A fuel injection control system and method for delivering multiple fuel injections to a cylinder of an engine during a fuel injection event based upon engine operating conditions, the control system including an electronic controller coupled to an electrically controlled fuel injector, and a plurality of sensors coupled to the controller for inputting certain signals representative of certain engine operating conditions of the engine, the controller being operable to output a fuel injection signal to the fuel injector to deliver a first, a second, and a third fuel shot to the cylinder during a fuel injection event based upon the sensor signals. The controller also delivers each of the multiple fuel injection shots within defined cylinder piston displacement parameters during a particular piston stroke, within defined fuel apportionment limits, and within defined delay limits between each respective fuel shot so as to control exhaust emissions.
|
20. A method of operating an electronically controlled fuel injector, comprising the steps of:
sequentially supplying first, second and third shot control signals to the electronically controlled fuel injector;
separating the second and third shot control signals with an anchor delay;
setting the anchor delay such that fuel injected due to the second shot control signal is indistinct from fuel injected due to the third shot control signal; and
wherein the fuel injector is positioned for direct injection into a cylinder of a compression ignition engine;
mixing the first fuel shot with air into a mixture in the cylinder before combusting the first fuel shot; and
compression igniting the mixture during a compression stroke.
17. A method of operating an electronically controlled fuel injector, comprising the steps of:
sequentially supplying first, second and third shot control signals to the electronically controlled fuel injector;
separating the second and third shot control signals with an anchor delay; and
setting the anchor delay such that fuel injected due to the second shot control signal is indistinct from fuel injected due to the third shot control signal in that an injection rate remains greater than zero from a beginning of fuel injection from the second control signal through to an end of fuel injection from the third shot control signal;
mixing the first fuel shot with air into a mixture in the cylinder before combusting the first fuel shot; and
compression igniting the mixture during a compression stroke.
0. 23. A method of operating an internal combustion engine, comprising the steps of:
allocating a quantity of fuel among an early medium pilot quantity of fuel, a small main quantity of fuel and a large anchor quantity of fuel to be delivered directly to a cylinder, and the early medium pilot quantity being greater than the small main quantity but less than the large anchor quantity;
issuing a control waveform to a fuel injector, wherein the control waveform includes, in sequence, a pilot portion corresponding to the early medium pilot quantity, a main portion corresponding to the small main quantity of fuel and an anchor portion corresponding to the large anchor quantity of fuel;
mixing the early medium pilot quantity of fuel with air into a mixture in the cylinder before combusting the early medium pilot quantity of fuel; and
compression igniting the mixture during a compression stroke.
1. A method for delivering a first and second fuel shot to a cylinder of a compression ignition engine during a particular fuel injection event wherein the injection to the cylinder is provided by an electronically controlled fuel injector, the method comprising the steps of:
providing an electronic controller coupling said controller to the fuel injector;
sensing an engine speed of the compression ignition engine;
determining a total fuel quantity to be delivered during injection as a function of at least the sensed engine speed and an engine load of the compression ignition engine;
determining the first fuel shot quantity to be delivered during injection;
determining the second fuel shot quantity to be delivered during injection; and
initiating completing the delivery of the first fuel shot during before an end of a compression stroke of the compression ignition engine;
mixing the first fuel shot with air into a mixture in the cylinder before combusting the first fuel shot; and
compression igniting the mixture during the compression stroke.
2. The method as set forth in
3. The method as set forth in
4. The method as set forth in
5. The method as set forth in
6. The method as set forth in
7. The method as set forth in
8. The method as set forth in
9. The method as set forth in
said controller being operable to adjust the timing and/or fuel quantity associated with each of said first, second and third fuel shots and/or the delays there between based upon said ambient conditions.
10. The method as set forth in
11. The method as set forth in
12. The method as set forth in
13. The method as set forth in
14. The method as set forth in
15. The method as set forth in
16. The method as set forth in
18. The method of
separating the first and second shot control signals with a main delay; and
setting the main delay such that fuel injected due to the first shot control signal is distinct from fuel injected due to the second and third shot control signals.
19. The method of
21. The method of
separating the first and second shot control signals with a main delay; and
setting the main delay such that fuel injected due to the first shot control signal is distinct from fuel injected due to the second and third shot control signals.
22. The method of
0. 24. The method of
0. 25. The method of
0. 26. The method of
0. 27. The method of
0. 28. The method of
0. 29. The method of
0. 30. The method of
injecting a pilot shot, which corresponds to the early medium pilot quantity, from the injector into the cylinder in response to issuing the pilot portion of the control waveform.
0. 31. The method of
0. 32. The method of
0. 33. The method of
setting the anchor delay based upon engine speed and load.
0. 34. The method of
|
This application is a continuation application of U.S. patent application Ser. No. 09/961,585 now U.S. Pat. No. 6,491,018 filed Sep. 24, 2001, which is a divisional application of U.S. patent application Ser. No. 09/616,123 filed Jul. 13, 2000, now issued as U.S. Pat. No. 6,467,452 B1.
This invention relates generally to electronically controlled fuel injection systems and, more particularly, to a method and apparatus for delivering multiple fuel injections to the cylinder of an internal combustion engine during a fuel injection event based upon engine operating conditions.
Electronically controlled fuel injectors are well known in the art including both hydraulically actuated electronically controlled fuel injectors as well as mechanically actuated electronically controlled fuel injectors. Electronically controlled fuel injectors typically inject fuel into a specific engine cylinder as a function of an injection signal received from an electronic controller. These signals include waveforms that are indicative of a desired injection rate as well as the desired timing and quantity of fuel to be injected into the cylinders.
Emission regulations pertaining to engine exhaust emissions are becoming more restrictive throughout the world including, for example, restrictions on the emission of hydrocarbons, carbon monoxide, the release of particulates, and the release of nitrogen oxides (NOx). Tailoring the number of injections and the injection rate of fuel to a combustion chamber, as well as the quantity and timing of such fuel injections, is one way in which to control emissions and meet such emission standards. As a result, split fuel injection techniques have been utilized to modify the burn characteristics of the combustion process in an attempt to reduce emission and noise levels. Split injection typically involves splitting the total fuel delivery to the cylinder during a particular injection event into two separate fuel injections such as a pilot injection and a main injection. At different engine operating conditions, it may be necessary to use different injection strategies in order to achieve both desired engine operation and emissions control. As used throughout this disclosure, an injection event is defined as the injections that occur in a cylinder during one cycle of the engine. For example, one cycle of a four cycle engine for a particular cylinder, includes an intake, compression, expansion, and exhaust stroke. Therefore, the injection event in a four stroke engine includes the number of injections, or shots, that occur in a cylinder during the four strokes of the piston. The term shot as used in the art may also refer to the actual fuel injection or to the command current signal to a fuel injector or other fuel actuation device indicative of an injection or delivery of fuel to the engine.
In the past, the controllability of split injections has been somewhat restricted by mechanical and other limitations associated with the particular types of injectors utilized. In addition, in some embodiments, such as disclosed in the U.S. Pat. No. 5,740,775, the total fuel quantity associated with a split injection is apportioned such that approximately 50% of the fuel is associated with the first fuel shot and approximately 50% of the fuel is associated with the second fuel shot. Under the more restrictive emissions regulations of today, this fuel partitioning strategy yields higher than desirable hydrocarbons and excessive fuel dilution of the oil. Even with more advanced electronically controlled injectors, during certain engine operating conditions, it is sometimes difficult to accurately control fuel delivery, even when utilizing current control signals.
In addition, some spark ignited engines incorporate split injection fuel strategies, such as disclosed in the U.S. Pat. No. 5,609,131. However, in order to achieve desired ignition timing utilizing a spark or glow plug, these engines are restricted in the manner of fuel distribution among the shots, thereby reducing their effectiveness with regard to reducing engine emissions.
Desired engine performance is not always achieved at all engine speeds and engine load conditions using the previously known fuel injection strategies. Based upon engine operating conditions, the injection timing, fuel flow rate and the injected fuel volume are desirably optimized in order to achieve minimum emissions and desired fuel consumption. This is not always achieved in a split injection system due to a variety of reasons, including limitations on the different types of achievable injection waveform types, the amount of fuel injected during the pilot shot, when the two injections take place during the particular injection event, and the timing sequence between the two injections. As a result, problems such as injecting fuel at a rate or time other than desired within a given injection event and/or allowing fuel to be injected beyond a desired stopping point can adversely affect emission outputs and fuel economy.
It is therefore desirable to control and deliver any number of separate fuel injections to a particular cylinder including three or more fuel shots so as to minimize emissions and fuel consumption based upon the operating conditions of the engine at that particular point in time. This may include splitting the fuel injection into more than two separate fuel shots during a particular injection event, providing a specific fuel quantity relationship between the respective fuel shots in a particular injection event based upon the number of fuel shots associated therewith, advancing the pilot shot during the compression stroke, delivering the respective fuel shots within defined crank angle or cylinder piston displacement limits, and adjusting the timing between the various multiple fuel injections in order to achieve desired emissions and fuel consumption. In some situations, it is also desirable to rate shape the front end of the fuel delivery to the cylinder to control the burn characteristics of the particular fuel being utilized and, in other situations, it may be desirable to rate shape the tail end of the fuel delivery to the cylinder to achieve desired emissions control and engine performance.
Accordingly, the present invention is directed to overcoming one or more of the problems as set forth above.
In one aspect of the present invention there is disclosed an electronically controlled fuel injection system which is capable of delivering multiple fuel injections to a particular cylinder of an internal combustion engine during a single injection event. The present system includes means for variably providing multiple separate fuel injections or fuel shots during a fuel injection event depending upon the operating conditions of the engine including engine speed and engine load. In this regard, in one embodiment, fuel is apportioned between a first or pilot shot, a second or main shot, and a third or anchor shot, each separate fuel injection shot being delivered when the cylinder piston is located within a determined range during a particular piston stroke. In another embodiment, fuel is apportioned between the multiple fuel shots in accordance with a specific fuel quantity relationship. The present system also includes means for varying the timing and fuel quantity associated with each fuel injection as well as the time interval between the various fuel injection shots based upon the operating conditions of the engine.
Under certain operating conditions, the proximity of the main and anchor shots and the resultant internal injector hydraulics leads to a rate shaping effect of the third or anchor injection. As a result, although the first or pilot injection, when used, is typically a distinct injection as compared to the second and third injections, a distinct third injection is not always apparent. Depending upon such factors as ambient operating conditions, engine speed, engine load, desired engine performance, desired emissions, and still other factors, in certain situations, a split mode of operation between the second and third injections may be advantageous whereas in other situations a rate shaping effect or boot mode of operation between the second and third injections may be advantageous.
These and other aspects and advantages of the present invention will become apparent upon reading the detailed description in connection with the drawings and appended claims.
For a better understanding of the present invention, reference may be made to the accompanying drawings in which:
Referring to
The fuel system 10 of
The actuating fluid supply means 16 preferably includes an actuating fluid sump or reservoir 24, a relatively low pressure actuating fluid transfer pump 26, an actuating fluid cooler 28, one or more actuation fluid filters 30, a high pressure pump 32 for generating relatively high pressure in the actuation fluid, and at least one relatively high pressure actuation fluid manifold or rail 36. A common rail passage 38 is arranged in fluid communication with the outlet from the relatively high pressure actuation fluid pump 32. A rail branch passage 40 connects the actuation fluid inlet of each injector 14 to the high pressure common rail passage 38. In the case of a mechanically actuated electronically controlled injector, manifold 36, common rail passage 38 and branch passages 40 would typically be replaced with some type of cam actuating arrangement or other mechanical means for actuating such injectors. Examples of a mechanically actuated electronically controlled fuel injector unit are disclosed in U.S. Pat. Nos. 5,947,380 and 5,407,131.
Apparatus 22 may include a waste accumulating fluid control valve 50 for each injector, a common recirculation line 52, and a hydraulic motor 54 connected between the actuating fluid pump 32 and recirculation line 52. Actuation fluid leaving an actuation fluid drain of each injector 14 would enter the recirculation line 52 that carries such fluid to the hydraulic energy recirculating or recovering means 22. A portion of the recirculated actuation fluid is channeled to high pressure actuation fluid pump 32 and another portion is returned to actuation fluid sump 24 via recirculation line 34.
In a preferred embodiment, the actuation fluid is engine lubricating oil and the actuating fluid sump 24 is an engine lubrication oil sump. This allows the fuel injection system to be connected as a parasitic subsystem to the engine's lubricating oil circulation system. Alternatively, the actuating fluid could be fuel or some other type of liquid.
In the illustrated embodiment, the fuel supply means 18 includes a fuel tank 42, a fuel supply passage 44 arranged in fluid communication between the fuel tank 42 and the fuel inlet of each injector 14, a relatively low pressure fuel transfer pump 46, one or more fuel filters 48, a fuel supply regulating valve 49, and a fuel circulation and return passage 47 arranged in fluid communication between each injector 14 and fuel tank 42. In an alternative embodiment, the fuel supply means 18 may vary to support the needs of different fuel injection devices, such as digitally controlled fuel valves.
Electronic control means 20 preferably includes an electronic control module (ECM) 56, also referred to as a controller, the use of which is well known in the art. ECM 56 typically includes processing means such as a microcontroller or microprocessor, a governor such as a proportional integral derivative (PID) controller for regulating engine speed, and circuitry including input/output circuitry, power supply circuitry, signal conditioning circuitry, solenoid driver circuitry, analog circuits and/or programmed logic arrays as well as associated memory. The memory is connected to the microcontroller or microprocessor and stores instruction sets, maps, lookup tables, variables, and more. ECM 56 may be used to control many aspects of fuel injection including (1) the fuel injection timing, (2) the total fuel injection quantity during an injection event, (3) the fuel injection pressure, (4) the number of separate injections or fuel shots during each injection event, (5) the time intervals between the separate injections or fuel shots, (6) the time duration of each injection or fuel shot, (7) the fuel quantity associated with each injection or fuel shot, (8) the actuation fluid pressure, (9) current level of the injector waveform, and (10) any combination of the above parameters. Each of such parameters are variably controllable independent of engine speed and load. ECM 56 receives a plurality of sensor input signals S1-S8 which correspond to known sensor inputs such as engine operating conditions including engine speed, engine temperature, pressure of the actuation fluid, cylinder piston position and so forth that are used to determine the precise combination of injection parameters for a subsequent injection event.
For example, an engine temperature sensor 58 is illustrated in
It is recognized that the type of fuel injection desired during any particular fuel injection event will typically vary depending upon various engine operating conditions. In an effort to improve emissions, it has been found that delivering multiple fuel injections to a particular cylinder during a fuel injection event at certain engine operating conditions achieves both desired engine operation as well as emissions control.
Referring to
Although the pilot advance or main delay between the pilot shot 60 and the main shot 62 is not indicated on the various injection events depicted in
Referring again to
Although
Typically, the pilot injections are approximately 5% to 40% of the total fuel delivered in the injectors during a particular injection event, the main injections are approximately 3% to 40% of the total fuel delivered during a particular injection event, and the anchor injection will include the remaining total fuel to be delivered during a particular injection event. Generally, and in the preferred embodiment, the quantity of fuel associated with the pilot shot is greater than the quantity of fuel associated with the main shot but less than the quantity of fuel associated with the anchor shot. In other words, the main fuel shot generally has the smallest quantity of fuel and the anchor fuel shot generally has the largest quantity of fuel, the quantity of fuel associated with the pilot shot being generally therebetween. For example, at a medium to heavy engine load (¾ to full load) and a generally high engine speed, an exemplary fuel quantity relationship between the respective fuel shots may be such that the pilot shot may have 20% of the fuel, the main shot may have 10% of the fuel, and the anchor shot may have 70% of the fuel. In an alternative embodiment, and in accordance with the fuel quantity relationship discussed above, fuel may be apportioned such that the pilot shot receives approximately 15% to 25% of the total fuel delivered, the main shot receives approximately 5% to 10% of the total fuel delivered, and the anchor shot receives the remaining fuel to be delivered, that is, approximately 60% to 80% of the total fuel delivered. Other distribution ranges are likewise possible wherein the fuel quantity associated with the pilot shot is greater than the fuel quantity associated with the main shot but less than the fuel quantity associated with the anchor shot. Although it is generally desirable to maintain this fuel quantity relationship between the respective fuel shots, it is recognized and anticipated that other fuel quantity relationships may be desired depending upon engine operating conditions, the type of engine and specific fuel injection system being utilized, and other parameters. However, in this regard, if too much fuel is allocated to the pilot shot such as approaching 50% of the fuel, an increase in hydrocarbons (HC) will occur thereby undesirably increasing emissions. However, to achieve the desired compression ignition, the pilot shot should have enough fuel associated therewith for pre-ignition to occur via compression and without the use of a spark or glow plug.
A three shot fuel injection event can be used at typical engine loads of approximately 30% or greater at all engine speeds. Below an engine load of approximately 30%, including idle conditions, typically only main and anchor injections are utilized for the reasons explained above. At all operating conditions depicted in
As fuel and air are compressed during the compression stroke, the compression pressure mixes the fuel and air before combustion or light off. In this regard, based upon the quantity of fuel allocated to the pilot shot, the pilot fuel/air mixture will typically be combusted sometime during the compression stroke. In one embodiment, it has been found that the pilot fuel/air mixture will combust in a compression ignition engine during the compression stroke when the cylinder piston is displaced between a range from approximately 20° to approximately 12° before top dead center independent of when the pilot shot was injected into the cylinder. It is recognized and anticipated that combustion may occur outside of this range due to several factors including the fuel quantity associated with the pilot shot, the rail or injector pressure, air intake, engine speed, engine load and other parameters. The subsequent fuel shots associated with a multiple fuel injection, such as the main and/or anchor shot, may be delivered directly into the flame front of the pilot shot combustion. This can be desirable depending upon engine operating conditions because such fuel will be more thoroughly combustible when injected into the pilot flame front. In addition, depending upon engine operating conditions, it is possible to inject the main shot either before or after the pilot shot combustion.
An exemplary current waveform for a three shot injection event is illustrated in
Under certain operating conditions, the proximity of the main and anchor durations and the resultant internal injector hydraulics may lead to a rate shaping effect of the anchor injection. As a result, a distinct third injection may not always be realized although an injection rate trace would indicate a drop in the injection rate between the main and anchor shots. In this situation, because the main and anchor shots typically occur close together, the duration of the anchor delay may be insufficient to produce a distinct split between the main and anchor shots, that is, a significant reduction in the fuel flow rate between these two fuel shots is not realized. This occurrence is referred to as a boot condition or a boot mode of operation and is also known as rate shaping the anchor fuel shot. A boot type of fuel delivery generates a different quantity of fuel delivered to the cylinder as compared to a distinct split type fuel delivery since in a boot type delivery, the fuel injection flow rate never goes to zero between the respective fuel shots. Conversely, in a split fuel delivery, the fuel injection flow rate may go to zero, between the respective fuel shots. As a result, more fuel is generally delivered in a boot type delivery as compared to a split fuel delivery between the main and anchor fuel shots. Depending upon the operating conditions of the engine, desired engine performance and desired emissions output, and other factors and/or parameters, it may be desirable and advantageous, in certain situations, to deliver the main and anchor fuel shots in a split mode and, in other situations, it may be desirable and advantageous to deliver the main and anchor fuel shots in a boot condition. The present control system is cable of dynamically determining the appropriate parameters associated with a particular multiple fuel injection event to yield either a split or a boot type fuel delivery based upon the particular engine operating conditions.
It is also anticipated, in one embodiment, that the pull-in duration for each shot, the shot duration, the anchor delay. and the pilot and main shot timing with respect to the displacement of the cylinder piston will be determined, calculated, or looked up in respective maps and/or tables as a function of any one or more of the following parameters, namely, engine speed, engine load, rail pressure, total desired fuel quantity, oil or coolant temperature, atmospheric pressure and still other parameters. It is also recognized that other fuel systems will use different current waveforms. The importance of
Still further, it should be noted that although in one embodiment of the present invention disclosed herein, each separate fuel shot associated with a multiple fuel injection event is delivered or injected into the combustion chamber when the cylinder piston is located or displaced within a predetermined range during the compression and power strokes, it is recognized that each such separate fuel shot can be delivered outside of these ranges due to factors such as the fuel quantity associated with each fuel shot, the injection pressure, engine speed, engine load and other parameters. In this regard, it is recognized that the pilot shot can be injected at any time during the compression stroke; the main shot can be injected at any time during the compression or power stroke after delivery of the pilot shot; and the anchor shot can be injected at any time during the compression or power stroke after delivery of the main shot. In addition, although the present multiple fuel injection events have been discussed in terms of an exemplary waveform such as the exemplary waveform illustrated in
The actual timing of the fuel injections is implementation dependent. For example, in one embodiment, the third fuel shot, or anchor shot, may occur approximately 0.20 to 0.75 milliseconds after the second fuel shot. However this time delay is implementation dependent and will vary significantly depending on the speed of the engine. For example an engine have a maximum rated engine speed in the low speed range will have different actual injection timing and timing delays, than an engine capable of running at very high speeds, e.g., 4000 rpm and above. Therefore, the timing relationships provided, such as those illustrated in
Utilization of an injection method and system in accordance with the present invention provides for better emission control during varying engine operating conditions as explained above. Although the particular injection waveform for delivering multiple fuel injections may vary depending upon the particular engine operating conditions, the present system is capable of dynamically determining the number of shots to be injected, the timing associated with each individual injection event, the injection duration, any delays between injections, and the displacement of the cylinder piston relative to the beginning of each injection regardless of the type of electronically controlled fuel injectors or digitally controlled valves or common rail fuel system being utilized, regardless of the type of engine being utilized, and regardless of the type of fuel being utilized. In this regard, appropriate fuel maps relating rail pressure, engine speed, engine load, pilot/main/anchor duration times, pilot/main/anchor fuel quantities, anchor timing delays, pilot and main shot timing, and other parameters can be stored or otherwise programmed into ECM 56 for use during all operating conditions of the engine. These operational maps, tables and/or mathematical equations stored in the ECM programmable memory determine and control the various parameters associated with the appropriate multiple injection events to achieve desired emissions control.
It is also recognized that the particular ambient conditions under which the engine will be operating will affect the amount of emissions produced by the engine. As the ambient conditions change, so will the engine exhaust emissions. As a result, the multiple fuel injection events may have to be adjusted in order to keep the engine emissions within desired limits based upon ambient conditions. These adjustments may include adjustments to the pilot injection timing and quantity, the main injection timing and quantity, the delay between the pilot and main injections, and the delay between the main and anchor injections. Ambient conditions can be monitored by providing and coupling appropriate sensors to ECM 56 as will be hereinafter explained.
As indicated in
It is also recognized and anticipated that other parameters or engine operating conditions can likewise be sensed and inputted to ECM 56, other than ambient temperature 80 and/or ambient pressure 82, in order to determine the ambient operating conditions of the engine. For example, ECM 56 could be coupled to a sensor to receive a signal 84 indicative of the inlet manifold temperature associated with the engine, to a sensor to receive a signal 86 indicative of the inlet manifold pressure, to a sensor to receive a signal 88 indicative of the humidity, and/or to a sensor to receive a signal 90 indicative of the crankcase oil pressure. These engine parameters could likewise be correlated or translated through various maps, tables and/or equations to establish the ambient operating conditions of the engine and, based upon any one or a plurality of such signals 80, 82, 84, 86, 88 and 90, ECM 56 could make any one or more of the adjustments 92, 94, 96 and/or 98 and output appropriate signals S10 to adjust the parameters of the multiple injection events. All of the sensors providing signals 80, 82, 84, 86, 88 and/or 90 would preferably continuously monitor its corresponding parameter associated with the operation of the engine and each such sensor would output an appropriate signal to ECM 56 indicative of such sensed parameters. Still further, it is recognized and anticipated that other parameters and sensors other than those identified in
Although fuel system 10 illustrated in
As is evident from the foregoing description, certain aspects of the present invention are not limited by the particular details of the examples illustrated herein and it is therefore contemplated that other modifications and applications, or equivalence thereof, will occur to those skilled in the art. It is accordingly intended that the claims shall cover all such modifications and applications that do not depart from the spirit and scope of the present invention.
Other aspects, objects and advantages of the present invention can be obtained from a study of the drawings, the disclosure and the appended claims.
Duffy, Kevin P., Roth, Matthew R., McGee, Brian G., Fluga, Eric C., Hafner, Gregory G.
Patent | Priority | Assignee | Title |
7654245, | Sep 17 2005 | Daimler AG | Method of operating a spark ignition internal combustion engine |
8893685, | Aug 03 2010 | GM Global Technology Operations LLC | Method for estimating an hydraulic dwell time between two injection pulses of a fuel injector |
Patent | Priority | Assignee | Title |
4485791, | Sep 25 1979 | Nissan Motor Co., Ltd. | Method of operating a single spot fuel injected internal combustion engine and apparatus for same |
4571683, | Mar 03 1982 | Toyota Jidosha Kogyo Kabushiki Kaisha | Learning control system of air-fuel ratio in electronic control engine |
4576135, | Apr 24 1984 | TRW INC , A CORP OF OHIO | Fuel injection apparatus employing electric power converter |
4621599, | Dec 13 1983 | Nippon Soken, Inc. | Method and apparatus for operating direct injection type internal combustion engine |
4704999, | Jun 04 1985 | Nippon Soken, Inc. | Fuel injection control for diesel engine |
4729056, | Oct 02 1986 | TEMIC AUTOMOTIVE OF NORTH AMERICA, INC | Solenoid driver control circuit with initial boost voltage |
4836161, | Oct 08 1986 | Daimler-Benz Aktiengesellschaft | Direct fuel injection method for a diesel engine |
4922878, | Sep 15 1988 | Caterpillar Inc.; CATERPILLAR INC , PEORIA, IL, A DE CORP | Method and apparatus for controlling a solenoid operated fuel injector |
5020979, | Oct 06 1988 | Lucas Industries PLC | Injection pump having pilot and main injection |
5070836, | Sep 07 1989 | ROBERT BOSCH GMBH, A CORP OF THE FED REP OF GERMANY | Method and arrangement for controlling the injection of fuel in an internal combustion engine |
5113833, | Jun 19 1989 | Hitachi, Ltd. | Method and controller for supplying fuel to cylinders of multicylinder internal combustion engine |
5165373, | May 24 1991 | Electro-thermal pulsed fuel injector and system | |
5245972, | Jul 15 1989 | Robert Bosch GmbH | Sequential fuel injection method |
5267545, | May 19 1989 | DELPHI AUTOMOTIVE SYSTEMS LLC | Method and apparatus for controlling the operation of a solenoid |
5268842, | Dec 03 1990 | CUMMINS ENGINE IP, INC | Electronic control of engine fuel injection based on engine duty cycle |
5277164, | May 29 1990 | Hitachi, Ltd. | Method and apparatus for control of engine fuel injection |
5320079, | Feb 05 1992 | Fuji Jukogyo Kabushiki Kaisha | Fuel injection control system for an internal combustion engine and method thereof |
5379733, | Oct 29 1993 | Deere & Company | Fuel shut-off solenoid pull-in coil relay |
5427072, | Apr 30 1992 | Nissan Motor Co., Ltd. | Method of and system for computing fuel injection amount for internal combustion engine |
5427083, | Jan 14 1991 | DELPHI AUTOMOTIVE SYSTEMS LLC | Method for controlling fuel supply to an engine |
5450829, | May 03 1994 | CLEAN AIR POWER, INC | Electronically controlled pilot fuel injection of compression ignition engines |
5460128, | Jul 27 1992 | Kruse Technology Partnership | Internal combustion engine with limited temperature cycle |
5492098, | Mar 01 1993 | Caterpillar Inc | Flexible injection rate shaping device for a hydraulically-actuated fuel injection system |
5499608, | Jun 19 1995 | Caterpillar Inc. | Method of staged activation for electronically actuated fuel injectors |
5507260, | Feb 27 1995 | Fuel management system for internal combustion engines | |
5713328, | Mar 31 1997 | Ford Global Technologies, Inc | Spark ignited internal combustion engine with multiple event fuel injection |
6026780, | Dec 18 1997 | Caterpillar Inc. | Method for controlled transition between use of different injection waveform types in a hydraulically-actuated electronically-controlled fuel injection system |
6032641, | May 22 1998 | Kubota Corporation | Fuel injection device for diesel engine |
6067954, | Sep 29 1997 | Mazda Motor Corporation | Direct fuel injection engine |
6371077, | Jul 13 2000 | Caterpillar Inc | Waveform transitioning method and apparatus for multi-shot fuel systems |
6378487, | Sep 01 2000 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Method and apparatus for pre-pilot fuel injection in diesel internal combustion engines |
6491016, | Mar 05 1999 | C R F Societa Consortile per Azioni | Method of controlling combustion of a direct-injection diesel engine by performing multiple injections by means of a common-rail injection system |
6705277, | Jul 13 2000 | Caterpillar Inc | Method and apparatus for delivering multiple fuel injections to the cylinder of an engine wherein the pilot fuel injection occurs during the intake stroke |
6840211, | Nov 26 2002 | Isuzu Motors Limited | Diesel engine |
6912992, | Dec 26 2000 | WESTPORT RESEARCH INC | Method and apparatus for pilot fuel introduction and controlling combustion in gaseous-fuelled internal combustion engine |
DE19639172, | |||
DE19707811, | |||
DE19747231, | |||
DE4414906, | |||
EP221832, | |||
EP886050, | |||
EP1035314, | |||
EP1077321, | |||
JP10141124, | |||
JP10274088, | |||
JP11072038, | |||
JP11200933, | |||
JP20003303892, | |||
JP2001055951, | |||
JP2001082151, | |||
WO9603578, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 16 2006 | Caterpillar Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 03 2011 | REM: Maintenance Fee Reminder Mailed. |
Feb 19 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 11 2011 | 4 years fee payment window open |
Sep 11 2011 | 6 months grace period start (w surcharge) |
Mar 11 2012 | patent expiry (for year 4) |
Mar 11 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 11 2015 | 8 years fee payment window open |
Sep 11 2015 | 6 months grace period start (w surcharge) |
Mar 11 2016 | patent expiry (for year 8) |
Mar 11 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 11 2019 | 12 years fee payment window open |
Sep 11 2019 | 6 months grace period start (w surcharge) |
Mar 11 2020 | patent expiry (for year 12) |
Mar 11 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |