A multi-beam optical scanner, in which a lateral magnification β in a composite system of an optical system between the light source for a multi-beam and the scanned surface satisfies the condition: 2<β≦8.5, and a plurality of light spots on the scanned surface execute optical scanning of the scanning lines adjacent to each other.
|
0. 10. A multi-beam optical scanner comprising:
a light source for a multi-beam;
a coupling lens for coupling a plurality of light fluxes from said light source for a multi-beam to an image-forming optical system, said coupling lens being a positive convex lens having a planar surface;
a first image-formation system for focusing a plurality of light fluxes coupled by said coupling lens in a direction corresponding to auxiliary scanning and forming them to images as a plurality of line images each long in a direction corresponding to main scanning;
an optical deflector having a deflecting reflection surface adjacent to positions where images as said plurality of line images are formed for deflecting said plurality of light fluxes;
a second image-formation system for separating the plurality of light fluxes deflected by said optical deflector from each other in a direction of auxiliary scanning on a scanned surface and converging the plurality of light fluxes as a plurality of light spots for optically scanning said scanned surface in accordance with deflection of the light fluxes; wherein
a lateral magnification β in a direction corresponding to the auxiliary scanning in a composite system of the optical system between said light source for a multi-beam and said scanned surface is as follows:
line-formulae description="In-line Formulae" end="lead"?>2<βline-formulae description="In-line Formulae" end="tail"?> and the plurality of light spots on the scanned surface optically scan scanning lines adjacent to each other.
0. 11. A multi-beam optical scanner comprising:
a light source for a multi-beam;
a coupling lens for coupling a plurality of light fluxes from said light source for a multi-beam to an image-forming optical system;
a first image-formation system for focusing a plurality of light fluxes coupled by said coupling lens in a direction corresponding to auxiliary scanning and forming them to images as a plurality of line images each long in a direction corresponding to main scanning;
an optical deflector having a deflecting reflection surface adjacent to positions where images as said plurality of line images are formed for deflecting said plurality of light fluxes;
a second image-formation system for separating the plurality of light fluxes deflected by said optical deflector from each other in a direction of auxiliary scanning on a scanned surface and converging the plurality of light fluxes as a plurality of light spots for optically scanning said scanned surface in accordance with deflection of the light fluxes, said second image-formation system including a lengthy lens, the lengthy lens being a toroidal lens; wherein
a lateral magnification β in a direction corresponding to the auxiliary scanning in a composite system of the optical system between said light source for a multi-beam and said scanned surface is as follows:
line-formulae description="In-line Formulae" end="lead"?>2<βline-formulae description="In-line Formulae" end="tail"?> and the plurality of light spots on the scanned surface optically scan scanning lines adjacent to each other, wherein said adjacent scanning lines do not have any subsequent scanning lines therebetween.
0. 9. A multi-beam optical scanner comprising:
a light source for a multi-beam;
a coupling lens for coupling a plurality of light fluxes from said light source for a multi-beam to an image-forming optical system;
a first image-formation system for focusing a plurality of light fluxes coupled by said coupling lens in a direction corresponding to auxiliary scanning and forming them to images as a plurality of line images each long in a direction corresponding to main scanning;
an optical deflector having a deflecting reflection surface adjacent to positions where images as said plurality of line images are formed for deflecting said plurality of light fluxes, the plurality of line images formed on the deflecting reflection surface of the optical deflector;
a second image-formation system for separating the plurality of light fluxes deflected by said optical deflector from each other in a direction of auxiliary scanning on a scanned surface and converging the plurality of light fluxes as a plurality of light spots for optically scanning said scanned surface in accordance with deflection of the light fluxes; wherein
a lateral magnification β in a direction corresponding to the auxiliary scanning in a composite system of the optical system between said light source for a multi-beam and said scanned surface is as follows:
line-formulae description="In-line Formulae" end="lead"?>2<βline-formulae description="In-line Formulae" end="tail"?> the plurality of light spots on the scanned surface optically scan scanning lines adjacent to each other, and the deflecting reflection surface is conjugate with the scanned surface, wherein said adjacent scanning lines do not have any subsequent scanning lines therebetween.
0. 13. A multi-beam optical scanner comprising:
a light source for a multi-beam;
a coupling lens for coupling a plurality of light fluxes from said light source for a multi-beam to an image-forming optical system;
a first image-formation system for focusing a plurality of light fluxes coupled by said coupling lens in a direction corresponding to auxiliary scanning and forming them to images as a plurality of line images each long in a direction corresponding to main scanning;
an optical deflector having a deflecting reflection surface adjacent to positions where images as said plurality of line images are formed for deflecting said plurality of light fluxes;
a second image-formation system for separating the plurality of light fluxes deflected by said optical deflector from each other in a direction of auxiliary scanning on a scanned surface and converging the plurality of light fluxes as a plurality of light spots for optically scanning said scanned surface in accordance with deflection of the light fluxes, said second image-formation system including a lengthy lens, the lengthy lens being a toroidal lens; wherein
a lateral magnification β in a direction corresponding to the auxiliary scanning in a composite system of the optical system between said light source for a multi-beam and said scanned surface is as follows:
line-formulae description="In-line Formulae" end="lead"?>2<βline-formulae description="In-line Formulae" end="tail"?> and the plurality of light spots on the scanned surface optically scan scanning lines adjacent to each other, wherein said toroidal lens is provided in an optical path extending in a main scanning direction from a constant-velocity optical-scanning image-forming mirror toward a scanned surface.
0. 1. A multi-beam optical scanner comprising:
a light source for a multi-beam;
a coupling lens for coupling a plurality of light fluxes from said light source for a multi-beam to an image-forming optical system;
a first image-formation system for focusing a plurality of light fluxes coupled by said coupling lens in a direction corresponding to auxiliary scanning and forming them to images as a plurality of line images each long in a direction corresponding to main scanning;
an optical deflector having a deflecting reflection surface adjacent to positions where images as said plurality of line images are formed for deflecting said plurality of light fluxes;
a second image-formation system for separating the plurality of light fluxes deflected by said optical deflector from each other in a direction of auxiliary scanning on a scanned surface and converging the plurality of light fluxes as a plurality of light spots for optically scanning said scanned surface in accordance with deflection of the light fluxes; wherein
a lateral magnification β in a direction corresponding to the auxiliary scanning in a composite system of the optical system between said light source for a multi-beam and said scanned surface is as follows:
line-formulae description="In-line Formulae" end="lead"?>2<βline-formulae description="In-line Formulae" end="tail"?> and the plurality of light spots on the scanned surface optically scan scanning lines adjacent to each other.
0. 2. A multi-beam optical scanner according to
0. 3. A multi-beam optical scanner according to
0. 4. A multi-beam optical scanner according to
0. 5. A multi-beam optical scanner according to
0. 6. A multi-beam optical scanner according to
0. 7. A multi-beam optical scanner according to
0. 8. A multi-beam optical scanner according to
line-formulae description="In-line Formulae" end="lead"?>2<β≦8.5. line-formulae description="In-line Formulae" end="tail"?> 0. 12. A multi-beam optical scanner according to
|
and a plurality of light spots optically scan scanning lines adjacent to each other.
The lateral magnification β is made larger than 2, and by employing a “scaling-up type” of composite system, a lengthy lens included in the second image-formation system can effectively be separated from the scanned surface.
Also, when the lateral magnification β in the composite system is larger than 8.5 times, in order to realize a pitch of scanning lines of 84.7 μm corresponding to the minimum dot density of 300 dpi required to the optical scanner, a space between light emitting sections in the light source for a multi-beam becomes not more than 10 μm, and “thermal crosstalk (a phenomenon that light emission in other light emitting section is affected by heating in one light emitting section)” between LD light emitting sections of LED light emitting sections rapidly increases, so that it is difficult to control discretely blinking of each of the light emitting sections.
The light source for a multi-beam has also two LD light emitting sections, and the two light emitting sections can be provided at symmetric positions with respect to an optical axis of a collimate lens. In this case, as a light source for a multi-beam, one having a space between the two LD light emitting sections of 14 μm is used, and a lateral magnification β in a direction corresponding to the auxiliary scanning in the composite system of an optical system between the light source for a multi-beam and the scanned surface can be made 4.536 times.
Further, by satisfying the conditions, the lengthy lens included in the second image-formation system can effectively be separated from the scanned surface, and in order to realize a pitch between scanning lines of 84.7 μm corresponding to the minimum dot density of 300 dpi required to the optical scanner, a space between light emitting sections in the light source for a multi-beam can be maintained by not less than 10 μm with which thermal crosstalk does not occur.
In the present invention, a diameter of a light spot or a pitch between scanning lines on the scanned surface are decided mainly by means of an image forming magnification in “an optical system in the side of the light source side” and an image-forming magnification in the second image-formation system according to a coupling lens and the first image formation system.
The image-forming magnification of the optical system in the side of the light source is decided by means of a magnification of the coupling lens and an image-forming magnification of the first image-formation system, however, a light flux coupled by the coupling lens is weak in converging performance or in diverging performance even in both cases where the light flux becomes a light flux to be converged and where it becomes a light flux to be diverged, so that a value of an image-forming magnification of the optical system in the side of the light source becomes substantially close to a ratio between a focal length of a coupling lens and that of the first image-formation system.
When the value becomes lower than a lower limit of the condition (1), a focal length in the first image-formation system for realizing a magnification required for an optical system in the side of the light source becomes smaller, and the first image-formation system approaches the optical deflector too close, which causes an obstacle for a layout of the optical arrangement. Especially, when the first image-formation system comprises “a piece of lens”, and the second image-formation system includes a constant-velocity optical-scanning image-forming mirror, sometimes there may occur a case where a light flux reflected on the constant-velocity optical-scanning image-forming mirror is truncated by the first image-formation system.
Other objects and features of this invention will become understood from the following description with reference to the accompanying drawings.
In
In
The two light fluxes radiated from the collimate lens 2 are cut off in each of peripheral sections of the light fluxes by an aperture 8 for beam formation to enter a cylinder lens 3 as a first image-formation system.
The cylinder lens 3 has positive power only in a direction corresponding to the auxiliary scanning, focuses the two light fluxes only in the direction corresponding to the auxiliary scanning respectively, and forms an image as two line images each long in the direction corresponding to the main scanning.
A polygon mirror as “an optical deflector” has a deflecting reflection surface 4 adjacent to a position for forming images of the two line images and deflects the two light fluxes. The deflected two light fluxes are separated from each other in the auxiliary direction on the scanned surface (the peripheral surface of a drum-shaped photosensitive body) 7 according to an fθ lens 50 (comprising two pieces of co-axial lenses 5a and 5b) constituting “the second image-formation system” and action of image-formation by a lengthy lens 6 for correcting surface offset, and are converged as two light spots optically and concurrently scanning the surface to be scanned in accordance with deflection of the light fluxes. The lengthy lens 6 is “a lengthy toroidal lens”.
In the embodiment shown in
The fθ lens 50 and the lengthy lens 6 make, in the direction corresponding to the auxiliary scanning, the position of the deflecting reflection surface 4 and that of the scanned surface 7 have a conjugational relation, and for this reason the lengthy lens 6 has a function of correcting “surface offset” of the polygon mirrors an optical deflector. Assuming that a focal length of the collimate lens 2 is f2 a focal length of the lengthy lens 6 is f6, the relation therebetween is f2<f6.
Description is made for Embodiment 1 of the invention according to claims 3 to 6 of the present invention with reference to
In
A plurality of light fluxes from the light source 10 for a multi-beam are coupled to the “image-forming optical system” by a coupling lens 15, each of the light fluxes becomes parallel fluxes, or a flux weak in converging performance or weak in diverging performance, a diameter of which is restricted by an aperture 20 for beam formation, goes into a piece of cylinder lens 25 as “the first image-formation system having positive power only in the direction corresponding to the auxiliary scanning”, whereby images are formed as “a plurality of line images each long in the direction corresponding to the main scanning” on a place adjacent to the deflecting reflection surface of the polygon mirror 30 which is an optical deflector.
The plurality of light fluxes deflected by the polygon mirror 30 go into the constant-velocity optical-scanning image-forming mirror 41 to be reflected therefrom, separate from each other in the auxiliary scanning direction on the peripheral surface of the drum-shaped photosensitive body 500 actually forming the “scanned surface” through a lengthy toroidal lens 45 as a lengthy toroidal lens together with the constant-velocity optical-scanning image-forming mirror 41 constituting the second image-formation system, are converged as a plurality of light spots (four spots in the figure) for optically and concurrently scanning the scanned surface in accordance with deflection of the light fluxes, and a plurality of scanning lines S1, S2, S3, S4 are optically and concurrently scanned. The scanning lines S1, S2, S3, S4 are “adjacent to each other”.
A lateral magnification β in the direction corresponding to the auxiliary scanning in the composite system (the coupling lens 15, cylinder lens 25, constant-velocity optical-scanning image-forming mirror 41, lengthy toroidal lens 45) of the optical system between the light source 10 for a multi-beam and the scanned surface is a ratio D20/D10 between a space D10 of two adjacent light emitting sections in the light source 10 for a multi-beam in the direction corresponding to the auxiliary scanning and a space D20 of scanning lines by light spots according to light fluxes from those light emitting sections, and is set in a range of “2<β≦8.5”.
The constant-velocity optical-scanning image-forming mirror 41 reflects light fluxes deflected at constant velocity, has, together with the lengthy toroidal lens 45, functions for forming images on the scanned surface as light spots as well as for making constant the scanning speed of the light spots, and because of this function for constant velocity thereof, this mirror is called as “a constant-velocity optical-scanning image-forming mirror”.
In a case where the second image-formation system comprises an fθ lens and a lengthy toroidal lens, although there is a problem that effect of constant velocity according to the fθ lens is changed in accordance with a wavelength of a light flux and optical scanning with each light spot is executed at a different scanning speed if there is “wavelength deviation” in a light source for a multi-beam, a light flux reflected and deflected by the constant-velocity optical-scanning image-forming mirror is not affected by wavelength deviation, and for this reason, the above problem does not occur even if a light source for a multi-beam comprising “two or more LD light emitting sections or LED light emitting diodes in hybrid combination thereof” which might generate wavelength deviation is used.
An element monolithically having two or more LD light emitting sections or LED light emitting sections may be used for a light source 10 for a multibeam, or “an element having two or more LD lighting sections or LED light emitting sections in hybrid combination thereof” may also be used as described above.
In the embodiment described above with reference to
A lateral magnification βm in the composite system including the collimate lens 2, the first image-formation system 3, and the second image-formation system (the fθlens 50 and the lengthy lens 6) in the direction corresponding to the auxiliary scanning may be set to 63.5 μm/14 μm=4.536 times.
When it is set, “a distance from the optical axis of the collimate lens 2” to each of the LD light emitting sections 1a, 1b in the light source 1 for a multi-beam is 7 μm. The lateral magnification β of 4.536 times satisfies the conditional expression (1).
As a result of designing the collimate lens 2, cylinder lens 3, fθ lens 50, and lengthy lens 6 to realize the above lateral magnification β which is 4.536 times, the following values are obtained such as a focal length of the collimate lens 1: f2=15.915 mm and a focal length of the lengthy lens 6: f6=70 mm, so that the lengthy lens 6 can be provided sufficiently apart from the scanned surface, which makes it possible to effectively reduce dirt thereonto due to splashed toner.
Also, the distance between the LD light emitting section 1a, 1b in the light source 1 for a multi-beam and the optical axis of the collimate lens 2 is small such as 7 μm, and a deviation rate of a pitch described later becomes smaller, whereby it is possible to sufficiently insure fidelity in reproduction of a recorded image.
The distance between the LD light emitting sections 1a, 1b and the optical axis of the collimate lens 2 is small such as 7 μm, whereby wave surface aberration of two light fluxes radiated from the collimate lines 2 is also small, so that degradation in a form of a light spot due to the wave surface aberration hardly occurs.
As shown in
A deviation rate δ of a pitch between scanning lines is defined as described later according to a difference between the h1 and h2: Δh=h1−h2 as well as to a normal pitch (a pitch between scanning lines decided directly from dpi) PN,
“δ=Δh/PN×100%.”
Generally, a deviation rate of a pitch therebetween which can maintain fidelity in reproduction of a recorded image is assumed to be “not more than about 8 to 10%”.
In the embodiment, Δh is 6.14 μm. PN is 63.5 μm, accordingly, a deviation rate of a pitch is as follows: δ=(6.14/63.5)×100=9.7%, so that fidelity in reproduction of a recorded image can sufficiently be maintained.
For the purpose of comparison, “three LD light emitting sections with a space d thereamong by 28 μm” are used as a light source for a multi-beam in the optical arrangement in the above embodiment as it is (the central light emitting section thereof is positioned on the optical axis of the collimate lens and each of the light emitting sections in both sides is apart by 28 μm from the optical axis thereof in the direction corresponding to the auxiliary scanning respectively), and the three scanning lines are scanned at the same time.
The lateral magnification β in the optical system (the composite system including the collimate lens 2, the first image-formation system 3 and the second image-formation system) between the light source 1 for a multi-beam and the scanned surface is 4.536 times, and for this reason the three light spots on the scanned surface are separated from each other by 28 μm×4.536=127 μm in the direction of auxiliary scanning.
In this case, scanning lines to concurrently be scanned are “alternate lines” as shown in FIG. 4. Namely, scanning lines 21, 22, 23 each indicated by a solid line are concurrently scanned in a first optical scanning, scanning lines 31, 32, 33 each indicated by a broken line are concurrently scanned in the next optical scanning, and scanning lines 41, 42, 43 each indicated by a dashed line are concurrently scanned in the following optical scanning. The same operations are carried out thereafter and on.
At that time, a deviation rate of a pitch δis a proportion of a difference h1ƒh2 between the maximum space h1 and the minimum space h2 between adjacent scanning lines as shown in
In contrast to Δh=6.14 μm as described above in the embodiment, in this example for comparison, the space therebetween becomes four times as large as that in the embodiment such as Δh=24.56 μm, the deviation rate of a pitch is such large as follows:δ=(24.56/63.5)×100=38.68%, so that fidelity in reproduction of a recorded image can not sufficiently be maintained.
Degradation in a form of a light spot due to wave surface aberration is also significant in two spots in both sides in the direction of auxiliary scanning out of three light spots, which also causes the fidelity in reproduction of a recorded image to be degraded.
The optical system in the multi-beam optical scanner according to the embodiment described above with reference to
The light source 10 for a multi-beam has, as shown in
The coupling lens 15 is “a plane-convex regular lens” having a curvature radius of a surface in the side of the light source: rCP1=∞(plane), a curvature radius of a surface (spherical surface) in the side of the cylinder lens 25:rCP2=−10.2987 mm, a wall thickness of the lens: dCP=3 mm, a wavelength of a material to a light having a wavelength 780 nm: nCP=1.712205, and a focal length: f—14.46 mm.
The cylinder lens 25 as one piece of the first image-formation system having positive power only in the direction corresponding to auxiliary scanning has a convex cylinder surface with a curvature radius of a line in the side of the light source: rCY2=29.5 mm, a curvature radius in the side of the deflecting reflection surface thereof: rCY2=∞to (plane), a wall thickness of the lens: dCY=3 mm, a wavelength of a material to a light having a wavelength 780 nm: nCY=1.511176, and a focal length in the direction corresponding to auxiliary scanning: fCY=57.71 mm.
Spaces of optical elements: D1, D2, D3, D4 on the light path, as shown in
Each of the light fluxes coupled by the coupling lens 15 is “a light flux weak in divergence”, and a starting point of a virtual divergence is positioned at “−1712.082 mm” obtained by measuring a space from the reflecting surface of the constant-velocity optical-scanning image-forming mirror 41 to the side of the light source. Namely, the coupled light fluxes go into, assuming that other optical system is not provided therein, the constant-velocity optical-scanning image-forming mirror 41 as diverging light fluxes as if they are radiated from the position apart by −1712.082 mm from the reflecting surface of the constant-velocity optical-scanning image-forming mirror 41.
The constant-velocity optical-scanning image-forming mirror 41 is a reflecting mirror having “a reflecting surface with a concave surface of a coaxial non-spherical surface” obtained by rotating a curve indicated by the expression described below around the X-axis using a coordinate in a direction of the optical axis: X, a coordinate in a direction crossing the optical axis at right angles: H, a paraxial curvature: C(=1/R; R indicates a radius of a paraxial curvature), a conical constant: K, and a coefficent of higher order Ai:
X(H)=CH2/[+v[1−(1+K)C2H2]]+ΣAi•H1 . . . (2)
Wherein the i-th power indicates the 4-th, 6-th, 8-th, 10-th, 12-th, . . . power.
In the embodiment which is now being described, the form of the reflecting surface of the constant-velocity optical-scanning image-forming mirror 41 is obtained by setting the above R, K, and A, to values respectively as follows:
R=−405.046 mm,K=−1.46661,
A4=3.12269×10−10, A6=−9.19756×10−15,1
A6=−1.14431×10−18,A10=−1.39095×10−23
Assuming that a distance from the deflecting reflection surface 300 to the reflecting surface of the constant-velocity optical-scanning image-forming mirror 41 is set to “L0” as 23 shown in
As shown in
The length toroidal lens 45 which is long in the direction corresponding to main scanning is provided on the light path from the constant-velocity optical-scanning image-forming mirror to the scanned surface, has an ordinary “normal toroidal surface”, as shown in
The concave surface in the side of the constant-velocity optical-scanning image-forming mirror 41 of the lengthy toroidal lens 45 is “a barrel type of toroidal surface obtained by rotating a curve having a non-circular arch (in the figure, described as ‘a non-circular curve’. It is generally described by the expression (2)) around the rotation axis in parallel to the direction corresponding to main scanning, in which a radius of the curvature in the direction corresponding to auxiliary scanning decreases with distance from the optical lens in the direction of main scanning”.
It is assumed that each radius of the curvature, of the lengthy toroidal lens 41, on the optical axis in the direction corresponding to main scanning is described respectively as follows: rM1 (a side of the constant-velocity optical-scanning image-forming mirror), rM2, (a side of the scanned surface), rS1, (a side of the constant-velocity optical-scanning image-forming mirror), and rS2. (a side of the scanned surface) To discriminate the expression (2) indicating “a non-circular curve” shown in
X(H)=CH2/[1+√[1−(1+K)C2H2]]+Σai•Hi . . . (3)
and relating to the barrel type of toroidal surface, the form thereof is specified by giving the following values: rM1 (=1/c); rM2,k,a4;a6;a8;a10. It is assumed that a wall thickness of the lengthy toroidal lens 45 on the optical axis is dTR and a wavelength thereof is nTR.
As shown in
Those values are as described below:
rM1=692. 522 mm,K=−1.7171,
a4=−8.45792×10−10,a6=1.09879×10−14,
a6−1.47422×10−18,a10=2.923/2×10−23
rS1=69.2,dTR=3.254,nTR=1.5721
rM2=667.087 mm,rS2=30.8 mm
L=105.53 mm, D5=122.27 mm
The lengthy toroidal lens 45 is shifted, as shown in
The lateral magnification β in the composite system of the optical system from the light source 10 for a multi-beam to the scanned surface 500 in the direction corresponding to auxiliary scanning is 3.02 times, which satisfies the condition (1).
A lateral magnification β1 in the optical system (comprising the first image-formation system and the coupling lens) from the light source 10 for a multi-beam to the deflecting reflection surface in the direction corresponding to auxiliary scanning is 4.137 times, and a lateral magnification β2 in the second image-formation system-between the deflecting reflection surface and the scanned surface in the direction corresponding to auxiliary scanning is 0.73 times. The lateral magnification β1 is a value close to a value of a ratio: fCY/fCP=3.991 between a focal length of the coupling lens: fCP=14.46 mm and a focal length of the cylinder lens 25 as the first image-formation system in the direction of auxiliary scanning: fCY=57.71 mm.
It is considered that each pitch P0 between the light emitting sections LD1 to LD4 is around 10 μm allowable as a minimum pitch to avoid the “thermal crosstalk” or the like, and if it is considered that the maximum value of an image density for optical scanning is 1200 dpi, the lateral magnification β is 52.117 to the pitch P0 of 10 μm at that time, so that, in a case where the above element is used as the second image-formation system, in a focal length fCP of the coupling lens, a range from 5 to 25 mm is considered as a practical limitation thereof such that a lateral magnification β1 in the side of light source from the deflecting reflection surface is 2.9 (2.117/0.73), and a range of a focal length fCY of the first image-formation system combined with the coupling lens as described above in the direction corresponding to auxiliary scanning is 14.5 to 72.5 mm. When the focal length fCY is smaller, a layout of the optical arrangement is difficult because the second image-formation system is close to the deflecting reflection surface. When the lower limit of a focal length fCY is 5 mm from conditions for the layout, the lateral magnification β is preferably larger than 2 as shown in the condition (1).
When the minimum value of an image density for optical scanning is 300 dpi and assuming that the pitch between light emitting sections P0 is set to 10 μm, the lateral magnification βis not more than 8.5 times in adjacent scanning as shown in the condition (1). In the magnification more than the above value, the pitch therebetween is smaller than 10 μm, which causes a problem of thermal crosstalk to occur.
As described above, with the present invention, it is possible to realize an entirely new multi-beam optical scanner. With the multi-beam optical scanner according to the present invention, it is possible to maintain fidelity in reproduction of a recorded image in a good condition by effectively reducing a deviation rate of a pitch between scanning lines for optical scanning. In addition, a lengthy lens of the second image-formation system can be provided spaced from a scanned surface, so that dirt due to toner splashed from the lengthy lens can effectively reduced.
Also, scanning lines concurrently scanned are adjacent to each other, so that there is no such a problem that “selection of a signal for modulating each beam is irregular, which causes optical scanning to be easily complicated” like in the interlace scanning.
Further, a position of the first image-formation system to be arranged is not too close to an optical deflector, so that a layout of the optical arrangement can easily be provided.
In the another aspect of the present invention, by using a constant-velocity optical-scanning image-forming mirror, the curves of a plurality of scanning lines concurrently scanned are directed to the same direction, so that, “a deviation rate of a pitch” is small even three or more scanning lines are scanned at the same time, and for this reason, optical scanning for a recorded image can be realized in high quality, non-uniformity in constant-velocity performance due to “wavelength deviation” does not occur even if a light source for a multi-beam with two or more LD light emitting sections or LED light emitting section provided in “hybrid” combination thereof.
This application is based on Japanese patent application Nos. HEI 8-142791 and HEI 9-002334 filed in the Japanese Patent Office on Jun. 5, 1996 and Jan. 9, 1997, respectively, the entire contents of which are hereby incorporated by reference.
Although the invention has been described with respect to a specific embodiment for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art which fairly fall within the basic teaching herein set forth.
Patent | Priority | Assignee | Title |
10203431, | Sep 28 2016 | Ricoh Company, Ltd. | Microlens array, image display apparatus, object apparatus, and mold |
10209133, | Mar 28 2016 | Ricoh Company, Ltd. | Wavelength estimation device, light-source device, image display apparatus, object apparatus, wavelength estimation method, and light-source control method |
10302942, | Sep 08 2016 | Ricoh Company, Ltd. | Light-source device, image display apparatus, and object apparatus |
10534112, | Sep 28 2016 | Ricoh Company, Ltd. | Microlens array, image display apparatus, object apparatus, and mold |
Patent | Priority | Assignee | Title |
5025268, | Jul 13 1988 | HITACHI PRINTING SOLUTIONS, LTD | Optical scanning apparatus and asymmetrical aspheric scanning lens |
5526166, | Dec 19 1994 | Xerox Corporation | Optical system for the correction of differential scanline bow |
5550668, | Nov 21 1994 | Xerox Corporation | Multispot polygon ROS with maximized line separation depth of focus |
5671077, | May 18 1992 | Ricoh Company, Ltd. | Multi-beam light source device and optical scanning apparatus using the multi-beam source device |
5748223, | Apr 20 1995 | Fuji Xerox Co., Ltd. | Image writing apparatus having a multi-beam scanning optical system for improving the quality of reproduced images |
5861978, | Jun 05 1995 | Asahi Kogaku Kogyo Kabushiki Kaisha | Scanning optical system using parallel plate to eliminate ghost images |
JP1054950, | |||
JP648846, | |||
JP7111509, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 13 2003 | Ricoh Company, Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jan 08 2010 | ASPN: Payor Number Assigned. |
Apr 21 2010 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 26 2011 | 4 years fee payment window open |
Aug 26 2011 | 6 months grace period start (w surcharge) |
Feb 26 2012 | patent expiry (for year 4) |
Feb 26 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 26 2015 | 8 years fee payment window open |
Aug 26 2015 | 6 months grace period start (w surcharge) |
Feb 26 2016 | patent expiry (for year 8) |
Feb 26 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 26 2019 | 12 years fee payment window open |
Aug 26 2019 | 6 months grace period start (w surcharge) |
Feb 26 2020 | patent expiry (for year 12) |
Feb 26 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |