An inverter by pass safety switch for rerouting electrical power either through or around AC variable frequency inverter drives during electrical disturbances, thus allowing a motor to continue operation. The switch works in a mechanical fashion, and comprises a contact block containing electrical contacts and cams operably connected to the contacts and mounted on a shaft that can be turned by an operator. The cams are shaped and mounted on the shaft in such a way to provide a desired switching pattern when the shaft is manually rotated.
|
1. An inverter bypass safety switch for rerouting electrical power either through or around an inverter drive during electrical disturbances and suitable to directly handle high power motor loads, said switch comprising one or more sections joined together by throughbolts to form a substantially cylindrical contact block having a central axis, a rotatable shaft disposed along the central axis, electrically conductive exterior interconnections for connecting selected stationary contacts, externally mounted electrical contacts for receiving electrical wires, and a handle mounted on one end of the shaft that can be turned by an operator, each section comprising:
a cam mounted on the shaft;
at least one pair of stationary contacts contact connected to the contact block; and
at least one radially sliding moveable contact operably connected to the cam by a spring-loaded follower that biases the moveable contact into engagement with the pair of stationary contacts contact when a low profile section of the cam faces the follower;
wherein manual rotation of the shaft causes the cam to rotate and act upon the moveable contact to cause the moveable contact to move either into or out of engagement with the stationary contacts contact, thus causing electrical power to be directed either through or around the inverter drive.
3. An inverter bypass safety switch for rerouting electrical power around an inverter drive during electrical disturbances, said switch comprising:
a base having two sides;
one or more power sections stacked on one side of the base and joined together by throughbolts to form a substantially cylindrical contact block having a central axis, each power section comprising a body portion, a cam mounted on a rotatable shaft extending through the power sections along the contact block central axis, at least one pair of stationary contacts keyed into the body portion of their respective section of the contact block and electrically connected to externally mounted electrical terminals for fastening external wires, and at least one radially sliding moveable contact operably connected to the cam by a spring-loaded follower that biases the moveable contact into contact with the pair of stationary contacts when a low profile section of the cam faces the follower;
one or more auxiliary sections stacked on the base side opposite the power sections for controlling auxiliary devices; and
electrically conductive exterior interconnections for connecting selected externally mounted electrical terminals;
wherein manual rotation of the shaft causes the cams to rotate and act upon the moveable contacts to cause them to move either into or out of contact with the stationary contacts, thus causing electrical power to be disconnected from both the incoming lines into the inverter drive and the outgoing lines from the inverter drive.
2. The inverter bypass safety switch of
a drive pattern, wherein electrical power is routed through the inverter bypass safety switch to the inverter drive, from the inverter drive back to the inverter bypass safety switch and then to an application;
a LINE pattern, wherein electrical power is routed from an incoming power source through the inverter bypass safety switch and directly to the application;
an OFF pattern, wherein electrical power is disconnected from both the inverter bypass safety switch and the application; and
a TEST pattern, wherein electrical power is routed through the inverter bypass safety switch to the inverter drive, but no power is sent from the inverter drive to the application.
0. 4. The inverter bypass safety switch of
a drive pattern, wherein electrical power is routed through the inverter bypass safety switch to the inverter drive, from the inverter drive back to the inverter bypass safety switch and then to an application;
a LINE pattern, wherein electrical power is routed from an incoming power source through the inverter bypass safety switch and directly to the application; and
an OFF pattern, wherein electrical power is disconnected from both the inverter bypass safety switch and the application.
0. 5. The inverter bypass safety switch of
a drive pattern, wherein electrical power is routed through the inverter bypass safety switch to the inverter drive, from the inverter drive back to the inverter bypass safety switch and then to an application; and
a LINE pattern, wherein electrical power is routed from an incoming power source through the inverter bypass safety switch and directly to the application.
|
1. Field of the Invention
This patent relates to manually operated electrical switches. More particularly, this patent relates to a manually operated electrical switch that uses a shaft with a plurality of cams operatively connected to electrical contacts to provide the required switching action for rerouting electrical power either through or around AC variable frequency inverter drives.
2. Description of the Related Art
Inverter drives, or inverters for short, are solid state devices used to vary the speed of common three phase electric motors. Inverters are common in industry and are used in conveyors, fans, cooling towers, extruders, and other applications. However, since inverters are solid state devices, they are vulnerable to lightning strikes, power surges, low voltages, and other disturbances in the electrical line. When disturbances occur, inverter drives can fail. Failure of the inverter drive can stop the motor from operating, thus stopping the application.
Several methods have been developed to isolate inverters during electrical disturbances. However, these methods involve expensive and unreliable contactors, relays and timers.
The present invention is designed to provide a simple means of isolating an inverter drive during an electrical disturbance to allow a motor to continue at full speed/full power operation until a safe stopping point is reached. This is accomplished by providing an inverter bypass safety switch that can route electrical power through or around an inverter simply by turning a handle on the switch.
Thus it is an object of my invention to provide a simple and reliable means for isolating an inverter during electrical disturbances so that the motor can continue at full speed/full power operation until a safe stopping point is reached.
Another object of the present invention is to provide a mechanical means for isolating an inverter. The present invention does not require contactors, relays, solenoids, or coils that can consume power, stick, or burn out.
Still another object of the present invention is to provide a means for isolating an inverter that uses positive break contacts. Should a contact “weld”, the switch handle cannot be turned. If the switch handle cannot be turned, the contacts cannot transfer. If the switch handle is able to be turned, the contacts transfer. This feature assures the operator that when the switch has been turned the contacts have been transferred.
Yet another object of the present invention is to provide a switch having positive removal of the electrical power from the inverter drive. In other words, the switch can be used to disconnect power from both the incoming lines into the inverter and outgoing lines from the inverter.
Further and additional objects will become apparent from the description, accompanying drawings, and appended claims.
While other less desirable methods have been developed to isolate inverters during electrical disturbances, no prior inverter bypass switch is known that embodies and possesses all the aforementioned characteristics.
The present invention is an inverter bypass safety switch comprising a contact block containing a plurality of electrical contacts and a plurality of cams operably connected to the electrical contacts so that rotation of the cams opens or closes the electrical contacts. Each electrical contact comprises two stationary contacts and a moveable contact. The moveable contacts move in response to the movement of the cams.
The cams are mounted on a shaft that can be turned by an operator. The cams are shaped to provide a desired switching pattern when the shaft is manually rotated. Although any number of switching patterns may be employed, four are described below: DRIVE, LINE, OFF, and TEST.
In the DRIVE position, electrical power is routed through the switch to an inverter drive, from the inverter drive back to the switch and then to a motor. This is the normal position used when providing power to an application.
In the LINE position, electrical power is routed from an incoming power source through the switch and directly to the application. This position is used when an operator wants to isolate the inverter drive, such as for repairs or replacement, while not shutting down the application.
In the OFF position, electrical power is disconnected from both the inverter drive and the application. This position typically is used when an operator wants to shut down the application.
In the TEST position, electrical power is routed from an incoming power source though the switch to an inverter drive, but no power is sent to the application. The TEST position may be used to set up the inverter drive parameters, test the inverter drive function, change settings on the inverter drive, and in any other situation where it is desirable to power the inverter drive but not allow power to the application.
Other switching patterns can be made to suit operator requirements. The switch may connected to a fuseblock to protect the motor against short circuits, to a disconnect switch, or to a manual motor starter.
Turning to the drawings, there is shown in
The contact block 14 may include up to nine power contacts and two auxiliary contacts. The power contacts direct the incoming power either to and from the inverter drive, or directly to the motor, bypassing the inverter. The auxiliary contacts may be used to control a drive control circuit, send signals to a PLC, pilot light, or other device.
In the illustrated embodiment, the five sections 16 above the base 12 contain the nine power contacts, and the section 16 below the base 12 contains the two auxiliary contacts. As shown in
Preferably, the contacts 18 are double make/break contacts. That is, each contact 18 has a moving contact 28 and a pair of stationary contacts 30. In the preferred embodiment, each moving contact 28 comprises a copper bar 32 with silver cadmium oxide contact points 34 on each end. The silver cadmium oxide contact points 34 carry the amp switching load. Each moving contact 28 is held in a follower 36 which is keyed into the housing 38 of the switch 10. The follower 36 is acted upon by the shaft-mounted cam 20.
Preferably, two stationary contacts 30 are located on either side of each moveable contact 28 and are be made of the same materials as the moveable contacts 28. The stationary contacts 30 are keyed into the housing or body 38 of the switch 10, and are connected to electrical terminals 31 for fastening external body wires to the switch 10. Some of the electrical terminals 31 are connected by electrically conductive bridges 33 to other terminals in the same section 16 of an adjacent section 16.
Each cam 20 has a profile cut into the cam 20 that determines the switching pattern. The profile may include low sections 21 and/or high sections 23. Each follower 36 is connected to a spring 40 that biases the moveable and stationary contacts 28, 30 in a closed (together) position when the cam 20 is rotated such that a low section 21 of the cam profile faces the follower 36. The moveable and stationary contacts 28, 30 are mechanically opened when the cam 20 is rotated to a high section 23 of the cam profile. Opening the contacts 18 does not require use of the spring 40.
The shaft 22 connects all the cams 20 together, and is itself connected to an operating handle 42. The operating handle 42 can be turned by the operator. The operating handle 42 is part of the handle assembly 24.
By varying the shape of the cams 20 and the orientation of the cams 20 into the shaft 22, various switching patterns can be achieved. Four different switching patterns or positions shall now be described.
In the DRIVE or normal position, shown schematically in
In the LINE or bypass position, shown schematically in
In the OFF position, shown schematically in
The TEST position, shown schematically in
The inverter bypass safety switch may be configured in either a two position, three position, four position unit, depending on the needs of the user. The two position unit has a DRIVE and a LINE position. The three position unit has DRIVE, LINE, and OFF positions. The four position unit has DRIVE, LINE, OFF and TEST positions. Other switching patterns can be achieved by changing the configuration of the cams.
The switch is operated in the following manner. The desired switching pattern is achieved by turning the operating handle 42 to the desired setting. Turning the handle causes the cams 20 to rotate, which acts upon the moveable contacts 28, either opening or closing the electrical connections between the moveable and stationary contacts.
As shown in
The embodiment referred to herein as the “Lockout Style” (
The embodiment referred to herein as the “Panel Mount” style (
The unique features of the inverter bypass safety switch 10 include the following. First, unlike conventional switches, the present invention has positive removal of the electrical power from the inverter drive. In other words, the switch 10 can be used to disconnect power from both the incoming lines into the inverter drive 11 and outgoing lines from the inverter drive 11, as shown in FIG. 7.
Second, the present invention features entirely mechanical operation. That is, the switch 10 does not depend on coils, relays, contactors, or other electromechanical devices to switch power.
Third, the present invention features positive break contacts. This means that, should a contact 18 “weld”, the operating handle 42 cannot be turned, thus assuring the operator that when the operating handle 42 has been turned the contacts 18 have been transferred. If the operating handle 42 is able to be turned, the contacts 18 transfer.
It is anticipated that the switch 10 may be enclosed in a UL listed nonmetallic enclosure such as the one shown in
Although the foregoing invention has been described in some detail for purposes of clarity and understanding, it will be obvious that certain modifications and alternative embodiments of the invention are contemplated which do not depart from the spirit and scope of the invention as defined by the foregoing teachings and appended claims.
Patent | Priority | Assignee | Title |
10083809, | Apr 21 2016 | Hartland Controls, LLC | Electrical power transfer switch |
10819254, | Mar 20 2017 | Regal Beloit America, Inc. | Drive circuit for electric motors |
9136696, | Jan 23 2012 | ADVANCE CONTROLS, INC | Early break inverter bypass safety switch |
9865416, | Apr 21 2016 | Hartland Controls, LLC | Electrical power transfer switch |
Patent | Priority | Assignee | Title |
2326070, | |||
3251956, | |||
3260803, | |||
3614363, | |||
3614461, | |||
3753069, | |||
3987268, | Sep 25 1974 | Matsushita Electric Industrial Co., Ltd.; Kyokuto Electric Company, Limited | Power switching and control mechanism for induction heating apparatus |
4154996, | May 12 1977 | CHASE MANHATTAN BANK, THE; Patriot Sensors & Controls Corporation | Positive break snap action switch |
4157461, | Oct 19 1977 | Automatic Switch Company | Automatic transfer switch and bypass switch arrangement |
4295054, | Oct 23 1979 | Westinghouse Electric Corp. | Electric control system with rotary mechanical interlock and timing mechanism |
4371820, | Aug 17 1981 | Electro-Motion, Inc. | Rotary line transfer switch |
4398097, | Dec 10 1979 | ELECTRO SWITCH CORP , 440 WASHINGTON, STREET, WEYMOUTH, MASSACHUSETTS, A DE CORP ; CREGIER ELECTRICAL MANUFACTURING CO , INC , 5060 N KIMBERLY STREET, CHICAGO ILLINOIS, A CORP OF ILLINOIS | Automatic transfer switch |
4423336, | May 17 1982 | Onan Corporation | Electromechanically controlled automatic transfer switch and bypass switch assembly |
4503412, | Mar 25 1982 | NAIMER, HUBERT LAURENZ | Star-delta-switch |
4724287, | Oct 26 1984 | Cgee Alsthom; BACO | Versatile multideck rotary switch |
4760278, | Jul 23 1987 | Transfer switch | |
4851620, | May 06 1986 | Cgee Alsthom; BACO | Multiplier switch assembly and method of manufacture |
4937403, | Aug 02 1988 | Aichi Electric Works Co., Ltd. | Power source switching device |
5023469, | Feb 05 1990 | GE ZENITH CONTROLS, INC | Interlock system for bypass/isolation automatic transfer switch |
5048366, | Jan 01 1990 | Bremas S.p.A. | Modular camshaft with removable cams, particularly for circuit breakers and electrical changeover switches or the like |
5075517, | Mar 26 1990 | Bremas S.p.A. | Cam operated electrical changeover switch or circuit breaker tappet-type contact structure |
5081367, | Jul 06 1990 | WESTINGHOUSE ELECTRIC CORPORATION, A CORP OF PA | Electric power system with maintenance bypass for uninterruptible power supply using closed transition operation |
5200586, | Jul 31 1991 | Westinghouse Electric Corporation | Five gear isolating mechanism for bypass isolation switches |
5278369, | Jun 30 1992 | Bremas S.p.A. | Electrical operating device with contact-holding slider in two parts |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 15 2000 | Advance Controls, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 23 2009 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Mar 25 2011 | 4 years fee payment window open |
Sep 25 2011 | 6 months grace period start (w surcharge) |
Mar 25 2012 | patent expiry (for year 4) |
Mar 25 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 25 2015 | 8 years fee payment window open |
Sep 25 2015 | 6 months grace period start (w surcharge) |
Mar 25 2016 | patent expiry (for year 8) |
Mar 25 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 25 2019 | 12 years fee payment window open |
Sep 25 2019 | 6 months grace period start (w surcharge) |
Mar 25 2020 | patent expiry (for year 12) |
Mar 25 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |