semiconductor packages having a thin structure capable of easily discharging heat from a semiconductor chip included therein, and methods for fabricating such semiconductor packages, are disclosed. An embodiment of a semiconductor package includes a semiconductor chip having a first major surface and a second major surface, the semiconductor chip being provided at the second major surface with a plurality of input/output pads; a circuit board including a resin substrate having a first major surface and a second major surface, a first circuit pattern formed at the first major surface and provided with a plurality of ball lands, a second circuit pattern formed at the second major surface and provided with a plurality of bond fingers connected with he ball lands by conductive via holes through the resin substrate, cover coats respectively coating the first and second circuit patterns while allowing the bond fingers and the ball lands to be exposed therethrough, and a central through hole adapted to receive the semiconductor chip therein; electrical conductors that electrically connect the input/output pads of the semiconductor chip with the bond fingers of the circuit board, respectively; a resin encapsulate that covers the semiconductor chip, the electrical conductors, and at least part of the circuit board; and, a plurality of conductive balls fused on the ball lands of the circuit board, respectively.
|
1. A method for fabricating semiconductor packages, the method comprising:
providing a circuit board strip including a plurality of unit circuit boards, each unit circuit board having a plurality of first ball lands formed at a first major surface thereof, a plurality of bond fingers formed at an opposite second major surface thereof, vias through the circuit board each electrically connected between a bond finger and a first ball land, and a through hole between the first and second major surfaces;
receiving in each through hole a semiconductor chip having a first major surface, and an opposite second major surface provided with a plurality of input/output pads thereon, wherein the second major surface of the chip faces in the same direction as the first second major surface of the respective circuit board;
electrically connecting the input/output pads of each semiconductor chip with associated ones of the bond fingers of the respective circuit board;
encapsulating the semiconductor chips, and filling the through holes of each unit circuit board of the circuit board strip using an encapsulating material;
fusing conductive balls on the first ball lands of each unit circuit board;
singulating the circuit board strip into semiconductor packages respectively corresponding to the unit circuit boards.
2. The method of
a main strip including a resin substrate having a substantially rectangular strip shape, a first major surface and a second major surface;
a plurality of main slots extending to a desired length in a direction transverse to a longitudinal direction of the main strip while being uniformly spaced apart from one another in the longitudinal direction of the main strip, thereby dividing the main strip into a plurality of sub-strips aligned together in the longitudinal direction of the main strip;
a plurality of sub slots extending to a desired length and serving to divide each of the sub-strips into a plurality of strip portions arranged in a matrix array, each of the strip portions corresponding to one of the unit circuit boards having one of the through holes;
a plurality of first circuit patterns each formed on the first major surface of the resin substrate for an associated one of the strip portions and provided with associated ones of the first ball lands;
a plurality of second circuit patterns each formed on the second major surface of the resin substrate for an associated one of the strip portions and provided with associated ones of the bond fingers; and
cover coats respectively coated over the first and second major surfaces of the resin substrate while allowing the bond fingers and the ball lands to be exposed therethrough.
3. The method of
a resin substrate having a substantially rectangular strip shape provided with a first major surface and a second major surface;
a plurality of slots extending to a desired length and serving to divide each of the resin substrate into a plurality of substrate portions arranged in a matrix array, each of the substrate portions corresponding to one of the unit circuit boards having one of the through holes;
a plurality of first circuit patterns each formed on the first major surface of the resin substrate for an associated one of the strip portions and provided with associated ones of the ball lands;
a plurality of second circuit patterns each formed on the second major surface of the resin substrate for an associated one of the strip portions and provided with associated ones of the bond fingers; and
cover coats respectively coated over the first and second major surfaces of the resin substrate while allowing the bond fingers and the ball lands to be exposed therethrough.
4. The method of
5. The method of
attaching a plurality of closure members to the first major surface of the circuit board strip in such a fashion that the closure members simultaneously cover associated ones of the through holes, prior to the step of receiving the semiconductor chips in the through holes.
6. The method according to
attaching a plurality of closure members to the first major surface of the circuit board strip in such a fashion that the closure members simualtaneously cover associated ones of the through holes, prior to the step of receiving the semiconductor chips in the through holes.
7. The method according to
preparing closure member strips each having closure members for an associated one of the sub-strips; and
individually attaching the closure member strips to the sub-strips, respectively, in such a fashion that each of the closure member strips is arranged to cover the main slot formed at one side of an associated one of the sub-strips.
8. The method according to
preparing a single closure member strip having closure members for all sub-strips of the circuit board strip while having small singulation apertures at a region corresponding to each of the main slots; and
attaching the closure member strip to the main strip in such a fashion that the closure member strip is arranged to allow each of the small singulation apertures to be aligned with an associated one of the main slots.
9. The method of
10. The method of
11. The method of
12. The method of
13. The method of
14. The method of
15. The method of
16. The method of
17. The method of
18. The method according to
19. The method according to
20. The method according to
21. The method according to
22. The method according to
23. The method of
interposing the circuit board strip between a pair of mold dies, one of which has cavities and gates, in such a fashion that the second major surface of each of the semiconductor chips faces an associated cavity and a gate into the cavity; and
injecting the encapsulating material into each of the cavities through the associated gate in such a fashion that it flows outwardly from a central portion of the second major surface of the associated semiconductor chip along the second major surface.
24. The method of
interposing the circuit board strip between a pair of mold dies, one of which has cavities and gates, in such a fashion that the second major surface of each of the semiconductor chips faces an associated cavity and a gate into the cavity; and
injecting the encapsulating material into each of the cavities through the associated gate in such a fashion that it flows outwardly from a central portion of the second major surface of the associated semiconductor chip along the second major surface.
25. The method of
interposing the circuit board strip between a pair of mold dies, one of which has cavities and gates, in such a fashion that the second major surface of each of the semiconductor chips faces an associated cavity and a gate into the cavity; and
injecting the encapsulating material into each of the cavities through the associated gate in such a fashion that it flows outwardly from a central portion of the second major surface of the associated semiconductor chip along the second major surface, fills the through hole, and contacts the closure member.
26. The method of
interposing the circuit board strip between a pair of mold dies, one or which has cavities and gates, in such a fashion that the second major surface of each of the semiconductor chips faces an associated cavity and a gate into the cavity; and
injecting the encapsulating material into each of the cavities through the associated gate in such a fashion that it flows outwardly from a central portion of the second major surfaces of the associated semiconductor chip along the second major surface, fills the through hole, and contacts the closure member.
27. The method of
28. The method of
29. The method of
30. The method of
31. The method of
32. The method of
33. The method of
34. The method of
35. The method of
|
I. Field of the Invention
The present invention relates to a semiconductor package and a method for fabricating the semiconductor package. This application is a REI of 09/574,541 filed on May 19, 2000 U.S. Pat. No. 6,395,578.
II. Description of the Prior Art
Recently, semiconductor devices have been developed to have a thinner and more miniature structure. For such semiconductor devices, there are ball grid array (BGA) semiconductor packages, chip scale semiconductor packages, and micro BGA semiconductor packages.
Also, semiconductor chips, which are mounted on semiconductor packages as mentioned above, have been developed toward a high performance of electric power circuits, an increase in operating frequency, and an expansion of circuit functions, in pace with the development of integration techniques and manufacturing equipment. For this reason, an increase in heat occurs inevitably during the operation of such a semiconductor chip.
Referring to
As shown in
The circuit board 10′ includes a resin substrate 15′. A circuit pattern 12′ provided with bond fingers 11′ is formed on an upper surface of the resin substrate 15′ around the semiconductor chip 1′. Another circuit pattern provided with a plurality of ball lands 13′ is formed on a lower surface of the resin substrate 15′. Each of the circuit patterns is comprised of a thin film made of a conductive material such as copper (Cu). These circuit patterns are interconnected together by via holes 14′. The exposed surface portions of the circuit patterns not covered with the bond fingers 11′ and ball lands 13′ are coated with cover coats 16′, respectively, so that those circuit patterns are protected from the external environment.
The input/output pads 2′ of the semiconductor chip 1′ are connected to the bond fingers 11′ on the upper surface of the circuit board 10′ by means of conductive wires 4′, respectively. In order to protect the conductive wires 4′ from the external environment, the upper surface of the circuit board 10′ is encapsulated by a resin encapsulate 20′.
The circuit board 10′ is mounted on a mother board (not shown) in a state in which a plurality of conductive balls 40′ are fused on the ball lands 13′, respectively, so that it serves as a medium for electrical signals between the semiconductor chip 1′ and mother board.
In the BGA semiconductor package 100′ having the above mentioned configuration, the semiconductor chip 1′ thereof exchanges electrical signals with the mother board via the input/output pads 2′, conductive wires 4′, bond fingers 11′, via holes 14′, ball lands 13′, and conductive balls 40′, respectively.
However, the above mentioned conventional BGA semiconductor package is problematic in that it has an increased thickness because the semiconductor chip is bonded to the upper surface of the circuit board having a relatively large thickness. This is contrary to the recent trend toward a miniaturization and thinness. As a result, the above mentioned semiconductor package is problematic in that it cannot be applied to a variety of miniature electronic appliances such as portable phones, cellular phones, pagers, and notebooks.
Furthermore, in spite of the increasing heat generated at the semiconductor chip, as mentioned above, there is no appropriate heat discharge means in the conventional semiconductor package. As a result, the conventional semiconductor package is implicated in a heat-related degradation in the electrical performance and other functions of the semiconductor chip. In severe cases, the semiconductor package and the electronic appliance using it may be so damaged as not to be inoperable.
Although a semiconductor package has been proposed, which is provided with a heat discharge plate or heat sink for easily discharging heat generated from the semiconductor chip, the provision of such a heat discharge plate causes another problem because it serves to further increase the thickness of the semiconductor package while increasing the manufacturing costs.
Therefore, the present invention has been made in view of the above mentioned problems involved in the prior art, and an object of the invention is to provide a semiconductor package having a super-thin structure and a method for fabricating the semiconductor package.
Another object of the invention is to provide a semiconductor package having a structure capable of easily discharging heat from a semiconductor chip included therein, and a method for fabricating the semiconductor package.
In accordance with one aspect, the present invention provides a semiconductor package comprising: a semiconductor chip having a first major surface and a second major surface, the semiconductor chip being provided at the second major surface with a plurality of input/output pads; a circuit board including a resin substrate having a first major surface and a second major surface, a first circuit pattern formed at the first major surface and provided with a plurality of ball lands, a second circuit pattern formed at the second major surface and provided with a plurality of bond fingers connected with the ball lands by conductive via holes, cover coats respectively coating the first and second circuit patterns while allowing the bond fingers and the ball lands to be open, and a central through hole adapted to receive the semiconductor chip therein; electrical connection means for electrically connecting the input/output pads of the semiconductor chip with the bond fingers of the circuit board, respectively; a resin encapsulate for encapsulating the semiconductor chip, the electrical connection means, and the circuit board; and a plurality of conductive balls fused on the ball lands of the circuit board, respectively.
The semiconductor chip may be arranged in such a fashion that it is oriented, at the second major surface thereof, in the same direction as the second major surface of the circuit board provided with the bond fingers while being flush, at the first major surface thereof, with the first major surface of the circuit board provided with the ball lands and one surface of the resin encapsulate.
The resin encapsulate may be formed to completely or partially encapsulate the second major surface of the circuit board provided with the bond fingers.
The second major surface of the circuit board provided with the bond fingers may be further provided with a plurality of ball lands.
A plurality of conductive balls may be fused on the ball lands provided at the second major surface of the circuit board, respectively.
The semiconductor package may further comprises a closure member attached to the first major surface of the semiconductor chip and adapted to cover the through hole of the circuit board.
Preferably, each of the closure members comprises an insulating tape or a copper layer.
In accordance with another aspect, the present invention provided a method for fabricating semiconductor packages comprising the steps of: preparing a circuit board strip including a plurality of unit circuit boards, the circuit board strip having a plurality of ball lands formed at a first major surface thereof, a plurality of bond fingers formed at a second major surface thereof and respectively connected with the ball lands by conductive via holes, and a plurality of through holes respectively associated with the unit circuit boards; receiving, in the through holes, semiconductor chips each having a first major surface and a second major surface provided with a plurality of input/output pads, respectively; electrically connecting the input/output pads of the semiconductor chips with associated ones of the bond fingers of the circuit board strip using connection means, respectively; encapsulating the semiconductor chips, the connection means, and the through holes of the circuit board strip using an encapsulating material; fusing conductive balls on the ball lands of the circuit board strip; and singulating the circuit board strip into semiconductor packages respectively corresponding to the unit circuit boards.
The circuit board strip prepared at the circuit board strip preparing step may comprise: a main strip including a resin substrate having a substantially rectangular strip shape provided with a first major surface and a second major surface; a plurality of main slots extending to a desired length in an direction transverse to a longitudinal direction of the main strip while being uniformly spaced apart from one another in the longitudinal direction of the main strip, thereby dividing the main strip into a plurality of sub-strips aligned together in the longitudinal direction of the main strip; a plurality of sub slots extending to a desired length and serving to divide each of the sub-strips into a plurality of strip portions arranged in a matrix array, each of the strip portions corresponding to one of the unit circuit boards while having one of the through holes; a plurality of first circuit patterns each formed on the first major surface of the resin substrate for an associated one of the strip portions and provided with associated ones of the ball lands; a plurality of second circuit patterns each formed on the second major surface of the resin substrate for an associated one of the strip portions and provided with associated ones of the bond fingers; and cover coats respectively coated over the first and second major surfaces of the resin substrate while allowing the bond fingers and the ball lands to be externally open.
Alternatively, the circuit board strip prepared at the circuit board strip preparing step may comprise: a resin substrate having a substantially rectangular strip shape provided with a first major surface and a second major surface; a plurality of slots extending to a desired length and serving to divide each of the resin substrate into a plurality of substrate portions arranged in a matrix array, each of the substrate portions corresponding to one of the unit circuit boards while having one of the through holes; a plurality of first circuit patterns each formed on the first major surface of the resin substrate for an associated one of the strip portions and provided with associated ones of the ball lands; a plurality of second circuit patterns each formed on the second major surface of the resin substrate for an associated one of the strip portions and provided with associated ones of the bond fingers; and cover coats respectively coated over the first and second major surfaces of the resin substrate while allowing the bond fingers and the ball lands to be externally open.
The method may further comprise the step of attaching a plurality of closure members to the first major surface of the circuit board strip in such a fashion that each of the closure members covers an associated one of the through holes, prior to the strip of receiving the semiconductor chips in the through holes.
The method may further comprise the step of attaching a plurality of closure members to the first major surface of the main strip in such a fashion that each of the closure members covers an associated one of the through holes, prior to the step of receiving the semiconductor chips in the through holes.
The closure member attaching step may comprise the steps of preparing closure member strips each having closure members for an associated one of the sub-strips, and individually attaching the closure member strips to the sub-strips, respectively, in such a fashion that each of the closure member strips is arranged to cover the main slot formed at one side of an associated one of the sub-strips.
Alternatively, the closure member attaching step may comprise the steps of preparing a single closure member strip having closure members for all sub-strips of the circuit board strip while having small singulation apertures at a region corresponding to each of the main slots, and attaching the closure member strip to the main strip in such a fashion that the closure member strip is arranged to allow each of the small singulation apertures to be aligned with an associated one of the main slots.
The closure members are removed after the encapsulating step, e.g., before or after the conductive ball fusing step, or after the singulation step.
The closure members may be removed by inserting a planar bar into each of the main slots in a direction from the second major surface of the circuit board strip to the first major surface of the second board strip, thereby detaching an associated one of the closure members from the circuit board strip at one side of the associated closure member.
Each of the closure members may comprise an insulating tape, an ultraviolet tape, or a copper layer.
The encapsulating step may be carried out to form an encapsulate completely encapsulating the second major surface of the circuit board strip.
The singulation step may be carried out in such a fashion that the encapsulate and the circuit board strip are simultaneously singulated.
The encapsulating step may comprise the steps of interposing the circuit board strip between a pair of molds, one of which has cavities and gates, in such a fashion that the second major surface of each of the semiconductor chips faces an associated one of the cavities while facing an associated one of the gates at a central portion thereof, and injecting the encapsulating material into each of the cavities through an associated one of the gates in such a fashion that it flows outwardly from the central portion of the second major surface of the associated semiconductor chip along the second major surface.
The circuit board strip prepared at the circuit board strip preparing step may be further provided with a plurality of ball lands at the second major surface thereof having the bond fingers. In this case, the conductive ball fusing step further comprises the step of fusing a plurality of conductive balls on the ball lands provided at the second major surface of the circuit board strip having the bond fingers.
In accordance with the present invention, a circuit board is used which has a through hole of a desired size adapted to receive a semiconductor chip, thereby allowing the thickness of the semiconductor chip to be offset by the thickness of the circuit board. Accordingly, it is possible to fabricate semiconductor packages having a super-thin structure.
In accordance with the present invention, the semiconductor chip is outwardly exposed at one major surface thereof without being encapsulated by an encapsulate. Accordingly, heat generated from the semiconductor chip can be easily discharged into the atmosphere. This results in an improvement in the thermal and electrical performance of the semiconductor chip.
In accordance with the present invention, the circuit board may be completely encapsulated at one major surface thereof by an encapsulate. In this case, it is possible to effectively prevent a bending phenomenon of the circuit board.
In addition, the use of closure members during the fabrication of semiconductor packages according to the present invention achieves an easy encapsulating process.
For such closure members, closer member strips may be used, each of which has closure members for one sub strip of a circuit board strip. In this case, the closure member strips are individually attached to the sub-strips of the circuit board strip. Alternatively, a single closure member strip may be used which has closure members for all sub-strips of the circuit board strip while having small singulation apertures or slits. By virtue of such a single closure member strip or closure member strips, an easy removal of closure members is achieved.
Also, the encapsulating process involved in the fabrication of semiconductor packages is conducted in such a fashion that it proceeds from the second major surface of each semiconductor chip in accordance with the present invention. Accordingly, it is possible to achieve a uniform encapsulation while suppressing the occurrence of a wire sweeping phenomenon.
The above objects, and other features and advantages of the present invention will become more apparent after a reading of the following detailed description when taken in conjunction with the drawings, in which:
Referring to
In accordance with the embodiment of the present invention illustrated in
The semiconductor chip 30 is arranged in such a fashion that it is received in a through hole 12 formed 10 through a circuit board 10 to have a desired size. The through hole 12 has a size larger than the area of the first or second surface 30a or 30b of the semiconductor chip 30. The circuit board 10 includes a resin substrate 17 having a first major surface 11a (a lower surface in
Each of the bond fingers 18a is plated with gold (Au) or silver (Ag) in order to allow an easy bonding of a conductive connecting means 40 (e.g., a bond wire) thereto. 30 Each of the ball lands 18b is plated with gold (Au), silver (Ag), nickel (Ni), or palladium (Pd) in order to allow an easy bonding of a conductive ball 60 thereto. Preferably, the resin substrate 17 is made of a bismaleimide triazine (BT) epoxy resin exhibiting a hardness. Of course, the resin substrate 17 is not limited to the above mentioned material.
The conductive circuit patterns 18 are coated with cover coats 19 in such a fashion that the bond fingers 18a and ball lands 18b are externally open through the cover coats 19, respectively, so that they are protected from physical, chemical, electrical, and mechanical damage externally applied thereto.
The input/output pads 31 of the semiconductor chip 30 are electrically interconnected with the bond fingers 18a on the circuit board 10 via the conductive connecting means 40, respectively. The conductive connecting means 40 may comprise conductive wires, such as gold (Au) wires or aluminum (Al) wires, or leads extending from respective bond fingers 18a.
Meanwhile, the semiconductor chip 30 and conductive connecting means 40 are encapsulated by a resin encapsulate 50 so that they are protected from external physical, chemical, and mechanical damage. The resin encapsulate 50 may be formed in such a fashion that it completely encapsulates the entire upper surface of the circuit board 10, as shown in FIG. 1. Where the resin encapsulate 50 completely encapsulates the entire upper surface of the circuit board 10, there is an advantage in that it is possible to prevent the circuit board 10 from being bent. Alternatively, the resin encapsulate 50 may be formed in such a fashion that it partially encapsulates the upper surface of the circuit board 10 at a region where the semiconductor chip 30, connecting means 40, and bond fingers 18a are arranged, as shown in FIG. 2. The resin encapsulate 50 may be formed using an epoxy molding compound so that it is molded using a mold. The use of such a molding compound may be implemented in the case of
In either case of
Although not shown, an insulating tape or a copper layer may be attached, as a closure means, to the first major surface 30a of the semiconductor chip 30 in such a fashion that it covers the through hole 12 of the circuit board 10. Where the insulating tape is used as the closure means, it is adapted to protect the first major surface 30a of the semiconductor chip 30 from external damage. On the other hand, where the copper layer is used as the closure means, it is adapted to improve the heat discharge performance of the semiconductor chip 30.
A plurality of conductive balls 60 made of tin (Sn), lead (Pb), or an alloy thereof are fused on the ball lands 18b provided at the first major surface 11a of the resin substrate 17, respectively, in order to allow the semiconductor package to be subsequently mounted on a mother board (not shown).
The circuit pattern 18 formed on the second major surface 11b of the resin substrate 17 may also be provided with a plurality of ball lands 18b, as in a semiconductor package 104 illustrated in FIG. 4. As shown in
As shown in
The sub slots 13 and main slots 15 are formed through the resin substrate 17.
In each unit circuit board 10 of circuit board strip 10-1, the circuit patterns 18 are formed on the first and second major surfaces 11a and 11b of the resin substrate 17 between the through hole 12 and the sub slots 13. The circuit patterns 18 are typically comprised of a copper thin film.
In each unit circuit board 10, the cover coats 19 are coated over the exposed surfaces of the circuit patterns 18 and resin substrate 17 in order to protect the circuit patterns 18 from the external environment. The cover coats 19 are typically made of a polymeric resin.
One circuit pattern 18 of each unit circuit board is provided with a plurality of bond fingers 18a to be subsequently connected with a semiconductor chip whereas the other circuit pattern 18 of the unit circuit board is provided with a plurality of ball lands 18b on which conductive balls are to be subsequently fused, respectively. The bond fingers 18a and ball lands 18b are externally open through the associated cover coats 19, respectively.
As shown in
In accordance with the semiconductor package fabricating method of the present invention, a circuit board strip, which may have the structure of
In accordance with the fabricating method of the present invention, a circuit board strip, which is the circuit board strip 10 of
Thereafter, a semiconductor chip 30 is inserted into each of the through holes 12 of the circuit board strip 10, respectively, in such a fashion that the input/output pads 31 of each semiconductor chip 30 are oriented in the same direction as the bond fingers 18a formed on the circuit board strip 10.
Prior to the insertion of the semiconductor chips 30, closure members 70 are attached to the lower surface of the circuit board strip 10 in such a fashion that each of them covers an associated one of the through holes 12, as shown in FIG. 7B. In this case, each semiconductor chip 30, which is subsequently received in an associated one of the through holes 12, is seated on an associated one of the closure members 70 at the first major surface 30a thereof.
For the closure members 70, insulating tapes may be used. Ultraviolet tapes may be used which can be easily peeled using ultraviolet rays. Alternatively, heat sensitive tapes may be used. For the closure members 70, copper layers exhibiting a superior heat discharge property also may be attached to the circuit board strip 10. In such a case, the closure members 70 are not removed after the completion of the package fabrication.
Alternatively, the closure members 70 may be attached to the circuit board strip 10-1 in such a fashion that they cover the entire lower surface of the circuit board strip 10-1. This will be described in more detail, in conjunction with
In order to electrically connect the input/output pads 31 of each semiconductor chip 30 with the associated bond fingers 18a of the circuit board strip 10, conductive wires, such as gold wires or aluminum wires, or leads extending from respective bond fingers 18a are then electrically connected, as connection means 40, between the input/output pads 31 and the associated bond fingers 18a, respectively, as shown in FIG. 7C.
Subsequently, a resin encapsulate 50 is formed using an encapsulating resin, such as an epoxy molding compound or a liquid encapsulating resin, in such a fashion that it encapsulates the entire upper surface of each semiconductor chip 30, the enter upper surface of the circuit board strip 10, and the connection means 40, as shown in FIG. 7D. Alternatively, the resin encapsulate 50 may be formed in such a fashion that it partially encapsulates desired upper surface portions of the circuit board strip 10 while completely encapsulating the upper surface of each semiconductor chip 30 and the connection means 40. The encapsulating extent of the resin encapsulate 50 is optional.
The encapsulating process will be described in more detail, in conjunction with FIG. 9.
Thereafter, a plurality of conductive balls 60 are fused on the ball lands 18b provided at the lower surface of the circuit board strip 10 in order to allow each unit circuit board of the circuit board strip 10 to be mounted to a mother board in a subsequent process, as shown in FIG. 7E.
In the case in which the circuit board strip 10 is provided with ball lands 18b not only at the lower surface thereof, but also at the upper surface thereof formed with the bond fingers 18a, conductive balls 60 are also fused on the ball lands 18b of that upper surface. In this case, a plurality of semiconductor packages can be laminated together in a subsequent process.
The fusing of the conductive balls 60 may be achieved using a variety of appropriate methods. For example, a screen printing method may be used. In accordance with this screen printing method, a sticky flux exhibiting a high viscosity is first applied, in the shape of dots, to the ball lands 18b. Conductive balls 60 are then temporarily bonded to the flux dots, respectively. The resultant circuit board strip 10 is subsequently put into a furnace so that the conductive balls 60 are fused on the associated ball lands 18b, respectively.
Finally, the circuit board strip 10 is then singulated into individual semiconductor packages, each corresponding to one unit circuit board, using a desired singulation tool 80, as shown in FIG. 7F.
In the singulation process, the singulation tool 80 (e.g., a saw) passes through regions defined between adjacent sub slots (not shown).
Removal of the closure members 70 may be conducted, to externally expose respective first major surfaces 30a of the semiconductor chips 30, before or after a formation of input/output terminals achieved by the fusing of the conductive balls on the ball lands 18b, or after the singulation process. It is also possible to deliver the semiconductor packages in a state in which the closure members 70 are not removed, for example, where the closure member is made of a copper layer.
Where the resin encapsulate 50 is formed to completely encapsulate the entire upper surface of the circuit board strip 10, the singulation processes for the resin encapsulate 50 and the circuit board strip 10 are simultaneously conducted. In this case, semiconductor packages having a structure shown in
In accordance with the attaching method of
The reason why each closure member strip has the above mentioned arrangement is to achieve an easy removal of the closure members 70. That is, the closure members 70 of each closure member strip can be easily detached from the associated sub strip 14 of the circuit board strip 10-1 by inserting a planar bar (not shown) into the main slot 15 formed at one side of the sub strip 14, thereby pushing the closure member strip in such a fashion that it is detached from the sub strip 14. At this time, the planar bar moves in a direction from the second major surface 11b of the circuit board strip 10-1 to the first major surface 11a.
In accordance with the attaching method of
Similar to the case of
In accordance with the encapsulating method shown in
An encapsulating resin is then injected into each cavity 93 of the upper mold 91 through an associated one of the gates 94 in such a fashion that it flows outwardly from the central portion of the second major surface 30a of each semiconductor chip 30 along the second major surface 30a. Thus, each semiconductor chip 30 is encapsulated. In accordance with this encapsulating method, it is possible to minimize a wire sweeping phenomenon occurring during the encapsulating process, as compared to conventional encapsulating methods in which the encapsulation proceeds from one side of the circuit board. The reason why a minimized wire sweeping phenomenon occurs in accordance with the present invention is because a maximum pressure of the encapsulating resin is applied to the central portion of the second major surface of each semiconductor chip while being gradually reduced toward the peripheral portion of the second major surface where wires are arranged.
As apparent from the above description, in accordance with the present invention, a circuit board is used which has a through hole of a desired size adapted to receive a semiconductor chip, thereby allowing the thickness of the semiconductor chip to be offset by the thickness of the circuit board. Accordingly, it is possible to fabricate semiconductor packages having a super-thin structure.
In accordance with the present invention, the semiconductor chip is outwardly exposed at one major surface thereof without being encapsulated by an encapsulate. Accordingly, heat generated from the semiconductor chip can be easily discharged into the atmosphere. This results in an improvement in the thermal and electrical performances of the semiconductor chip.
In accordance with the present invention, the circuit board may be completely encapsulated at one major surface thereof by an encapsulate. In this case, it is possible to effectively prevent a bending phenomenon of the circuit board.
In addition, the use of closure members during the fabrication of semiconductor packages according to the present invention achieves an easy encapsulating process. For such closure members, closure member strips may be used, each of which has closure members for one sub strip of a circuit board strip. In this case, the closure member strips are individually attached to the sub-strips of the circuit board strip. Alternatively, a single closure member strip may be used which has closure members for all sub-strips of the circuit board strip while having small singulation apertures or slits. By virtue of such a single closure member strip or closure member strips, an easy removal of closure members is achieved.
Also, the encapsulating process involved in the fabrication of semiconductor packages is conducted in such a fashion that it proceeds from the second major surface of each semiconductor chip in accordance with the present invention. Accordingly, it is possible to achieve a uniform encapsulation while suppressing the occurrence of a wire sweeping phenomenon.
Other embodiments of semiconductor packages and methods of making them are disclosed in U.S. patent application Ser. No. 09/566,069, which was filed with the U.S. Patent and Trademark Office on May 5, 2000, and in U.S. patent application Ser. No. 09/574,006, which was filed on the same day as the present application. Both of these applications are incorporated herein by reference in their entireties.
Although embodiments of the invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Lee, Sang Ho, Lee, Seon Goo, DiCaprio, Vincent, Shin, Won Sun, Chun, Do Sung
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3838984, | |||
3851221, | |||
4398235, | Sep 11 1980 | General Motors Corporation | Vertical integrated circuit package integration |
4530152, | Apr 01 1982 | Compagnie Industrielle des Telecommunications Cit-Alcatel | Method for encapsulating semiconductor components using temporary substrates |
4567643, | Oct 24 1983 | Sintra-Alcatel | Method of replacing an electronic component connected to conducting tracks on a support substrate |
4707724, | Jun 04 1984 | Hitachi, Ltd. | Semiconductor device and method of manufacturing thereof |
4729061, | Apr 29 1985 | GLOBALFOUNDRIES Inc | Chip on board package for integrated circuit devices using printed circuit boards and means for conveying the heat to the opposite side of the package from the chip mounting side to permit the heat to dissipate therefrom |
4730232, | Jun 25 1986 | WESTINGHOUSE ELECTRIC CORPORATION, WESTINGHOUSE BLDG , GATEWAY CENTER, PITTSBURGH, PA 15222 A CORP OF PA | High density microelectronic packaging module for high speed chips |
4756080, | Jan 27 1986 | AMI Semiconductor, Inc | Metal foil semiconductor interconnection method |
4763188, | Aug 08 1986 | Packaging system for multiple semiconductor devices | |
4982265, | Jun 24 1987 | Hitachi, Ltd.; Hitachi Tobu Semiconductor, Ltd.; Akita Electronics Co., Ltd. | Semiconductor integrated circuit device and method of manufacturing the same |
4996587, | Apr 10 1989 | International Business Machines Corporation | Integrated semiconductor chip package |
5012323, | Nov 20 1989 | Micron Technology, Inc. | Double-die semiconductor package having a back-bonded die and a face-bonded die interconnected on a single leadframe |
5025306, | Aug 09 1988 | Texas Instruments Incorporated | Assembly of semiconductor chips |
5040052, | Dec 28 1987 | Texas Instruments Incorporated | Compact silicon module for high density integrated circuits |
5138438, | Jun 24 1987 | Akita Electronics Co. Ltd.; Hitachi Ltd.; Hitachi Semiconductor Ltd. | Lead connections means for stacked tab packaged IC chips |
5140404, | Oct 24 1990 | Micron Technology, Inc. | Semiconductor device manufactured by a method for attaching a semiconductor die to a leadframe using a thermoplastic covered carrier tape |
5157480, | Feb 06 1991 | Motorola, Inc. | Semiconductor device having dual electrical contact sites |
5165067, | Dec 01 1989 | SGS-Thomson Microelectronics Limited | Semiconductor chip packages |
5198888, | Dec 28 1987 | Hitachi, Ltd.; Hitachi Tobu Semiconductor, Ltd. | Semiconductor stacked device |
5200362, | Sep 06 1989 | Freescale Semiconductor, Inc | Method of attaching conductive traces to an encapsulated semiconductor die using a removable transfer film |
5229647, | Mar 27 1991 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | High density data storage using stacked wafers |
5241133, | Dec 21 1990 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Leadless pad array chip carrier |
5273938, | Sep 06 1989 | Freescale Semiconductor, Inc | Method for attaching conductive traces to plural, stacked, encapsulated semiconductor die using a removable transfer film |
5291061, | Apr 06 1993 | Round Rock Research, LLC | Multi-chip stacked devices |
5323060, | Jun 02 1993 | Round Rock Research, LLC | Multichip module having a stacked chip arrangement |
5334875, | Dec 28 1987 | Hitachi, Ltd.; Hitachi Tobu Semiconductor, Ltd. | Stacked semiconductor memory device and semiconductor memory module containing the same |
5347429, | Nov 14 1990 | Renesas Electronics Corporation | Plastic-molded-type semiconductor device |
5394010, | Mar 13 1991 | Kabushiki Kaisha Toshiba | Semiconductor assembly having laminated semiconductor devices |
5422435, | May 22 1992 | National Semiconductor Corporation | Stacked multi-chip modules and method of manufacturing |
5426563, | Aug 05 1992 | Fujitsu Limited | Three-dimensional multichip module |
5432729, | Apr 23 1993 | APROLASE DEVELOPMENT CO , LLC | Electronic module comprising a stack of IC chips each interacting with an IC chip secured to the stack |
5438224, | Apr 23 1992 | Motorola, Inc. | Integrated circuit package having a face-to-face IC chip arrangement |
5463253, | Mar 15 1990 | Fujitsu Limited | Semiconductor device having a plurality of chips |
5473196, | Feb 02 1993 | Matra Marconi Space France | Semiconductor memory component comprising stacked memory modules |
5474957, | May 09 1994 | NEC Electronics Corporation | Process of mounting tape automated bonded semiconductor chip on printed circuit board through bumps |
5474958, | May 04 1993 | Freescale Semiconductor, Inc | Method for making semiconductor device having no die supporting surface |
5491612, | Feb 21 1995 | Fairchild Space and Defense Corporation | Three-dimensional modular assembly of integrated circuits |
5495394, | Dec 19 1994 | Intellectual Ventures I LLC | Three dimensional die packaging in multi-chip modules |
5495398, | May 22 1992 | National Semiconductor Corporation | Stacked multi-chip modules and method of manufacturing |
5502289, | May 22 1992 | National Semiconductor Corporation | Stacked multi-chip modules and method of manufacturing |
5514907, | Mar 21 1995 | Simple Technology Incorporated | Apparatus for stacking semiconductor chips |
5545922, | Jun 28 1994 | Intel Corporation | Dual sided integrated circuit chip package with offset wire bonds and support block cavities |
5569625, | Jan 08 1992 | Fujitsu Semiconductor Limited | Process for manufacturing a plural stacked leadframe semiconductor device |
5581498, | Aug 13 1993 | TALON RESEARCH, LLC | Stack of IC chips in lieu of single IC chip |
5583378, | May 16 1994 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Ball grid array integrated circuit package with thermal conductor |
5587341, | Jun 24 1987 | Hitachi, Ltd.; Hitachi Tobu Semiconductor, Ltd.; Akita Electronics Co., Ltd. | Process for manufacturing a stacked integrated circuit package |
5594275, | Nov 18 1993 | SAMSUG ELECTRONICS CO , LTD | J-leaded semiconductor package having a plurality of stacked ball grid array packages |
5602059, | Sep 08 1994 | Shinko Electric Industries Co., Ltd. | Semiconductor device and method for manufacturing same |
5604376, | Jun 30 1994 | SAMSUNG ELECTRONICS CO , LTD | Paddleless molded plastic semiconductor chip package |
5614766, | Sep 30 1991 | ROHM CO , LTD | Semiconductor device with stacked alternate-facing chips |
5620928, | May 11 1995 | National Semiconductor Corporation | Ultra thin ball grid array using a flex tape or printed wiring board substrate and method |
5625221, | Mar 03 1994 | SAMSUNG ELECTRONIC CO , LTD | Semiconductor assembly for a three-dimensional integrated circuit package |
5637536, | Aug 13 1993 | Thomson-CSF | Method for interconnecting semiconductor chips in three dimensions, and component resulting therefrom |
5637912, | Aug 22 1994 | International Business Machines Corporation | Three-dimensional monolithic electronic module having stacked planar arrays of integrated circuit chips |
5639695, | Nov 02 1994 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Low-profile ball-grid array semiconductor package and method |
5640047, | Sep 25 1995 | Mitsui High-Tec, Inc. | Ball grid assembly type semiconductor device having a heat diffusion function and an electric and magnetic shielding function |
5646828, | Feb 24 1995 | Bell Semiconductor, LLC | Thin packaging of multi-chip modules with enhanced thermal/power management |
5650593, | Nov 14 1994 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Thermally enhanced chip carrier package |
5652185, | Apr 07 1995 | National Semiconductor Corporation | Maximized substrate design for grid array based assemblies |
5668405, | Sep 14 1994 | NEC Corporation | Semiconductor device with a film carrier tape |
5677569, | Oct 27 1994 | SAMSUNG ELECTRONICS CO , LTD | Semiconductor multi-package stack |
5682062, | Jun 05 1995 | INTERSIL AMERICAS LLC | System for interconnecting stacked integrated circuits |
5689135, | Dec 19 1995 | Micron Technology, Inc. | Multi-chip device and method of fabrication employing leads over and under processes |
5696031, | Nov 20 1996 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Device and method for stacking wire-bonded integrated circuit dice on flip-chip bonded integrated circuit dice |
5696666, | Oct 11 1995 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Low profile exposed die chip carrier package |
5715147, | Dec 20 1990 | Kabushiki Kaisha Toshiba | Semiconductor device having an interconnecting circuit board |
5721452, | Aug 16 1995 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Angularly offset stacked die multichip device and method of manufacture |
5723900, | Sep 06 1993 | Sony Corporation | Resin mold type semiconductor device |
5729051, | Sep 22 1994 | NEC Electronics Corporation | Tape automated bonding type semiconductor device |
5739581, | Nov 17 1995 | National Semiconductor Corporation | High density integrated circuit package assembly with a heatsink between stacked dies |
5739585, | Nov 27 1995 | Round Rock Research, LLC | Single piece package for semiconductor die |
5744827, | Nov 28 1995 | SAMSUNG ELECTRONICS CO , LTD | Three dimensional stack package device having exposed coupling lead portions and vertical interconnection elements |
5760471, | Apr 20 1994 | Fujitsu Limited | Semiconductor device having an inner lead extending over a central portion of a semiconductor device sealed in a plastic package and an outer lead exposed to the outside of a side face of the plastic package |
5763939, | Sep 30 1994 | NEC Electronics Corporation | Semiconductor device having a perforated base film sheet |
5767528, | Feb 20 1996 | Fujitsu Limited | Semiconductor device including pad portion for testing |
5777387, | Sep 29 1995 | NEC Corporation | Semiconductor device constructed by mounting a semiconductor chip on a film carrier tape |
5783870, | Mar 16 1995 | National Semiconductor Corporation | Method for connecting packages of a stacked ball grid array structure |
5786239, | Sep 20 1995 | Sony Corporation | Method of manufacturing a semiconductor package |
5793108, | May 30 1995 | Sharp Kabushiki Kaisha | Semiconductor integrated circuit having a plurality of semiconductor chips |
5798014, | Feb 02 1995 | INTERCONNECT SYSTEMS, INC | Methods of making multi-tier laminate substrates for electronic device packaging |
5801439, | Apr 20 1994 | Fujitsu Limited | Semiconductor device and semiconductor device unit for a stack arrangement |
5815372, | Mar 25 1997 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaging multiple dies on a ball grid array substrate |
5819398, | Jul 31 1995 | SGS THOMSON MICROELECTRONICS LTD | Method of manufacturing a ball grid array package |
5835355, | Sep 22 1997 | Bell Semiconductor, LLC | Tape ball grid array package with perforated metal stiffener |
5835988, | Mar 27 1996 | Mitsubishi Denki Kabushiki Kaisha | Packed semiconductor device with wrap around external leads |
5854741, | Nov 17 1995 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Unit printed circuit board carrier frame for ball grid array semiconductor packages and method for fabricating ball grid array semiconductor packages using the same |
5859471, | Nov 17 1992 | Shinko Electric Industries Co., Ltd. | Semiconductor device having tab tape lead frame with reinforced outer leads |
5861666, | Aug 29 1996 | Tessera, Inc | Stacked chip assembly |
5866949, | Dec 02 1996 | Minnesota Mining and Manufacturing Company | Chip scale ball grid array for integrated circuit packaging |
5872025, | Jul 26 1995 | International Business Machines Corporation; International Business Machines Inc | Method for stacked three dimensional device manufacture |
5883426, | Apr 18 1996 | Godo Kaisha IP Bridge 1 | Stack module |
5885849, | Mar 28 1995 | Tessera, Inc. | Methods of making microelectronic assemblies |
5886412, | Aug 16 1995 | Micron Technology, Inc. | Angularly offset and recessed stacked die multichip device |
5894108, | Feb 11 1997 | National Semiconductor Corporation | Plastic package with exposed die |
5895965, | Sep 20 1996 | Hitachi, Ltd. | Semiconductor device |
5903052, | May 12 1998 | Industrial Technology Research Institute | Structure for semiconductor package for improving the efficiency of spreading heat |
5909633, | Nov 29 1996 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Method of manufacturing an electronic component |
5917242, | May 20 1996 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Combination of semiconductor interconnect |
5930599, | Feb 19 1996 | TESSERA ADVANCED TECHNOLOGIES, INC | Semiconductor device and method of manufacturing the same |
5952611, | Dec 19 1997 | Texas Instruments Incorporated | Flexible pin location integrated circuit package |
5973403, | Nov 20 1996 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Device and method for stacking wire-bonded integrated circuit dice on flip-chip bonded integrated circuit dice |
5977640, | Jun 26 1998 | International Business Machines Corporation | Highly integrated chip-on-chip packaging |
5986209, | Jul 09 1997 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Package stack via bottom leaded plastic (BLP) packaging |
6001671, | Apr 18 1996 | Tessera, Inc | Methods for manufacturing a semiconductor package having a sacrificial layer |
6005778, | Jun 15 1995 | Honeywell Inc. | Chip stacking and capacitor mounting arrangement including spacers |
6013948, | Nov 27 1995 | Round Rock Research, LLC | Stackable chip scale semiconductor package with mating contacts on opposed surfaces |
6034423, | Apr 02 1998 | National Semiconductor Corporation | Lead frame design for increased chip pinout |
6034427, | Jan 28 1998 | Prolinx Labs Corporation | Ball grid array structure and method for packaging an integrated circuit chip |
6051886, | Aug 16 1995 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Angularly offset stacked die multichip device and method of manufacture |
6057598, | Jan 31 1997 | Invensas Corporation | Face on face flip chip integration |
6060778, | May 17 1997 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Ball grid array package |
6072233, | May 04 1998 | Round Rock Research, LLC | Stackable ball grid array package |
6072243, | Nov 26 1996 | Sharp Kabushiki Kaisha | Semiconductor integrated circuit device capable of surely electrically insulating two semiconductor chips from each other and fabricating method thereof |
6074898, | Sep 18 1996 | Sony Corporation | Lead frame and integrated circuit package |
6080264, | May 20 1996 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Combination of semiconductor interconnect |
6093970, | Nov 22 1994 | Sony Corporation | Semiconductor device and method for manufacturing the same |
6097089, | Jan 28 1998 | MITSUBISHI GAS CHEMICAL COMPANY, INC | Semiconductor plastic package, metal plate for said package, and method of producing copper-clad board for said package |
6100804, | Jul 16 1998 | Intecmec IP Corp. | Radio frequency identification system |
6107689, | Jul 30 1996 | Kabushiki Kaisha Toshiba | Semiconductor device |
6111324, | Feb 05 1998 | UTAC HEADQUARTERS PTE LTD | Integrated carrier ring/stiffener and method for manufacturing a flexible integrated circuit package |
6127833, | Jan 04 1999 | Taiwan Semiconductor Manufacturing Co. | Test carrier for attaching a semiconductor device |
6133637, | Jan 24 1997 | Rohm Co., Ltd. | Semiconductor device having a plurality of semiconductor chips |
6160705, | May 09 1997 | Texas Instruments Incorporated | Ball grid array package and method using enhanced power and ground distribution circuitry |
6172419, | Feb 24 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Low profile ball grid array package |
6180696, | Feb 19 1997 | Georgia Tech Research Corporation | No-flow underfill of epoxy resin, anhydride, fluxing agent and surfactant |
6180881, | May 05 1998 | ENTORIAN TECHNOLOGIES L P | Chip stack and method of making same |
6184463, | Apr 13 1998 | Harris Corporation | Integrated circuit package for flip chip |
6214641, | Jun 25 1996 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of fabricating a multi-chip module |
6228676, | Oct 31 1996 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Near chip size integrated circuit package |
6235554, | Nov 27 1995 | Round Rock Research, LLC | Method for fabricating stackable chip scale semiconductor package |
6242279, | Jun 14 1999 | THIN FILM MODULE, INC | High density wire bond BGA |
6257857, | Jan 31 2000 | Advanced Semiconductor Engineering, Inc. | Molding apparatus for flexible substrate based package |
6258632, | Jan 15 1996 | Kabushiki Kaisha Toshiba | Molded packaging for semiconductor device and method of manufacturing the same |
6261869, | Jul 30 1999 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Hybrid BGA and QFP chip package assembly and process for same |
6262490, | Nov 05 1999 | Advanced Semiconductor Engineering, Inc. | Substrate strip for use in packaging semiconductor chips |
6268568, | May 04 1999 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Printed circuit board with oval solder ball lands for BGA semiconductor packages |
6271057, | Nov 19 1999 | Advanced Semiconductor Engineering, Inc. | Method of making semiconductor chip package |
6274404, | Sep 25 1998 | Molex, LLC | Multilayered wiring structure and method of manufacturing the same |
6277672, | Sep 03 1999 | THIN FILM MODULE, INC | BGA package for high density cavity-up wire bond device connections using a metal panel, thin film and build up multilayer technology |
6313522, | Aug 28 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor structure having stacked semiconductor devices |
6326696, | Feb 04 1998 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Electronic package with interconnected chips |
6395578, | May 20 1999 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package and method for fabricating the same |
6396143, | Apr 30 1999 | MITSUBISHI GAS CHEMICAL COMPANY, INC | Ball grid array type printed wiring board having exellent heat diffusibility and printed wiring board |
6399418, | Jul 26 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method for forming a reduced thickness packaged electronic device |
6404046, | Feb 03 2000 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Module of stacked integrated circuit packages including an interposer |
6448506, | Dec 28 2000 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package and circuit board for making the package |
6452278, | Jun 30 2000 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Low profile package for plural semiconductor dies |
6459148, | Nov 13 2000 | Walsin Advanced Electronics LTD | QFN semiconductor package |
6486537, | Mar 19 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package with warpage resistant substrate |
6501184, | May 20 1999 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package and method for manufacturing the same |
6515356, | May 07 1999 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package and method for fabricating the same |
6541854, | Dec 01 2000 | Siliconware Precision Industries Co., Ltd. | Super low profile package with high efficiency of heat dissipation |
6564454, | Dec 28 2000 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method of making and stacking a semiconductor package |
6577013, | Sep 05 2000 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Chip size semiconductor packages with stacked dies |
6717248, | May 07 1999 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package and method for fabricating the same |
EP503201, | |||
EP503201, | |||
JP10256470, | |||
JP1028856, | |||
JP1071162, | |||
JP1099248, | |||
JP11354682, | |||
JP3169062, | |||
JP4028260, | |||
JP4056262, | |||
JP4096358, | |||
JP4116859, | |||
JP4368154, | |||
JP4368167, | |||
JP456262, | |||
JP5013665, | |||
JP50136656, | |||
JP5109975, | |||
JP5136323, | |||
JP5283601, | |||
JP54128274, | |||
JP56062351, | |||
JP575015, | |||
JP60182731, | |||
JP61059862, | |||
JP61117858, | |||
JP6120364, | |||
JP6151645, | |||
JP6163751, | |||
JP62119952, | |||
JP62126661, | |||
JP62142341, | |||
JP63128736, | |||
JP63211663, | |||
JP63244654, | |||
JP64001269, | |||
KR19960009776, | |||
KR1996041464, | |||
KR19990065599, | |||
KR19990080278, | |||
RE36613, | Feb 29 1996 | Round Rock Research, LLC | Multi-chip stacked devices |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 14 2004 | Amkor Technology, Inc. | (assignment on the face of the patent) | / | |||
Apr 16 2009 | Amkor Technology, Inc | BANK OF AMERICA, N A | PATENT SECURITY AGREEMENT | 022764 | /0864 | |
Jul 13 2018 | Amkor Technology, Inc | BANK OF AMERICA, N A , AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 046683 | /0139 | |
Nov 19 2019 | Amkor Technology, Inc | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054067 | /0135 |
Date | Maintenance Fee Events |
Dec 03 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 03 2009 | M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity. |
Nov 28 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 26 2011 | 4 years fee payment window open |
Aug 26 2011 | 6 months grace period start (w surcharge) |
Feb 26 2012 | patent expiry (for year 4) |
Feb 26 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 26 2015 | 8 years fee payment window open |
Aug 26 2015 | 6 months grace period start (w surcharge) |
Feb 26 2016 | patent expiry (for year 8) |
Feb 26 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 26 2019 | 12 years fee payment window open |
Aug 26 2019 | 6 months grace period start (w surcharge) |
Feb 26 2020 | patent expiry (for year 12) |
Feb 26 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |