboratories product that provides a line doubled and frame doubled progressively scanned output requires a 63 kHz horizontal scan rate, a rate well above the performance capability of all by the best quality and most expensive display systems marketed in relatively small quantities. For the general market, television set manufacturers would like for horizontal scan rates to be below 40 kHz and preferably around 31 kHz for low cost display manufacturing. Thus, a line doubled and frame doubled combination would not be viable in mass market consumer applications. It would be desirable to reduce flicker and perceived line structure, while not requiring an increase in the horizontal scan rate above that supportable by mass market horizontal scanning systems.
In accordance with the teachings of the present invention, a method is provided for deriving an interlaced television signal from an interlaced 625 line, nominally 50 Hz field rate television signal, such as PAL or SECAM television signal, the derived television signal having perceived reduced line structure and perceived reduced flicker, in which, in either order: (1) the field rate of the derived television signal is increased with respect to the field rate of the original television signal, such that the increase in field rate reduces perceived flicker in the derived television signal, and (2) the number of lines in each field of the derived television signal with respect to the number of lines in each field of the original television signal is increased, such that the increase in lines reduces perceived line structure in the derived television signal, wherein the increase in the field rate and the increase in the number of lines in the derived television signal results in a horizontal scanning rate that does not substantially exceed twice the horizontal scanning rate of the original television signal while minimizing undesirable motion artifacts.
The invention may be implemented in one of two basic ways. In a first approach, the number of lines in each field of the derived television signal is increased prior to increasing the field rate of the derived television signal. The number of lines in each field of the derived television signal are increased by de-interlacing the original television signal to produce a progressively scanned signal and then increasing the number of lines in each frame of the progressively scanned television signal. Alternatively and less desirably, the number of lines in the original interlaced signal may be increased followed by conversion of the line increased interlaced signal to a progressively scanned format. Then the field rate of the derived television signal is increased by reinterlacing the progressively scanned television signal such that for some progressively scanned frames a pair of interlaced fields are derived and for selected progressively scanned frames only one interlaced field is derived, thus dropping selected ones of the potential interlaced fields in order to compensate for the increased number of lines. Consequently, the required horizontal scanning rate remains relatively unchanged or is not substantially increased from the horizontal scanning rate required for a signal that is only line doubled or only frame doubled. The resulting line increased and frame increased signal is thus supported by low cost horizontal scanning systems.
In the second approach, the field rate of the derived television signal is increased prior to increasing the number of lines in each field of the derived television signal. This approach has the advantage of requiring fewer memory resources, thus reducing the cost of a practical implementation. This approach also readily lends itself to implementation in a practical implementation that is also operable to provide either line doubling by itself or frame doubling by itself. The field rate of the derived television signal is increased by deriving two or three signal streams from the original television signal. Each of the signal streams comprises a pattern of n repeated time-compressed fields (where “n” is a whole positive integer), each of said signal streams having a field rate substantially equal to the increased field rate, all of fields in a signal stream being of the same parity, at least one signal stream consisting of even parity fields, each field in a signal stream being substantially identical in information content to each consecutive field of the same parity in the original television signal. Two further signal streams are derived from the initial two or three signal streams by alternately selecting even and odd fields from the two or three signal streams for the first further signal stream, and by alternately selecting, from the two or three signal streams, a field of opposite parity to the field selected for the second further signal stream. Selected scan lines from the second further signal stream are added to the scan lines in the first further signal stream in order to increase the number of lines in the derived television signal.
Each of the following United States Patents, mentioned in the present application, are hereby incorporated by reference in their entirety: 4,876,596; 4,967,271; 4,982,280; 4,989,090; 5,159,451; 5,291,280; 5,940,141; and 6,014,182. In addition, allowed U.S. application Ser. No. 08/953,840, filed Oct. 14, 1997, is also incorporated by reference in its entirety.
Except as noted herein, practical embodiments of the invention may be implemented using analog, digital (including digital signal processing with software), or hybrid analog/digital techniques. The equivalency of analog and digital implementations in most contexts is well known to those of ordinary skill in the art.
Throughout this document, for simplicity, signal inputs and outputs are drawn as single points and signal carrying lines are drawn as single lines. It will be understood that, in practice, more than one input or output point and more than one signal carrying line may be required, depending on the format of the signals and the manner in which the practical embodiments of the invention are physically constructed.
It should also be understood that functions shown separately may be combined with others in whole or in part. In addition, those of ordinary skill in the art will understand that, in practice, switches shown schematically throughout the various figures will be implemented electronically or in software rather than mechanically.
Each interlaced field is converted to a progressive frame, creating progressive frames 113, 115, 117 and 119, respectively. The progressive frame rate is the same as the interlaced field rate. Each progressive frame has twice the number of lines as the interlaced field from which it is derived. Thus, each progressive frame has 625 lines versus 312.5 lines in the field from which it is derived. Such a process is often referred to as “line doubling.” The horizontal scan rate required for displaying such a video signal is about 31 kHz, about double that required for displaying a 50 Hz, 625 line interlaced signal. Techniques for interlaced-to-progressive conversion type line doubling are well known in the art. In this flow diagram, one such technique is shown in which each progressive frame is derived from only a single interlaced field. In order to do so, additional lines must be generated by intrafield interpolation. Many techniques for intrafield interpolation are known in the art. A preferred technique for intrafield interpolation is disclosed in copending allowed U.S. application Ser. No. 08/953,840, filed Oct. 14, 1997, entitled “Adaptive Diagonal Interpolation for Image Resolution Enhancement” by Jack J. Campbell, published Apr. 22, 1999 as International Publication Number WO 99/19834.
Next, each progressive frame is vertically scaled to increase its number of lines from 625 lines to a higher number sufficient to minimize or eliminate visible line structure. A preferred increase is to an odd number of lines in the range of 821 to 839 lines, particularly 825 lines. An increase to 825 lines results in a ⅓ increase in pixels to 4/3 the number of pixels over the four progressive frames 121, 123, 125 and 127, which can be compensated for by a ¼ decrease in pixels to ¾ the number of pixels in the 75 Hz output signal as explained below (i.e., 4/3×¾=1). An increase in 625 lines by 4/3 would result in 833⅓ lines. While an odd number of lines is required, a fractional number is not allowed. Inasmuch as a phase-locked loop (PLL) with a frequency lock of 99/100 is practical, 825 is a preferred number of lines (i.e., 99/100×833⅓=825). Techniques for vertically scaling to increase the number of lines in a video signal are well known in the art.
As a final step, each line-increased progressive frame is converted to one or two interlaced fields, the resulting stream of fields having a nominally 75 Hz field rate. Such a rate is sufficient to avoid viewer perceived flicker. Techniques for converting progressively scanned video frames to interlaced fields are well known in the art. However, according to the present invention, when deriving a 75 Hz line interlaced video signal, instead of deriving two interlaced fields from every progressive frame, only one field is derived from every other progressive frame, resulting in the effective “dropping” of every fourth 75 Hz field. Six output fields (three frames) occur in an 80 ms period compared to four input fields (two frames). Thus, although the field rate is increased from nominally 50 Hz to nominally 75 Hz, the number of pixels in the six interlaced output fields is reduced to ¾ of the pixels present in the four progressive frames 121, 123, 125 and 127 from which the interlaced fields are derived. Consequently, the increase in pixels resulting from the increase in lines is compensated by the field dropping, resulting in substantially the same number of pixels in the output signal as in the “line doubled” progressive frames (113, 115, 117, 119). Thus, the horizontal line rate required to display the output 75 Hz line increased interlaced video is about 31 kHz, the same as that require to display the 50 Hz progressively scanned frames (113, 115, 117, 119). As discussed above, television set manufacturers prefer horizontal scan rates below 40 kHz and, preferably, around 31 kHz for low cost display manufacturing.
In the final step, even and odd interlaced fields 129 and 131 are derived from progressive frame 121. Fields 129 and 131 constitute a first output frame 133. Only even field 135 is derived from the next progressive frame 123. Odd field 137 and even field 139 are derived from the next progressive frame 125. Even field 135 and odd field 137 form a second output frame 141. Only odd field 143 is derived from progressive frame 127. Even field 139 and odd field 143 make up the third output frame 145.
Thus, no odd field is derived from progressive frame 123 and no even field is derived from progressive field 127: the odd field from the second progressive frame 123 is dropped and the even field from the fourth progressive frame 127 is dropped. By selecting this pattern of field dropping, motion artifacts in displays of the output video are minimized. All of the original fields from the 50 Hz 625 line video source are represented in the output.
The 2-1 field pattern (two fields derived from an original field followed by one field derived from an original field) results in a slight time compression of the display time of some original field information and a slight time expansion of the display time of other original field information, causing slight “judder” (i.e., jumps in displayed motion) for certain picture motion conditions, but this is more psycho-visually pleasing than missing information would be. The field dropping and consequent repeating time compression and expansion pattern, however, reduces the pixel content of the output video, allowing the output video to have both an increased frame rate (to suppress flicker) and an increased line rate (to suppress visible line structure) without increasing the required horizontal scan rate.
When the video source is derived from a motion picture film, it is possible to apply the principles of the present invention so as to provide a nominally 75 Hz, increased line output video signal having no motion artifacts.
Referring to
Each interlaced field is converted to a progressive frame, creating progressive frames 213, 215, 217 and 219, respectively. The progressive frame rate is the same as the interlaced field rate. Each progressive frame has twice the number of lines as the interlaced field from which it is derived. Thus, each progressive frame has 625 lines versus 312.5 lines in the field from which it is derived. As noted above, such a process is often referred to as “line doubling.” The horizontal scan rate required for displaying such a video signal is about 31 kHz, about double that required for displaying a 50 Hz, 625 line interlaced signal. In this flow diagram, a line doubling technique is shown in which each progressive frame is derived from two interlaced fields, the fields derived from the same motion picture film frame. Thus, fields 201 and 203 are merged to generate progressive frames 213 and 215, while fields 205 and 207 are merged to generate progressive frames 217 and 219. Alternatively and less desirably, intrafield interpolation could be employed to derive each progressive frame from a single interlaced field, in the manner of the
Next, as in the
As a final step as in the
In the final step, even and odd interlaced fields 229 and 231 are derived from progressive frame 221. Only even field 235 is derived from the next progressive frame 223. Fields 229, 231 and 235 are ultimately derived from the same motion picture film frame 210 and are shown grouped together in block 236. Odd field 237 and even field 239 are derived from the next progressive frame 225. Only odd field 243 is derived from progressive frame 227. Fields 237, 239 and 243 are ultimately derived from the same motion picture film frame 212 and are shown grouped together in block 244. Thus, the film pattern is retained with each film frame being displayed for the same time period as in the original video signal (i.e., two film frames in 80 ms—four fields in the 50 Hz input video signal and six fields in the 75 Hz output video signal). Consequently, there is no motion discontinuity for a film source. The dropping of the odd field from the second progressive frame 223 and the even field from the fourth progressive frame 227 causes no motion artifacts in displays of the output video because each contiguous group of three fields is derived from the same motion picture frame. Thus, the
Referring again to
A film source detector in video processor 301 of the type responsive to a 25 Hz frame rate film source in a 50 Hz video signal may be of the type described in said U.S. Pat. No. 6,014,182 and European Patent EP 0 654 197 B1. By detecting that a 50 Hz television signal source is a motion picture film, it is then known that the two fields of each television frame are identical in the temporal domain, as they are generated from a single film frame. Thus, in a 50 Hz system, it is necessary to compare adjacent video fields for motion because only adjacent video fields will always carry the same film frame and thus have no motion. Film detection requires two field delays so that a “present” or middle field may be compared to field prior to it and to the field subsequent to it.
Intrafield interpolators usable in video processor 301 are well known in the art and include said preferred technique for intrafield interpolation disclosed in U.S. Pat. No. 4,989,090 and in said copending U.S. application Ser. No. 08/953,840 as published in International Publication Number WO 99/19834. As is well known, such interpolators operation in response to a motion detection signal as from a frame-based motion detector.
Line doublers usable in video processor 301 employing field merging and intrafield interpolation are well known in the art and include those disclosed in U.S. Pat. Nos. 4,876,956; 4,967,271; 4,982,280; 4,989,090; 5,159,451 and 5,291,280.
The progressively-scanned video output signals from video processor 301 are applied to a vertical scaler 303. The vertical scaler increases the number of lines in the progressively scanned video signal according to a “set scale factor” input. Vertical scalers are well known in the art and operate in the manner of a line interpolator or line duplicator. See, for example, U.S. Pat. No. 5,940,141.
The line-increased progressively scanned video signal output of vertical scaler 303 is applied to a reinterlacer (progressive-to-interlaced converter) 305. Progressive-to-interlace converters are well known in the art and require the use of frame memories. A further frame memory 306 having the capacity to store two fields is associated with reinterlacer 305. Thus, the arrangement of
More particularly, referring to
In
The output of reinterlacer 305 is the system output, an interlaced television signal having an increased frame rate and an increased number of lines in accordance with the present invention.
Referring now to
The arrangement of
In
Signal stream 603 consists of fields of the same parity, such as all even fields. Signal stream 605 consists of fields of the opposite parity to those in stream 603, namely all odd fields if stream 603 consists of all even fields. Fields in both streams consist of the same field repeated several times, such as two, three times or four times. Each consecutive set of repeated fields in a signal stream is substantially identical in information content to each consecutive field of the same parity in the video input signal.
When the “line doubler” mode of the mode controller 607 is selected, memory 601 operates so that the signal streams 603 and 605 both have a field rate of nominally 50 Hz, the same field rate as the video input.
When either the “75 Hz” mode or the “frame doubler” mode of the mode controller 607 is selected, memory 601 operates so that the signal streams 603 and 605 have increased field rates with respect to the video input, nominally 75 Hz in the “75 Hz” mode and nominally 100 Hz in the frame doubler mode. Thus, in the case of the 75 Hz and frame doubler modes, the video input fields are not only separated into even and odd streams and repeated, but are also time compressed by memory 601. This can be accomplished by reading from the memories at a faster rate than writing into them, as is well known in the art.
Returning to the description of
Video processor 609 also has three modes of operation. The operation of the video processor 609 depends on whether the mode controller 607 has its line doubler, 75 Hz or frame doubler mode selected by a control signal from mode controller 607. In the line doubler and 75 Hz modes of operation, the video processor 609 provides two output signal streams in response to the two input streams 603 and 605. One of its output streams 611 may be referred to as a “current field” and the other of its output streams 613 may be referred to as a “support field.” Fields in the current field signal stream 611 and the support field signal stream 613 are of opposite parity during any given field time. Field periods in the streams 603 and 605 are substantially time aligned with each other. Field periods in the streams 611 and 613 are substantially time aligned with each other and with the field periods of the fields in streams 603 and 605 subject to processing delays in the video processor 609.
In the frame doubler mode of operation, if the number of lines in the output signal are not increased, only the current field signal stream 611 need be provided by the video processor 609. If it is desired to increase the number of lines in addition to frame doubling, then it is necessary to generate a support field signal stream in the frame doubler mode and to take the frame doubler output from the scaler 212 rather than directly from the video processor 609. Frame doubling with a modest increase in the number of lines may still provide a horizontal scan rate supported by inexpensive horizontal scanning circuit components.
In the frame doubler mode (when the number of lines are not increased), an output switch 615, under control of mode controller 607, selects the current field signal stream 611 as the output signal.
In the 75 Hz mode, the output switch 615, under control of mode controller 607, selects the output of vertical scaler 617. Scaler 617 receives the current field signal stream 611 and the support field signal stream 613 and provides vertical scaling by increasing the number of lines in the television signal by a scale factor. When there is no motion in the video input signal, the current field 611 and the support field 613 are both “direct” fields derived from adjacent fields in the video input signal without interpolation of either (i.e., they have the same information content as an original input field, but they have been time compressed so that they have a nominally 75 Hz field rate). When there is motion in the video input signal, one of the fields of the current field 611 and the support field 613 is a direct field and the other is derived by interpolation from a field adjacent the direct field. The vertical scaler 617 increases the line rate of the output video signal with respect to the input video signal by adding selected lines of the support field to the current field in different ratios, depending on the scale factor.
For the line doubler mode, the switch 615, under control of mode controller 607, selects the output of a field merger 619 that includes time compression (see, for example,
It would be appreciated by those of ordinary skill in the art that the parity of the various signal streams may be reversed without altering the results obtained by the arrangement of FIG. 7.
Referring now to
As does the
In
Signal stream 1003 consists of fields of the same parity, such as all even fields. Signal stream 1004 consists of fields of the opposite parity to those in stream 1003, namely all odd fields if stream 1003 consists of all even fields. Signal stream 1005 consists of fields of the same parity as those in stream 1003 except when a flag signal is present on line 1010 from the video processor 1009, in which case the signal stream characteristics are modified as described below. Fields in all three streams consist of the same field repeated several times, such as two, three times or four times. Each consecutive set of repeated fields in a signal stream is substantially identical in information content to each consecutive field of the same parity in the video input signal.
When the mode controller 1007 has its “line doubler” mode selected, memory 1001 operates so that the signal streams 1003 and 1005 both have a field rate of nominally 50 Hz, the same field rate as the video input.
The first occurring field from a particular frame is delayed by one 50 Hz field period in signal stream 1004 with respect to signal stream 1003 and by two 50 Hz field periods in signal stream 1005.
When the mode control has either its “75 Hz” mode or its “frame doubler” mode selected, memory 1001 operates so that the signal streams 1003, 1004 and 1005 have field rates, respectively, of nominally 75 Hz and nominally 100 Hz, both of which are an increased field rate with respect to the video input. Thus, in the case of the 75 Hz and frame doubler modes, the video input fields are not only separated into even and odd streams and repeated, but also time compressed by memory 1001. This can be accomplished by reading from the memories at a faster rate than writing into them, as is well known in the art.
Returning to the description of
Video processor 1009 detects a film source by comparing pixels in the fields of signal stream 1003 to pixels in the fields of signal stream 1004. Substantially matching pixels generate a “1,” else a “0.” When a film source is present, repeating patterns of 1s and 0s result. The following film patterns indicate a film source.
Film Source Patterns
Compare
Mode
1003 to 1004
Phase
Line Doubler
0101
First
Line Doubler
1010
Second
Frame Doubler
0011
First
Frame Doubler
1100
Second
75 Hz
001
First
75 Hz
101
Second
The patterns considered with reference to the frame sync pulse indicate the film phase. When a second film phase is detected, a flag signal is applied by the video processor on line 1010 that causes memory 1001 to modify the characteristics of the third signal stream 1005. The modifications to the third signal stream are explained below.
In the line doubler and 75 Hz modes of operation, the video processor 1009 provides two output signal streams in response to the three input streams 1003, 1004 and 1005. One of its output streams 1011 may be referred to as a “current field” and the other of its output streams 1013 may be referred to as a “support field.” Fields in the current field signal stream 1011 and the support field signal stream 1013 are of opposite parity during any given field time. Field periods in the streams 1003 and 1005 are substantially time aligned with each other. Field periods in the streams 1011 and 1013 are substantially time aligned with each other and with the field periods of the fields in streams 1003 and 1005 subject to processing delays in the video processor 1009. In the frame doubler mode of operation, if the number of lines in the output signal are not increased, only the current field signal stream 1011 need be provided by the video processor 1009. If it is desired to increase the number of lines in addition to frame doubling, then it is necessary to generate a support field signal stream in the frame doubler mode and to take the frame doubler output from the scaler 712 rather than directly from the video processor 1009. Frame doubling with a modest increase in the number of lines may still provide a horizontal scan rate supported by inexpensive horizontal scanning circuit components.
In the frame doubler mode in which the number of lines are not increased, an output switch 1015, under control of mode controller 1007, selects the current field signal stream 1011 as the output signal.
In the 75 Hz mode, the output switch 1015, under control of mode controller 1007, selects the output of vertical scaler 1017. Scaler 1017 receives the current field signal stream 1011 and the support field signal stream 1013 and provides vertical scaling by increasing the number of lines in the television signal by a scale factor. The vertical scaler 1017 increases the line rate of the output video signal with respect to the input video signal by adding selected lines of the support field to the current field, depending on the scale factor.
For the line doubler mode, the switch 1015, under control of mode controller 1007, selects the output of the field merger 1019.
It would be appreciated by those of ordinary skill in the art that the parity of the various signal streams may be reversed without altering the results obtained by the arrangement of FIG. 10.
It should be understood that implementation of other variations and modifications of the invention and its various aspects will be apparent to those skilled in the art, and that the invention is not limited by these specific embodiments described. It is therefore contemplated to cover by the present invention any and all modifications, variations, or equivalents that fall within the true spirit and scope of the basic underlying principles disclosed and claimed herein.
Campbell, Jack J., Butler, Donald S., Dong, Xu
Patent | Priority | Assignee | Title |
8432488, | Apr 23 2009 | Panasonic Corporation | Video processing apparatus and video processing method |
9214119, | Jun 04 2012 | JDI DESIGN AND DEVELOPMENT G K | Display, image processing unit, and display method involving frame rate conversion and blur reduction |
Patent | Priority | Assignee | Title |
4768092, | Jul 23 1986 | Canon Kabushiki Kaisha | Image signal conversion device |
4876596, | Oct 25 1988 | FAROUDJA LABORATORIES, INC | Film-to-video converter with scan line doubling |
4982280, | Jul 18 1989 | FAROUDJA LABORATORIES, INC | Motion sequence pattern detector for video |
5754248, | Apr 15 1996 | HANGER SOLUTIONS, LLC | Universal video disc record and playback employing motion signals for high quality playback of non-film sources |
5844619, | Jun 21 1996 | MAGMA, INC | Flicker elimination system |
5907364, | May 29 1996 | Hitachi, LTD | Display device for information signals |
6014182, | Oct 10 1997 | TAMIRAS PER PTE LTD , LLC | Film source video detection |
6054977, | Mar 01 1994 | Snell & Wilcox Limited | Scanning converter for video display |
EP654197, | |||
EP2070465, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 21 2005 | Genesis Microchip Inc. | (assignment on the face of the patent) | / | |||
Mar 13 2009 | Sage, Inc | TAMIRAS PER PTE LTD , LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022714 | /0093 | |
Dec 20 2019 | TAMIRAS PER PTE LTD , LLC | INTELLECTUAL VENTURES ASSETS 140 LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051423 | /0242 | |
Dec 30 2019 | INTELLECTUAL VENTURES ASSETS | DISPLAY VECTORS LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 053368 | /0937 |
Date | Maintenance Fee Events |
Dec 28 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 29 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 19 2011 | 4 years fee payment window open |
Aug 19 2011 | 6 months grace period start (w surcharge) |
Feb 19 2012 | patent expiry (for year 4) |
Feb 19 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 19 2015 | 8 years fee payment window open |
Aug 19 2015 | 6 months grace period start (w surcharge) |
Feb 19 2016 | patent expiry (for year 8) |
Feb 19 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 19 2019 | 12 years fee payment window open |
Aug 19 2019 | 6 months grace period start (w surcharge) |
Feb 19 2020 | patent expiry (for year 12) |
Feb 19 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |